Distributed Databases

CS347

Lecture 14
May 30, 2001

Topics for the Day

- Query processing in distributed databases
- Localization
- Distributed query operators
- Cost-based optimization

Query Processing Steps

- Decomposition
- Given SQL query, generate one or more algebraic query trees
- Localization
- Rewrite query trees, replacing relations by fragments
- Optimization
- Given cost model + one or more localized query trees
- Produce minimum cost query execution plan

Decomposition

- Same as in a centralized DBMS
- Normalization (usually into relational algebra)

Select A,C
From R Natural Join S
Where $($ R.B $=1$ and $S . D=2)$ or $(R . C>3$ and $S . D=2)$

Decomposition

- Redundancy elimination

$$
\begin{aligned}
& (\mathrm{S} . \mathrm{A}=1) \wedge(\mathrm{S} . \mathrm{A}>5) \Rightarrow \text { False } \\
& (\mathrm{S} . \mathrm{A}<10) \wedge(\mathrm{S} . \mathrm{A}<5) \Rightarrow \mathrm{S} . \mathrm{A}<5
\end{aligned}
$$

- Algebraic Rewriting
- Example: pushing conditions down

Localization Steps

1. Start with query tree
2. Replace relations by fragments
3. Push \cup up $\& \pi, \sigma$ down (CS245 rules)
4. Simplify - eliminating unnecessary operations

Note: To denote fragments in query trees

Relation that fragment belongs to Condition its tuples satisfy ${ }_{6}$

Example 1

Example 2

Rules for Horiz. Fragmentation

- $\sigma_{\mathrm{C} 1}\left[\mathrm{R}: \mathrm{C}_{2}\right] \Rightarrow\left[\mathrm{R}: \mathrm{C}_{1} \wedge \mathrm{C}_{2}\right]$
- $[\mathrm{R}$: False $] \Rightarrow \varnothing$
- $\quad\left[R: C_{1}\right] \underset{A}{\bowtie}\left[S: C_{2}\right] \Rightarrow\left[R \underset{A}{\bowtie} S: C_{1} \wedge C_{2} \wedge R . A=S . A\right]$
- In Example 1:

$$
\begin{aligned}
\sigma_{\mathrm{E}=3}\left[\mathrm{R}_{2}: \mathrm{E} \geq 10\right] & \Rightarrow\left[\mathrm{R}_{2}: \mathrm{E}=3 \wedge \mathrm{E} \geq 10\right] \\
& \Rightarrow\left[\mathrm{R}_{2}: \text { False }\right] \Rightarrow \emptyset
\end{aligned}
$$

- In Example 2:

$$
\begin{aligned}
& {[\mathrm{R}: \mathrm{A}<5] \stackrel{\AA}{\mathrm{A}}[\mathrm{~S}: \mathrm{A} \geq 5]} \\
& \quad \Rightarrow[\mathrm{R} \stackrel{\mathrm{~A}}{ } \mathrm{~S}: \mathrm{R} . \mathrm{A}<5 \wedge \mathrm{~S} . \mathrm{A} \geq 5 \wedge \mathrm{R} . \mathrm{A}=\mathrm{S} . \mathrm{A}] \\
& \quad \Rightarrow[\mathrm{R} \stackrel{\mathrm{~A}}{ } \mathrm{~S}: \text { False }] \Rightarrow \emptyset
\end{aligned}
$$

Example 3 - Derived Fragmentation

S's fragmentation is derived from that of R.

$[\mathrm{R}: \mathrm{A}<10][\mathrm{R}: \mathrm{A} \geq 10] \quad[\mathrm{S}: \mathrm{K}=\mathrm{R} . \mathrm{K} \wedge \mathrm{R} . \mathrm{A}<10][\mathrm{S}: \mathrm{K}=\mathrm{R} . \mathrm{K} \wedge \mathrm{R} . \mathrm{A} \geq 10]$
R_{1}
R_{2}
S_{1}
S_{2}
11

Example 4 - Vertical Fragmentation

Rule for Vertical Fragmentation

- Given vertical fragmentation of $\mathrm{R}(\mathrm{A})$:

$$
\mathrm{R}_{\mathrm{i}}=\Pi_{\mathrm{Ai}}(\mathrm{R}), \quad \mathrm{A}_{\mathrm{i}} \subseteq \mathrm{~A}
$$

