
1

1

Distributed Databases

CS347
Lecture 16

June 6, 2001

2

Topics for the day

• Reliability
– Three-phase commit (3PC)
– Majority 3PC

• Network partitions
– Committing with partitions
– Concurrency control with partitions

3

Recall - 2PC is blocking
Coordinator P1 P2 P3

P4

W W W

Case I: P1 → “W”; coordinator sent commits

P1 → “C”

Case II: P1 → NOK; P1 → A

⇒ P2, P3, P4 (surviving participants) cannot safely abort

or commit transaction
4

3PC (non-blocking commit)
• Assume: failed node is down forever
• Key idea: before committing, coordinator tells participants

everyone is ok

I

W

P

A

go
exec*

ack*
commit*

nok
abort*

ok*
pre *

C

I

W

P

A

exec
ok

commit
-

exec
nok

pre
ack

C

abort
-

Coordinator Participant

2

5

3PC recovery (termination protocol)

• Survivors try to complete transaction, based on
their current states

• Goal:
– If dead nodes committed or aborted, then survivors

should not contradict!
– Otherwise, survivors can do as they please...

su
rv

iv
or

s

6

Termination rules
• Let {S1,S2,…Sn} be survivor sites. Make decision on

commit/abort based on following rules:

• If one or more Si = COMMIT ⇒ COMMIT T
• If one or more Si = ABORT ⇒ ABORT T
• If one or more Si = PREPARE ⇒ COMMIT T

(T could not have aborted)
• If no Si = PREPARE (or COMMIT) ⇒ ABORT T

(T could not have committed)

7

Examples

P

W

W

?

?

I

W

W

?

?

C

P

P

?

?

8

Points to Note
• Once survivors make a decision, they must elect a

new coordinator and continue with 3PC.

• When survivors continue 3PC, failed nodes do not
count.
– Example: OK* = OK from every non-failed participant

W

W

P

P

P

P

C

C

P

C

C

C

Decide to commit

3

9

Points to Note
• 3PC unsafe with network partitions

W

W

W

P

P

abort commit

10

Node recovery
• After node N recovers from failure, what must it

do?
– N must not participate in termination protocol
– Wait until it hears commit/abort decision from

operational nodes

W

W

W

?

P

→ A

✔

later on...

11

All-failed problem
Waiting for commit/abort decision is fine, unless all
nodes fail.

Two possible solutions:
• Option A: Recovering node waits for either

• commit/abort outcome for T from some other node.
• all nodes that participated in T are up and running.

Then 3PC can continue

• Option B: Use Majority 3PC

? ? ? ? ?

12

Majority 3PC
• Nodes are assigned votes. Total votes = V. For majority,

need (V+1)/2 votes.

• Majority rule: For every state transition, coordinator
requires messages from nodes with a majority of votes.

• Majority rule ensures that any decision (preparing,
committing) is known to a future decision-making group.

1
1

2

2
21&2

decision
1

decision
2

4

13

Example 1

• Each node has 1 vote, V=5

• Nodes P2, P3, P4 enter “W” state and fail
• When they recover, coordinator and P1 are down
• Since P2, P3, P4 have majority, they know coord. could not

have gone to “P” without at least one of their votes
• Therefore, T can be aborted.

Coordinator

P1

?

?

?

P2

P3

P4

→ W

→ W

→ W

14

Example 2

• Each node has 1 vote, V=5

• Nodes fail after entering states shown. P3 and P4 recover.

• Termination rule says {P3,P4} can commit. But {P3,P4} do
not have majority – so block.

• Right thing to do, since {Coordinator,P1,P2} may later
abort.

Coordinator

P1
?

?

P3

P4

→ P

→ W

P2

15

Problem!
• Previously, we disallowed recovering nodes from

participating.
• Now any set of nodes with majority can progress.
• How do we fix the problem below?

W

W

W

?

