Distributed Databases

CS347
Lecture 15
June 4, 2001

Topics for the day

e Concurrency Control
— Schedules and Serializability
— Locking
— Timestamp control
e Reliability
— Failure models
— Two-phase commit protocol

A W N -

Example
constraint: X=Y
Node 1/ RNodez
T T,
a<X 5 cX
X ¢ a+100 6 X2
b<«Y 7 d<Y
Y < b+100 8 Y« 2

Possible Schedule

(node X) (node Y)
1(T) a&X
2 (T,) X< a+100
5 (T,) ceix 3(Ty) beY
6 (T,) X é 2c 4 (T Y<—l b+100
7(T) d il/ Y

8 (T,) Y« 2d

Precedence: intra-transaction +
inter-transaction Jb

If X=Y=0 initially, X=Y=200 at end

4

Definition of a Schedule

Let T= {Ty, T,..., Ty} be a set of transactions.

A schedule S over T is a partial order with

ordering relation <g where:

1. S=uUT,

2. <g2 UK

3. for any two conflicting operations p,q €S, either
p<sqorq<gp

Note: In centralized systems, we assumed S was a
total order and so condition (3) was
unnecessary.

Example
(Ty) r[X] = wi[X]
(Ty) r2[X] = wz[Y] = w2[X]
(T3) r3[X] — w3[X] — wa[Y] — ws[Z]
r2[X] = w2[Y] = wz[X]
S: Y] = wi[X] = wi[Y] = ws3[Z]
A

r[X] — wi[X]

Precedence Graph

¢ Precedence graph P(S) for schedule S is a directed
graph where

—Nodes = {T; | T, occurs in S}
—Edges ={T, > T;| 3 pe T, q e T,such that
p, g conflict and p <5 q}

r3[X] — ws[X] /_\

T PS): T,->T,5T;
St r[X] = wy[X] = wy[Y]

r[X] — w,[Y]

Serializability

Theorem: A schedule S is serializable iff P(S) is
acyclic.

Enforcing Serializability
¢ Locking
¢ Timestamp control

Distributed Locking

¢ Each lock manager maintains locks for local
database elements.

¢ A transaction interacts with multiple lock
managers.

D »> Dy
@5 “ node N
access lock data

lockdata " T

Locking Rules

¢ Well-formed/consistent transactions
— Each transaction gets and releases locks appropriately

e Legal schedulers
— Schedulers enforce lock semantics

e Two-phase locking
— In every transaction, all lock requests precede all
unlock requests.

These rules guarantee serializable schedules

Locking replicated elements

e Example:
— Element X replicated as X, and X, on sites 1 and 2
— T obtains read lock on X,; U obtains write lock on X,
— Possible for X; and X, values to diverge
— Possible that schedule may be unserializable

¢ How do we get global lock on logical element X
from local locks on one or more copies of X?

Primary-Copy Locking

¢ For each element X, designate specific copy X; as
primary copy
e Local-lock(X;) = Global-lock(X)

Synthesizing Global Locks
¢ Element X with n copies X; X,
¢ Choose "s” and “x” such that
= 2Xx>n
"S+X>n
= Shared-lock(s copies) = Global-shared-lock(X)
= Exclusive-lock(x copies) = Global-exclusive-lock(X)

12

Special cases

Read-Lock-One; Write-Locks-All (s = 1, x = n)
¢ Global shared locks inexpensive

¢ Global exclusive locks very expensive

¢ Useful when most transactions are read-only

Maijority Locking (s = x = [(n+1)/21)
¢ Many messages for both kinds of locks
¢ Acceptable for broadcast environments

¢ Partial operation under disconnected network
possible

Timestamp Ordering Schedulers

Basic idea: Assign timestamp ts(T) to transaction T.
If ts(T;) < ts(T,) ... < ts(T,), then scheduler
produces schedule equivalent to serial schedule

T, T,T5...T,.

TO Rule: If p[X] and g;[X] are conflicting operations,
then p[X] <5 qi[X] iff ts(T;) < ts(T;).

Supply proof.

Theorem: If S is a schedule that satisfies TO rule, P(S)
is acyclic (hence S is serializable).

