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Topics for the day

• Reliability
– Three-phase commit (3PC)
– Majority 3PC

• Network partitions
– Committing with partitions
– Concurrency control with partitions
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Recall - 2PC is blocking
Coordinator P1 P2 P3

P4

W W W

Case I: P1 → “W”; coordinator sent commits

P1 → “C”

Case II: P1 → NOK; P1 → A

⇒ P2, P3, P4 (surviving participants) cannot safely abort 

or commit transaction
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3PC (non-blocking commit)
• Assume: failed node is down forever
• Key idea: before committing, coordinator tells participants 

everyone is ok
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3PC recovery (termination protocol)

• Survivors try to complete transaction, based on 
their current states

• Goal:
– If dead nodes committed or aborted, then survivors 

should not contradict!
– Otherwise, survivors can do as they please...
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Termination rules
• Let {S1,S2,…Sn} be survivor sites. Make decision on 

commit/abort based on following rules:

• If one or more Si = COMMIT ⇒ COMMIT  T
• If one or more Si = ABORT   ⇒ ABORT  T
• If one or more Si = PREPARE ⇒ COMMIT T

(T could not have aborted)
• If no Si = PREPARE (or COMMIT) ⇒ ABORT T

(T could not have committed)
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Examples
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Points to Note
• Once survivors make a decision, they must elect a 

new coordinator and continue with 3PC.

• When survivors continue 3PC, failed nodes do not 
count.
– Example: OK* = OK from every non-failed participant
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Points to Note
• 3PC unsafe with network partitions
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Node recovery
• After node N recovers from failure, what must it 

do?
– N must not participate in termination protocol
– Wait until it hears commit/abort decision from 

operational nodes
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All-failed problem
Waiting for commit/abort decision is fine, unless all
nodes fail.

Two possible solutions:
• Option A: Recovering node waits for either

• commit/abort outcome for T from some other node.
• all nodes that participated in T are up and running. 

Then 3PC can continue

• Option B: Use Majority 3PC

? ? ? ? ?
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Majority 3PC
• Nodes are assigned votes.  Total votes = V. For majority, 

need  (V+1)/2 votes.

• Majority rule: For every state transition, coordinator 
requires messages from nodes with a majority of votes.

• Majority rule ensures that any decision (preparing, 
committing) is known to a future decision-making group.
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Example 1

• Each node has 1 vote, V=5

• Nodes P2, P3, P4 enter “W” state and fail
• When they recover, coordinator and P1 are down
• Since P2, P3, P4 have majority, they know coord. could not 

have gone to “P” without at least one of their votes
• Therefore, T can be aborted.
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Example 2

• Each node has 1 vote, V=5

• Nodes fail after entering states shown. P3 and P4 recover. 

• Termination rule says {P3,P4} can commit. But {P3,P4} do 
not have majority – so block.

• Right thing to do, since {Coordinator,P1,P2} may later 
abort.
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Problem!
• Previously, we disallowed recovering nodes from 

participating.
• Now any set of nodes with majority can progress. 
• How do we fix the problem below?
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Majority 3PC (introduce “prepare to abort” state)
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Example Revisited

W
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✔

➜ PC ➜ C

OK to commit since
transaction could not 
have aborted
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Example Revisited -II
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➜ PA

No decision:
Transaction could have aborted or
could have committed... Block!

➜ PA
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Majority 3PC Rules

• If survivors have majority and states in 
{W, PC, C} ⇒ try to commit

• If survivors have majority and states in 
{W, PA, A} ⇒ try to abort

• Otherwise block

Blocking Protocol !!
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Summarizing commit protocols
• 2PC

– Blocking protocol
– Key: coordinator does not move to “C” state unless 

every participant is in “W” state

• 3PC
– Non-blocking protocol
– Key: coordinator broadcasts that “all are ok” before 

committing. Failed nodes must wait.
– Any set of non-failed nodes can terminate transaction 

(even a single node)
– If all nodes fail, must wait for all to recover
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Summarizing commit protocols
• Majority 3PC

– Blocking protocol
– Key: Every state transition requires majority of votes
– Any majority group of active+recovered nodes can 

terminate transaction
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Network partitions

• Groups of nodes may be isolated or may be slow in 
responding

• When are partitions of interest?
– True network partitions (disaster)
– Single node failure cannot be distinguished from 

partition (e.g., NIC fails)
– Loosely-connected networks

• Phone-in, wireless
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Problems
• Partitions during commit

• Updates to replicated data in isolated partitions
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Quorums
• Commit and Abort Quorums: Given set S of nodes, define

� Commit quorum C ⊆ 2S, Abort quorum C ⊆ 2S

� X ∩ Y ≠Ø ∀ X, Y such that X∈C and Y∈A

• Example: S = {a,b,c,d}

C = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
A = {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}

• Quorums can be implemented with vote assignments
� Va = Vb = Vc = Vd = 1
� To commit ≥ 3 votes
� To abort ≥ 2 votes 1

1

1

1. a

b .
. c

. d
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Quorums
• However, not all quorums can be implemented with votes

C = {{a,b}, {c,d}}     A = {{a,c}, {a,d}, {b,c}, {b,d}}

• Commit protocol must enforce quorum

• Quorum condition is in addition to whatever rules the 
commit protocol might have

• If node knows transaction could have committed (aborted), 
if cannot abort (commit) even if abort (commit) quorum 
available

• With network partitions, all commit protocols are blocking.
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3PC Example
• To make commit decision: commit quorum 

(votes for commit VC = 3)
• To make abort decision: abort quorum 

(votes for abort VA = 3)
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• Old coordinator could not have 
committed since all other nodes are in 
“W” state.