P

➜ A

✔

➜ P ➜ C

16

Majority 3PC (introduce “prepare to abort” state)

I

W

PC PA

go
exec*

ackC*
commit*

nok
preA*ok*

preC *

C

I

W

PC

A
exec

ok

commit
-

exec
nok

preC
ackC

C

preA
ackA

Coordinator Participant

A

ackA
abort*

PA

abort
-

5

17

Example Revisited

W

W

W

?

PC

➜ PA

✔

➜ PC ➜ C

OK to commit since
transaction could not
have aborted

18

Example Revisited -II

W

W

W

?

PC

➜ PA

✔

➜ PA

No decision:
Transaction could have aborted or
could have committed... Block!

➜ PA

19

Majority 3PC Rules

• If survivors have majority and states in
{W, PC, C} ⇒ try to commit

• If survivors have majority and states in
{W, PA, A} ⇒ try to abort

• Otherwise block

Blocking Protocol !!

20

Summarizing commit protocols
• 2PC

– Blocking protocol
– Key: coordinator does not move to “C” state unless

every participant is in “W” state

• 3PC
– Non-blocking protocol
– Key: coordinator broadcasts that “all are ok” before

committing. Failed nodes must wait.
– Any set of non-failed nodes can terminate transaction

(even a single node)
– If all nodes fail, must wait for all to recover

6

21

Summarizing commit protocols
• Majority 3PC

– Blocking protocol
– Key: Every state transition requires majority of votes
– Any majority group of active+recovered nodes can

terminate transaction

22

Network partitions

• Groups of nodes may be isolated or may be slow in
responding

• When are partitions of interest?
– True network partitions (disaster)
– Single node failure cannot be distinguished from

partition (e.g., NIC fails)
– Loosely-connected networks

• Phone-in, wireless

23

Problems
• Partitions during commit

• Updates to replicated data in isolated partitions

C

C

C

A

A

X

X

X X
XT1

T2

update

update

24

Quorums
• Commit and Abort Quorums: Given set S of nodes, define

� Commit quorum C ⊆ 2S, Abort quorum C ⊆ 2S

� X ∩ Y ≠Ø ∀ X, Y such that X∈C and Y∈A

• Example: S = {a,b,c,d}

C = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
A = {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}

• Quorums can be implemented with vote assignments
� Va = Vb = Vc = Vd = 1
� To commit ≥ 3 votes
� To abort ≥ 2 votes 1

1

1

1. a

b .
. c

. d

7

25

Quorums
• However, not all quorums can be implemented with votes

C = {{a,b}, {c,d}} A = {{a,c}, {a,d}, {b,c}, {b,d}}

• Commit protocol must enforce quorum

• Quorum condition is in addition to whatever rules the
commit protocol might have

• If node knows transaction could have committed (aborted),
if cannot abort (commit) even if abort (commit) quorum
available

• With network partitions, all commit protocols are blocking.

26

3PC Example
• To make commit decision: commit quorum

(votes for commit VC = 3)
• To make abort decision: abort quorum

(votes for abort VA = 3)

2

1

1

1

w

w

w

old
coordinator

new coordinator

• Old coordinator could not have
committed since all other nodes are in
“W” state.

• Surviving nodes have abort quorum

Attempt
to abort

27

2

1

1

1

P

w

w

old
coordinator

new coordinator

VC = 3; VA = 3

Another 3PC Example

• Old coordinator could not have aborted
since one node is in “P” state.

• Surviving nodes have commit quorum

Attempt
to commit

Note: When using 3PC with quorums, we must use the
“Prepare to Abort” (PA) state as in majority commit (for the
same reasons). 28

2

1

1

1

P

w

w

old
coordinator new coordinator

VC = 3; VA = 3

Block

Yet Another 3PC Example

• Old coordinator could not have aborted
since one node is in “P” state.

