
1

1

Distributed Databases

CS347
Lecture 15

June 4, 2001

2

Topics for the day

• Concurrency Control
– Schedules and Serializability
– Locking
– Timestamp control

• Reliability
– Failure models
– Two-phase commit protocol

3

T1 T2

1 a ← X 5 c ← X

2 X ← a+100 6 X ← 2c

3 b ← Y 7 d ← Y

4 Y ← b+100 8 Y ← 2d

Example

X Y

Node 1 Node 2

constraint: X=Y

4

(node X) (node Y)
1 (T1) a ← X

2 (T1) X ← a+100

5 (T2) c ← X 3 (T1) b ← Y

6 (T2) X ← 2c 4 (T1) Y ← b+100

7 (T2) d ← Y

8 (T2) Y ← 2d

If X=Y=0 initially, X=Y=200 at end

Possible Schedule

Precedence: intra-transaction
inter-transaction

2

5

Let T= {T1, T2,…, TN} be a set of transactions.
A schedule S over T is a partial order with
ordering relation <S where:
1. S = ∪ Ti

2. <S ⊇ ∪ <i

3. for any two conflicting operations p,q ∈S, either
p <S q or q <S p

Note: In centralized systems, we assumed S was a
total order and so condition (3) was
unnecessary.

Definition of a Schedule

6

Example

(T1) r1[X] → w1[X]

(T2) r2[X] → w2[Y] → w2[X]

(T3) r3[X] → w3[X] → w3[Y] → w3[Z]

r2[X] → w2[Y] → w2[X]

S: r3[Y] → w3[X] → w3[Y] → w3[Z]

r1[X] → w1[X]

7

Precedence Graph
• Precedence graph P(S) for schedule S is a directed

graph where
– Nodes = {Ti | Ti occurs in S}
– Edges = {Ti → Tj | ∃ p ∈ Ti, q ∈ Tj such that

p, q conflict and p <S q}

r3[X] → w3[X]

S: r1[X] → w1[X] → w1[Y]

r2[X] → w2[Y]

P(S): T2 → T1 → T3

8

Serializability
Theorem: A schedule S is serializable iff P(S) is

acyclic.

Enforcing Serializability
• Locking
• Timestamp control

3

9

Distributed Locking
• Each lock manager maintains locks for local

database elements.
• A transaction interacts with multiple lock

managers.

D1

locks
for
D1

scheduler 1

node 1

DN

locks
for
DN

scheduler N

node N

…..

T
access &
lock data

access &
lock data

10

Locking Rules
• Well-formed/consistent transactions

– Each transaction gets and releases locks appropriately

• Legal schedulers
– Schedulers enforce lock semantics

• Two-phase locking
– In every transaction, all lock requests precede all

unlock requests.

These rules guarantee serializable schedules

11

Locking replicated elements
• Example:

– Element X replicated as X1 and X2 on sites 1 and 2
– T obtains read lock on X1; U obtains write lock on X2

– Possible for X1 and X2 values to diverge
– Possible that schedule may be unserializable

• How do we get global lock on logical element X
from local locks on one or more copies of X?

12

Primary-Copy Locking
• For each element X, designate specific copy Xi as

primary copy
• Local-lock(Xi) ⇒ Global-lock(X)

Synthesizing Global Locks
• Element X with n copies X1 …. Xn

• Choose “s” and “x” such that
� 2x > n
� s + x > n

� Shared-lock(s copies) ⇒ Global-shared-lock(X)
� Exclusive-lock(x copies) ⇒ Global-exclusive-lock(X)

4

13

Special cases
Read-Lock-One; Write-Locks-All (s = 1, x = n)
• Global shared locks inexpensive
• Global exclusive locks very expensive
• Useful when most transactions are read-only

Majority Locking (s = x = (n+1)/2)
• Many messages for both kinds of locks

• Acceptable for broadcast environments

• Partial operation under disconnected network
possible

14

Timestamp Ordering Schedulers
Basic idea: Assign timestamp ts(T) to transaction T.
If ts(T1) < ts(T2) … < ts(Tn), then scheduler
produces schedule equivalent to serial schedule
T1 T2 T3 ….Tn.

TO Rule: If pi[X] and qj[X] are conflicting operations,
then pi[X] <S qj[X] iff ts(Ti) < ts(Tj).

Theorem: If S is a schedule that satisfies TO rule, P(S)
is acyclic (hence S is serializable).

Supply proof.