14

Example
ts(Ty) < ts(T,)
(Node X) (Node Y)
(T,) a< X (T) de Y
(T,) X <& a+100 (T,) Y(—l 2d
(T,) c& X (T) b ¥
(T,) X<t 2 (T) Y<-b+10o reject!

abort T, «-=""~-77--- abort T,

v
abort T,y "™ ~-o________ »abort T,

Strict T.O

¢ Problem: Transaction reads “dirty data”. Causes
cascading rollbacks.

¢ Solution: Enforce “strict” schedules in addition to
T.O rule

Lock written items until it is certain that the writing
transaction has committed.

Use a commit bit C(X) for each element X. C(X) = 1
iff last transaction that last wrote X committed. If
C(X) = 0, delay reads of X until C(X) becomes 1.

Revisit example under strict T.O
ts(T) < ts(T,)

(Node X) (Node Y)

(TY) a¢ X (T) de Y

(Ty) X< a+100 (T) Y 2d

(T,) @delay (T;) —b<——¥— reject!
______ ----abort T,

abort T, <~
(Ty) c X
(T) X 2

Enforcing T.O

For each element X:
MAX_R[X] — maximum timestamp of a
transaction that read X
MAX_W[X] — maximum timestamp of a
transaction that wrote X
rL[X] — number of transactions currently
reading X (0,1,2,...)
WL[X] — number of transactions currently
writing X (0 or 1)
queue[X] — queue of transactions waiting on X

18

T.0. Scheduler

r, [X] arrives:

If (ts(T;) < MAX_WI[X]) abort T;
If (ts(T;) > MAX_R[X]) then MAX_R[X] = ts(T;)
If (queue[X] is empty and wL[X] = 0)
o rL[X] = rL[X]+1
* begin r[X]
Else add (r,Ti) to queue[X]

Note: If a transaction is aborted, it must be restarted
with a larger timestamp. Starvation is possible. 19

T.0. Scheduler

w;[X] arrives:

o If (ts(T;) < MAX_WI[X] or ts(T,) < MAX_R[X])
abort T

e MAX_WI[X] = ts(T))

o If (queue[X] is empty and wL[X]=0 AND rL[X]=0)
-wL[X] =1
— begin w;[X]
— wait for T,to complete

¢ Else add (w, Ti) to queue

Work out the steps to be
executed when r[X] or
w,[X] completes.

Thomas Write Rule
MAX_R[X] MAX_W[X]
| |
!
ts(T)
T, wants to write X

w;[X] arrives:

o If (ts(T;) < MAX_R[X]) abort T;

o If (ts(T,) < MAX_WIX]) ignore this write.
e Rest as before.....

Optimization

¢ Update MAX_R and MAX_W when operation is
executed, not when enqueued. Example:

queue[X] | W, ts=9 MAX_WI[X] =7
W, ts=8 instead of 9
W, ts=7 |« active write

¢ Multi-version timestamps

X: | Value written with ts=9
Value written with ts=7

— rlx] ts(T;)=8

2PL#T.0

Think of
examples for
these cases.

2PL schedules

Tyt wy[Y]
Tyt RIXT rlY] wolZ]
T3t ws[X]
Schedule S: r,[X] w5[X] wy[Y] r,[Y] w,[Z] 2

ts(T,)<ts(T,)<ts(T3)

Timestamp management
MAX_R

MAX_W

¢ Too much space
» Additional I0s

Timestamp Cache

Item MAX_R MAX_W
X

Y sy [|

z

« If a transaction reads or writes X, make entry in cache for X
(add row if required).

e Choose tsyy = current time —d

o Periodically purge all items X with MAX_R[X] < tsyy &
MAX_WI[X] < tsyy and store tsyy.

o If X has cache entry, use those MAX_R and MAX_W values.
Otherwise assume MAX_R[X] = MAX_WI[X] = tsyy -

25

Distributed T.0O Scheduler

o Each scheduler is “independent”
¢ At end of transaction, signal all schedulers involved,
indicating commit/abort of transaction.