• However, surviving nodes do not have
commit quorum

8

29

Partitions and data replication

Options:
1. All copies required for updates
2. At most one group may update, at any time
3. Any group may update (potentially more than one

can update simultaneously)

30

Coteries
• Used to enforce updates by at most one group
• Given a set S of nodes at which an element X is

replicated, define a coterie C such that
� C ⊆ 2S

� A1 ∩ A2 ≠ Ø, for ∀ A1,A2 ∈ C

• Examples:

C1= {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}

C2 = {{a,b}, {a,c}, {a,d}, {b,c,d}}

C3 = {{a,b}, {c,d}} not a valid coterie

. a

b . . c
. d

31

Accessing Replicated Elements

• Element X replicated at a set S of sites.

• Specify two sets R (for “read”) and W (for “write”)
with the following properties:
– R, W ⊆ 2S

– W is a coterie over S
– R and W are read and write quorums respectively over S

i.e., A ∩ B ≠ Ø ∀ A,B such that A ∈ R and B ∈ W

(similar to commit and abort quorums)

32

Accessing replicated elements
• X replicated at S = {a,b,c,d}

• Example 1:
W = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
R = {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}

• Example 2:

R = W = {{a,b}, {a,c}, {a,d}, {b,c,d}}

• Can be implemented using vote assignments. For example 1:
� Va = Vb = Vc = Vd = 1; Total = 4
� To write, get 3 votes (Vw)
� To read, get 2 votes (Vr)

2 Vw > T
Vw + Vr > T

9

33

Missing Writes
Example: a 3 node system, 1 vote for each node

T1 . a

T1 . b
. c

T1 commits at {a,b}.

Partition changes. T2 comes along. Verifies read and write
quorum {a,c}.

. a

. b
. c

T2 reads at c. Writes
and commits at {a,c}.

Unserializable 34

Solution
• Each node maintains list of committed transactions
• Compare list at read site with those at write sites
• Update sites that missed transactions

T0,T1 . a

T0,T1 . b
. c T0

T2 coordinator Exec-list = {T0}

T0,T1 . a

T0,T1 . b
. c T0

T2 coordinator Exec-list = {T0,T1}

Not OK!

35

T0,T1 . a

T0,T1 . b
. c T0

T2 coordinator
Get missed write from a

• Details are tricky

• Maintaining list of updates until all nodes have seen them

- interesting problem

• See resource (“Missing Writes” algorithm) for details

36

Partitions and data replication
Options:
1. All copies required for updates
2. At most one group may update, at any time
3. Any group may update

Separate Operational Groups

DB0 DB1

DB2

DB3

DB4

10

37

Integrating Diverged DBs
1. Compensate transactions to make schedules

equivalent
2. Data-patch: semantic fix

38

Compensation Example

DB1

DB2

DB3

T0 T3 T4

T0

T0 T1 T2

DB1

DB2

DB3

T0 T3 T4 T1

T0

T0 T1 T2 T2
-1 T3 T4

• Assume T1 commutes with T3 and T4 (for example, no
conflicting operations)

• Also assume that it is possible to come up with T2
-1 to undo

the effect of T2 on the database.

39

DB1

DB2

DB3

T0 DB4

T0 T1 T3 T4

T0 T1 T2 T2
-1 T3 T4

T0 T3 T4 T1

In general: Based on the characteristics of
transactions, can “merge” schedules

40

Data Patch Example
• Forget schedules

• Integrate differing values via human-supplied “rules”

a

5
b ts=10

x
y
z

c

6
d ts=11

x
y
z

e

6
f ts=12

x
y
z

both copies

site 2

site 1

11

41

For X: site 1 wins
For Y: latest timestamp wins
For Z: add increments

a

5
b ts=10

x
y
z

c

6
d ts=11

x
y
z

e

6
f ts=12

x
y
z

both copies

site 2

site 1

c

7
f ts=12

x
y
z

both copies
(integrated)

for Z: 7 = 5 + site 1 increment + site 2 increment
= 5 + 1 + 1

Rules

42

Resources
• “Concurrency Control and Recovery” by Bernstein,

Hardzilacos, and Goodman
– Available at

http://research.microsoft.com/pubs/ccontrol/