15

(Node X) (Node Y)

(T1) a ← X (T2) d ← Y

(T1) X ← a+100 (T2) Y ← 2d

(T2) c ← X (T1) b ← Y

(T2) X ← 2c (T1) Y ← b+100

abort T2

abort T1

abort T2

Example
ts(T1) < ts(T2)

reject!

abort T1

16

• Problem: Transaction reads “dirty data”. Causes
cascading rollbacks.

• Solution: Enforce “strict” schedules in addition to
T.O rule

Strict T.O

Lock written items until it is certain that the writing
transaction has committed.

Use a commit bit C(X) for each element X. C(X) = 1
iff last transaction that last wrote X committed. If
C(X) = 0, delay reads of X until C(X) becomes 1.

5

17

(Node X) (Node Y)

(T1) a ← X (T2) d ← Y

(T1) X ← a+100 (T2) Y ← 2d

(T2) c ← X (T1) b ← Y

ts(T1) < ts(T2)

reject!
abort T1

delay

abort T1

(T2) c ← X

(T2) X ← 2c

Revisit example under strict T.O

18

Enforcing T.O
For each element X:

MAX_R[X] → maximum timestamp of a
transaction that read X

MAX_W[X] → maximum timestamp of a
transaction that wrote X

rL[X] → number of transactions currently
reading X (0,1,2,…)

wL[X] → number of transactions currently
writing X (0 or 1)

queue[X] → queue of transactions waiting on X

19

T.O. Scheduler
ri [X] arrives:

• If (ts(Ti) < MAX_W[X]) abort Ti

• If (ts(Ti) > MAX_R[X]) then MAX_R[X] = ts(Ti)
• If (queue[X] is empty and wL[X] = 0)

• rL[X] = rL[X]+1
• begin ri[X]

• Else add (r,Ti) to queue[X]

Note: If a transaction is aborted, it must be restarted
with a larger timestamp. Starvation is possible. 20

wi[X] arrives:

• If (ts(Ti) < MAX_W[X] or ts(Ti) < MAX_R[X])
abort Ti

• MAX_W[X] = ts(Ti)
• If (queue[X] is empty and wL[X]=0 AND rL[X]=0)

– wL[X] = 1
– begin wi[X]
– wait for Ti to complete

• Else add (w, Ti) to queue

T.O. Scheduler

Work out the steps to be
executed when ri[X] or
wi[X] completes.

6

21

Thomas Write Rule
MAX_R[X] MAX_W[X]

ts(Ti)
Ti wants to write X

wi[X] arrives:

• If (ts(Ti) < MAX_R[X]) abort Ti

• If (ts(Ti) < MAX_W[X]) ignore this write.

• Rest as before…..
22

Optimization
• Update MAX_R and MAX_W when operation is

executed, not when enqueued. Example:

• Multi-version timestamps

W, ts=9
W, ts=8
W, ts=7

queue[X] MAX_W[X] = 7
instead of 9

active write

Value written with ts=9

...
Value written with ts=7

X: ri[x] ts(Ti)=8

23

2PL ≠ T.O

T.O. schedules

2PL schedules

T1: w1[Y]

T2: r2[X] r2[Y] w2[Z] ts(T1)<ts(T2)<ts(T3)

T3: w3[X]

Schedule S: r2[X] w3[X] w1[Y] r2[Y] w2[Z]

Think of
examples for
these cases.

24

Timestamp management

... ...

MAX_R MAX_W

X1

X2

Xn

....

• Too much space

• Additional IOs

7

25

Timestamp Cache

• If a transaction reads or writes X, make entry in cache for X
(add row if required).

• Choose tsMIN ≈ current time – d

• Periodically purge all items X with MAX_R[X] < tsMIN &
MAX_W[X] < tsMIN and store tsMIN.

• If X has cache entry, use those MAX_R and MAX_W values.
Otherwise assume MAX_R[X] = MAX_W[X] = tsMIN .

X
Y

Z

...

MAX_R MAX_WItem

tsMIN

26

Distributed T.O Scheduler

D1

D1
ts

cache

scheduler 1

node 1

DN

DN
ts

cache

scheduler N

node 2

…..

T

• Each scheduler is “independent”
• At end of transaction, signal all schedulers involved,
indicating commit/abort of transaction.

27

Reliability

• Correctness
– Serializability
– Atomicity
– Persistence

• Availability

28

Types of failures
• Processor failures

– Halt, delay, restart, berserk, ...