- For any $\mathrm{B} \subseteq \mathrm{A}$:

$$
\Pi_{\mathrm{B}}(\mathrm{R})=\Pi_{\mathrm{B}}\left[\underset{\mathrm{i}}{ } \mathrm{R}_{\mathrm{i}} \mid \mathrm{B} \cap \mathrm{~A}_{\mathrm{i}} \neq \varnothing\right]
$$

Parallel/Distributed Query Operations

- Sort
- Basic sort
- Range-partitioning sort
- Parallel external sort-merge
- Join
- Partitioned join
- Asymmetric fragment and replicate join
- General fragment and replicate join
- Semi-join programs
- Aggregation and duplicate removal

Parallel/distributed sort

- Input: relation R on
- single site/disk
- fragmented/partitioned by sort attribute
- fragmented/partitioned by some other attribute
- Output: sorted relation R
- single site/disk
- individual sorted fragments/partitions

Basic sort

- Given $\mathrm{R}(\mathrm{A}, \ldots$) range partitioned on attribute A , sort R on A

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 7 \\
\hline 3 \\
\hline
\end{array} \text { (10) } \begin{array}{|l|}
\hline \frac{11}{17} \\
\hline 14 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 3 \\
\hline 7 & \begin{array}{|l|}
\hline 11 \\
\hline 14 \\
\hline 17 \\
\hline 17 \\
\hline
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

- Each fragment is sorted independently
- Results shipped elsewhere if necessary

Range partitioning sort

- Given R(A,....) located at one or more sites, not fragmented on A, sort R on A
- Algorithm: range partition on A and then do basic sort

Selecting a partitioning vector

- Possible centralized approach using a "coordinator"
- Each site sends statistics about its fragment to coordinator
- Coordinator decides \# of sites to use for local sort
- Coordinator computes and distributes partitioning vector
- For example,
- Statistics could be (min sort key, max sort key, \# of tuples)
- Coordinator tries to choose vector that equally partitions relation

Example

- Coordinator receives:
- From site 1: Min 5, Max 9, 10 tuples
- From site 2: Min 7, Max 16, 10 tuples
- Assume sort keys distributed uniformly within [min,max] in each fragment
- Partition R into two fragments

Variations

- Different kinds of statistics
- Local partitioning vector Site 1
- Histogram

- Multiple rounds between coordinator and sites
- Sites send statistics
- Coordinator computes and distributes initial vector V
- Sites tell coordinator the number of tuples that fall in each range of V
- Coordinator computes final partitioning vector V_{f}

Parallel external sort-merge

- Local sort
- Compute partition vector
- Merge sorted streams at final sites

Parallel/distributed join

$\begin{array}{ll}\text { Input: } & \text { Relations } \mathrm{R}, \mathrm{S} \\ & \text { May or may not be partitioned }\end{array}$
Output: $\quad \mathrm{R} \bowtie \mathrm{S}$
Result at one or more sites

Partitioned Join

Join attribute A Local join

Note: Works only for equi-joins

Partitioned Join

- Same partition function (f) for both relations
- f can be range or hash partitioning
- Any type of local join (nested-loop, hash, merge, etc.) can be used
- Several possible scheduling options. Example:
- partition R; partition S; join
- partition R; build local hash table for R; partition S and join
- Good partition function important
- Distribute join load evenly among sites

Asymmetric fragment + replicate join

Join attribute A Local join

- Any partition function f can be used (even round-robin)
- Can be used for any kind of join, not just equi-joins

General fragment + replicate join

- Asymmetric $\mathrm{F}+\mathrm{R}$ join is a special case of general $\mathrm{F}+\mathrm{R}$.
-Asymmetric $\mathrm{F}+\mathrm{R}$ is useful when S is small.

Semi-join programs

- Used to reduce communication traffic during join processing
- $R \bowtie S=(R \ltimes S) \bowtie S$

$$
\begin{aligned}
& =\mathrm{R} \bowtie(\mathrm{~S} \ltimes \mathrm{R}) \\
& =(\mathrm{R} \ltimes \mathrm{~S}) \bowtie(\mathrm{S} \ltimes \mathrm{R})
\end{aligned}
$$

Example
 A \mathbf{C}

Compute

$$
\underbrace{\Pi_{\mathrm{A}}(\mathrm{~S})=[2,10,25,30]}_{\mathrm{A}} \begin{array}{|l|l|}
\hline 10 & \mathrm{y} \\
\hline 25 & \mathrm{w} \\
\hline
\end{array}
$$