• Surviving nodes have abort quorum

Attempt 
to abort
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2

1

1

1

P

w

w

old
coordinator

new coordinator

VC = 3; VA = 3

Another 3PC Example

• Old coordinator could not have aborted 
since one node is in “P” state.

• Surviving nodes have commit quorum

Attempt 
to commit

Note: When using 3PC with quorums, we must use the
“Prepare to Abort” (PA) state as in majority commit (for the
same reasons). 28
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VC = 3; VA = 3

Block

Yet Another 3PC Example

• Old coordinator could not have aborted 
since one node is in “P” state.

• However, surviving nodes do not have 
commit quorum
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Partitions and data replication

Options:
1. All copies required for updates
2. At most one group may update, at any time
3. Any group may update (potentially more than one 

can update simultaneously)
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Coteries
• Used to enforce updates by at most one group
• Given a set S of nodes at which an element X is 

replicated, define a coterie C such that
� C ⊆ 2S

� A1 ∩ A2 ≠ Ø, for ∀ A1,A2 ∈ C

• Examples:

C1= {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}

C2 = {{a,b}, {a,c}, {a,d}, {b,c,d}}

C3 = {{a,b}, {c,d}} not a valid coterie

. a

b . . c
. d
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Accessing Replicated Elements

• Element X replicated at a set S of sites. 

• Specify two sets R (for “read”) and W (for “write”) 
with the following properties:
– R, W ⊆ 2S

– W is a coterie over S
– R and W are read and write quorums respectively over S 

i.e.,  A ∩ B ≠ Ø ∀ A,B such that A ∈ R  and B ∈ W 

(similar to commit and abort quorums)
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Accessing replicated elements
• X replicated at S = {a,b,c,d}

• Example 1:   
W = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
R = {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}

• Example 2:

R = W = {{a,b}, {a,c}, {a,d}, {b,c,d}}

• Can be implemented using vote assignments. For example 1:
� Va = Vb = Vc = Vd = 1; Total = 4
� To write, get 3 votes (Vw)
� To read, get  2 votes (Vr)

2 Vw > T
Vw + Vr  > T
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Missing Writes
Example: a 3 node system, 1 vote for each node

T1 . a

T1 . b
. c

T1 commits at {a,b}.

Partition changes. T2 comes along. Verifies read and write
quorum {a,c}.

. a

. b
. c

T2 reads at c. Writes
and commits at {a,c}.

Unserializable 34

Solution
• Each node maintains list of committed transactions
• Compare list at read site with those at write sites
• Update sites that missed transactions

T0,T1 . a

T0,T1 . b
. c  T0

T2 coordinator Exec-list =   {T0}

T0,T1 . a

T0,T1 . b
. c  T0

T2 coordinator Exec-list =   {T0,T1}

Not OK!
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T0,T1 . a

T0,T1 . b
. c  T0

T2 coordinator
Get missed write from a

• Details are tricky

• Maintaining list of updates until all nodes have seen them

- interesting problem

• See resource (“Missing Writes” algorithm) for details
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Partitions and data replication
Options:
1. All copies required for updates
2. At most one group may update, at any time
3. Any group may update

Separate Operational Groups

DB0 DB1

DB2

DB3

DB4
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Integrating Diverged DBs
1. Compensate transactions to make schedules 

equivalent
2. Data-patch: semantic fix

38

Compensation Example

DB1

DB2

DB3

T0 T3 T4

T0

T0 T1 T2

DB1

DB2

DB3

T0 T3 T4 T1

T0

T0 T1 T2 T2
-1 T3 T4

• Assume T1 commutes with T3 and T4 (for example, no 
conflicting operations)

• Also assume that it is possible to come up with T2
-1 to undo 

the effect of T2  on the database.

39

DB1

DB2

DB3

T0 DB4

T0 T1 T3 T4

T0 T1 T2 T2
-1 T3 T4

T0 T3 T4 T1

In general: Based on the characteristics of
transactions, can “merge” schedules
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Data Patch Example
• Forget schedules

• Integrate differing values via human-supplied “rules”

a

5
b ts=10

x
y
z

c

6
d ts=11

x
y
z

e

6
f ts=12

x
y
z

both copies

site 2

site 1
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For X: site 1 wins
For Y: latest timestamp wins
For Z: add increments

a

5
b ts=10

x
y
z

c

6
d ts=11

x
y
z

e

6
f ts=12

x
y
z

both copies

site 2

site 1

c

7
f ts=12

x
y
z

both copies
(integrated)

for Z: 7 = 5 + site 1 increment + site 2 increment
= 5 + 1 + 1

Rules
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Resources
• “Concurrency Control and Recovery” by Bernstein, 

Hardzilacos, and Goodman
– Available at 

http://research.microsoft.com/pubs/ccontrol/