• Storage failures
– Transient errors, spontaneous failures, persistent write

errors

• Network failures
– Lost messages, out-of-order messages, partitions

• Other ways of characterizing failures
– Malevolent/Unintentional failures
– Single/Multiple failures
– Detectable/Undetectable failures

8

29

Models for Node Failure
(1) Fail-stop nodes

Volatile memory lost Stable storage ok

perfect halted recovery perfect

(2) Byzantine nodes
perfect arbitrary failure recovery perfect

At any given time, at most some fraction f of nodes

have failed (typically f < 1/2 or f < 1/3)

30

Models for Network Failure
(1) Reliable network

– in order messages
– no spontaneous messages
– timeout TD

If no ack in TD sec. Destination down

(2) Persistent messages
– if destination is down, network will eventually deliver

messages.
– simplifies node recovery but inefficient (hides too

much in network layer)

31

Models for Network Failure
(3) Partitionable network

– in order messages
– no spontaneous messages
– no timeouts

32

Scenarios
• Reliable network and Fail-stop nodes

– No data replication (1)
– Data replication (2)

• Partitionable network and Fail-stop nodes
– No data replication (3)
– Data replication (4)

9

33

Reliable network, fail-stop nodes, no data replication

N Item Xnet

Scenario 1

Key consequence: node N “controls” X
• N is responsible for concurrency control and

recovery of X
• Single control point for each data element
• If N is down, X is unavailable

34

.

Distributed commit problem

Action:
a1,a2

Action:
a3

Action:
a4,a5

Transaction T

commit commitabort

35

Distributed Commit
• Make global decision on committing or aborting a

distributed transaction

• Assume atomicity mechanisms at each site ensure
each local component is atomic
– Each component either commits or has no effect on local

database

• Enforce rule that either all components commit or
all abort

36

Centralized two-phase commit

Coordinator

I

W

C

A

I

W

C

A

go
exec*

nok
abort*

ok*
commit

commit
-

exec
ok

exec
nok

abort
-

Participant

State Transition Diagram

Notation: Incoming Message (* = everyone)

Outgoing Message

10

37

• When participant enters “W” state:
– It must have acquired all resources (e.g. locks) required

for commit
– But, it can only commit when so instructed by the

coordinator

• After sending “nok” participant can unilaterally
abort.

• Coordinator enters “C” state only if all participants
are in “W”, i.e., it is certain that all participants will
eventually commit.

Key Points

38

Handling node failures
• Coordinator and participant logs used to reconstruct state

before failure.
• Important that each message is logged before being sent
• Coordinator failure may require leader election

• Participant failure: recovery procedure depends on last log
record for T
– “C” record: commit T
– “A” record: abort T
– “W” record: obtain write locks for T and wait/ask

coordinator or other participant
– No log records for T: abort T

39

Example

T1; X
undo/redo info

T1; Y
undo/redo info... ...

T1
“W” state

• During recovery at participant:
– Obtain write locks for X and Y (no read locks)

– Wait for message from coordinator

(or ask coordinator)

Participant log
crash

40

Logging at the coordinator

Example: tracking who has sent “OK” msgs
Log at coord:

• After failure, we know still waiting for OK from
node b

• Alternative: do not log receipts of “OK”s. Simply
abort T1

T1
start

part={a,b}

T1
OK

from a
RCV

...

11

41

Coordinator (with timeouts and finish state)

I

W

C

A

F

go
exec*

c-ok*
-

nok*
-

ping
- _t_

cping

ping
abort

ping
commit

t
cping

t
abort*

nok
abort*

ok*
commit*

t=timeout

42

Participant (with timeouts and finish state)

I

W

C

A

exec
ok

cping , _t
- ping

cping
done

cping
done

exec
nok

commit
c-ok

abort
nok

equivalent to finish
state

“done” message counts as either
c-ok or nok for coordinator

43

Presumed abort protocol
• “F” and “A” states combined in coordinator
• Saves persistent space (forget about a transaction

quicker)
• Presumed commit is analogous

44

Presumed abort-coordinator (participant unchanged)

I

W

C

A/F

go
exec*

ping
-

c-ok*
-

ping
abort

ping
commit _t_

cping

nok, t
abort*

ok*
commit*

12

45

2PC is blocking
Coordinator P1 P2 P3

P4

W W W

Case I: P1 → “W”; coordinator sent commits

P1 → “C”

Case II: P1 → NOK; P1 → A

⇒ P2, P3, P4 (surviving participants) cannot safely abort

or commit transaction
46

Variants of 2PC
ok ok ok

commit commit commit

Linear

Hierarchical

Coordinator

47

Distributed

– Nodes broadcast all messages
– Every node knows when to commit

Variants of 2PC

48

Resources
• “Concurrency Control and Recovery” by Bernstein,

Hardzilacos, and Goodman
– Available at

http://research.microsoft.com/pubs/ccontrol/

• Timestamp control
– Chapter 9 of the CS245 Textbook (“Database System

Implementation” by Garcia-Molina, Ullman, and Widom)