- Using semi-join, communication cost $=4 \mathrm{~A}+2(\mathrm{~A}+\mathrm{C})+$ result
- Directly joining R and S, communication cost $=4(\mathrm{~A}+\mathrm{B})+$ result

Comparing communication costs

- Say R is the smaller of the two relations R and S
- $(R \ltimes S) \bowtie S$ is cheaper than $R \bowtie S$ if

$$
\operatorname{size}\left(\Pi_{A} S\right)+\operatorname{size}(R \ltimes S)<\operatorname{size}(R)
$$

- Similar comparisons for other types of semi-joins
- Common implementation trick:
- Encode $\Pi_{A} S\left(\right.$ or $\left.\Pi_{A} R\right)$ as a bit vector
- 1 bit per domain of attribute A

$$
001101000010100
$$

n-way joins

- To compute $\mathrm{R} \bowtie \mathrm{S} \bowtie \mathrm{T}$
- Semi-join program 1: R' $\bowtie S^{\prime} \bowtie T$

$$
\text { where } R^{\prime}=R \ltimes S \text { \& } S^{\prime}=S \ltimes T
$$

- Semi-join program 2: R" $\bowtie S^{\prime} \bowtie T$

$$
\text { where } R^{\prime \prime}=R \ltimes S^{\prime} \& S^{\prime}=S \ltimes T
$$

- Several other options
- In general, number of options is exponential in the number of relations

Other operations

- Duplicate elimination
- Sort first (in parallel), then eliminate duplicates in the result
- Partition tuples (range or hash) and eliminate duplicates locally
- Aggregates
- Partition by grouping attributes; compute aggregates locally at each site

Example

sum(sal) group by dept

Example

Does this work for all kinds of aggregates?
Aggregate during partitioning to reduce communication cost

Query Optimization

- Generate query execution plans (QEPs)
- Estimate cost of each QEP (\$,time,...)
- Choose minimum cost QEP
- What's different for distributed DB?
- New strategies for some operations (semi-join, range-partitioning sort,...)
- Many ways to assign and schedule processors
- Some factors besides number of IO's in the cost model

Cost estimation

- In centralized systems - estimate sizes of intermediate relations
- For distributed systems
- Transmission cost/time may dominate

- Account for parallelism Plan A

100 IOs

- Data distribution and result re-assembly cost/time

Optimization in distributed DBs

- Two levels of optimization
- Global optimization
- Given localized query and cost function
- Output optimized (min. cost) QEP that includes relational and communication operations on fragments
- Local optimization
- At each site involved in query execution
- Portion of the QEP at a given site optimized using techniques from centralized DB systems

Search strategies

1. Exhaustive (with pruning)
2. Hill climbing (greedy)
3. Query separation

Exhaustive with Pruning

- A fixed set of techniques for each relational operator
- Search space = "all" possible QEPs with this set of techniques
- Prune search space using heuristics
- Choose minimum cost QEP from rest of search space

Example

1 Prune because cross-product not necessary
2 Prune because larger relation first

- Begin with initial feasible QEP
- At each step, generate a set S of new QEPs by applying 'transformations' to current QEP
- Evaluate cost of each QEP in S
- Stop if no improvement is possible
- Otherwise, replace current QEP by the minimum cost QEP from S and iterate

Example

- Goal: minimize communication cost
- Initial plan: send all relations to one site
To site 1: cost=20+30+40=90
To site 2: cost $=10+30+40=80$
To site 3: cost $=10+20+40=70$ To site 4: cost $=10+20+30=60$
- Transformation: send a relation to its neighbor

Local search

- Initial feasible plan

$$
\text { P0: R }(1 \rightarrow 4) ; \mathrm{S}(2 \rightarrow 4) ; \mathrm{T}(3 \rightarrow 4)
$$

Compute join at site 4

- Assume following sizes: $\mathrm{R} \bowtie \mathrm{S} \Rightarrow 20$

$$
\begin{aligned}
& \mathrm{S} \bowtie \mathrm{~T} \Rightarrow 5 \\
& \mathrm{~T} \bowtie \mathrm{~V} \Rightarrow 1
\end{aligned}
$$

Worse

Next iteration

- P1: S $(2 \rightarrow 3) ; \mathrm{R}(1 \rightarrow 4) ; \quad \alpha(3 \rightarrow 4)$
where $\alpha=\mathrm{S} \bowtie \mathrm{T}$
Compute answer at site 4
- Now apply same transformation to R and α

Resources

- Ozsu and Valduriez. "Principles of Distributed Database Systems" - Chapters 7, 8, and 9.