Reliabili
e Correctness
— Serializability
— Atomicity
— Persistence
o Availability

27

Types of failures

Processor failures
— Halt, delay, restart, berserk, ...
Storage failures

— Transient errors, spontaneous failures, persistent write
errors

Network failures
— Lost messages, out-of-order messages, partitions

Other ways of characterizing failures
— Malevolent/Unintentional failures

— Single/Multiple failures

— Detectable/Undetectable failures

Models for Node Failure
(1) Fail-stop nodes

perfect halted recovery perfect
| | |
Y e

v v
Volatile memory lost ~ Stable storage ok

(2) Byzantine nodes

perfect arbitrary failure recovery perfect
| |

|
r —

At any given time, at most some fraction f of nodes
have failed (typically f < 1/2 or f < 1/3)

29

Models for Network Failure

(1) Reliable network
— in order messages
— no spontaneous messages
— timeout Ty

If no ack in T, sec. | — | Destination down

(2) Persistent messages

if destination is down, network will eventually deliver
messages.

simplifies node recovery but inefficient (hides too
much in network layer)

Models for Network Failure

(3) Partitionable network
— in order messages
— no spontaneous messages
— no timeouts

CH————
CH F—<7

Scenarios

¢ Reliable network and Fail-stop nodes
— No data replication (1)
— Data replication 2)

¢ Partitionable network and Fail-stop nodes
— No data replication (3)
— Data replication 4)

Scenario 1

Reliable network, fail-stop nodes, no data replication

net N Ttem X

Key consequence: node N “controls” X
* N is responsible for concurrency control and
recovery of X
« Single control point for each data element
¢ If N is down, X is unavailable

33

Distributed commit problem

Transaction T

]

Action: Action: Action:
ai,az a3 a4,as

N

commit abort commit o

Distributed Commit

¢ Make global decision on committing or aborting a
distributed transaction

¢ Assume atomicity mechanisms at each site ensure
each local component is atomic

— Each component either commits or has no effect on local
database

¢ Enforce rule that either all components commit or
all abort

35

Centralized two-phase commit

State Transition Diagram

Participant

Coordinator

4o nok

ok*

commit

Notation: Incoming Message (* = everyone)

Outgoing Message

Key Points

¢ When participant enters “W” state:

— It must have acquired all resources (e.g. locks) required
for commit

— But, it can only commit when so instructed by the
coordinator

o After sending “nok” participant can unilaterally
abort.

¢ Coordinator enters “C"” state only if all participants
are in “W”, i.e., it is certain that all participants will
eventually commit.

37

Handling node failures

Coordinator and participant logs used to reconstruct state
before failure.

Important that each message is logged before being sent
Coordinator failure may require leader election

Participant failure: recovery procedure depends on last log
record for T

— “C" record: commit T
— “A" record: abort T

— “W" record: obtain write locks for T and wait/ask
coordinator or other participant

— No log records for T: abort T

Example
Participant log
Icrash
T1; X TLY T1
undo/redo info| «:« |undo/redo info| === | “W” state

¢ During recovery at participant:
— Obtain write locks for X and Y (no read locks)
— Wait for message from coordinator
(or ask coordinator)

39

Logging at the coordinator

Example: tracking who has sent "OK"” msgs
Log at coord:

T1 T1
o oma
part=1g, RCV

o After failure, we know still waiting for OK from
node b

¢ Alternative: do not log receipts of “OK"s. Simply
abort T1

10

Coordinator (with timeouts and finish state)

i
commit

:

Participant (with timeouts and finish state)

.J,.v-"‘"équivalent to finish
state

“done” message counts as either
c-ok or nok for coordinator

Presumed abort protocol

e “F” and “A” states combined in coordinator

¢ Saves persistent space (forget about a transaction
quicker)
¢ Presumed commit is analogous

43

Presumed abort-coordinator (participant unchanged)

11

2PC is blocking

Coordinator P, P, P, 54)
w W

¥ ox O

Case I: P1 — “W"; coordinator sent commits
P1 > ™C”
Case II: P1 — NOK; P1 —» A

= P2, P3, P4 (surviving participants) cannot safely abort

or commit transaction
45

Variants of 2PC
Linear ok ok oK
Coordinator
commit commit commit
Hierarchical

Variants of 2PC

Distributed

A S
— Nodes broadcast all messages
— Every node knows when to commit

47

Resources

¢ “Concurrency Control and Recovery” by Bernstein,
Hardzilacos, and Goodman
— Available at
http://research.microsoft.com/pubs/ccontrol/

e Timestamp control

— Chapter 9 of the CS245 Textbook ("Database System
Implementation” by Garcia-Molina, Ullman, and Widom)

12

