Distributed Databases

CS347
Lecture 14
May 30, 2001

Topics for the Day

- Query processing in distributed databases
 - Localization
 - Distributed query operators
 - Cost-based optimization

Query Processing Steps

- Decomposition
 - Given SQL query, generate one or more algebraic query trees
- Localization
 - Rewrite query trees, replacing relations by fragments
- Optimization
 - Given cost model + one or more localized query trees
 - Produce minimum cost query execution plan

Decomposition

- Same as in a centralized DBMS
- Normalization (usually into relational algebra)

Select A,C From R Natural Join S Where (R.B = 1 and S.D = 2) or (R.C > 3 and S.D = 2)

$$(S.D = 2)$$

$$(R.B = 1 \text{ v R.C} > 3) \land (S.D = 2)$$

$$(S.D = 3)$$

$$(S.D = 2)$$

$$(S.D = 3)$$

$$(S$$

Decomposition

Redundancy elimination

$$(S.A = 1) \land (S.A > 5) \Rightarrow False$$

 $(S.A < 10) \land (S.A < 5) \Rightarrow S.A < 5$

Algebraic Rewriting

Localization Steps

- 1. Start with query tree
- 2. Replace relations by fragments
- 3. Push \cup up & π , σ down (CS245 rules)
- 4. Simplify eliminating unnecessary operations

Note: To denote fragments in query trees

Relation that fragment belongs to Condition its tuples satisfy₆

Example 1

Example 2

Rules for Horiz. Fragmentation

- $\sigma_{C_1}[R: C_2] \Rightarrow [R: C_1 \land C_2]$
- $[R: False] \Rightarrow \emptyset$
- $[R: C_1] \bowtie [S: C_2] \Rightarrow [R \bowtie S: C_1 \land C_2 \land R.A = S.A]$
- In Example 1:

$$\sigma_{E=3}[R_2: E \ge 10] \Rightarrow [R_2: E=3 \land E \ge 10]$$

 $\Rightarrow [R_2: False] \Rightarrow \emptyset$

In Example 2:

$$[R: A < 5] \nearrow [S: A \ge 5]$$

$$\Rightarrow [R \nearrow S: R.A < 5 \land S.A \ge 5 \land R.A = S.A]$$

$$\Rightarrow [R \nearrow S: False] \Rightarrow \emptyset$$

Example 3 – Derived Fragmentation

Example 4 – Vertical Fragmentation

Rule for Vertical Fragmentation

• Given vertical fragmentation of R(A):

$$R_i = \Pi_{Ai}(R), A_i \subseteq A$$

• For any $B \subseteq A$:

$$\Pi_{B}(R) = \Pi_{B} \left[\bowtie_{i} R_{i} \mid B \cap A_{i} \neq \emptyset \right]$$

Parallel/Distributed Query Operations

Sort

- Basic sort
- Range-partitioning sort
- Parallel external sort-merge

Join

- Partitioned join
- Asymmetric fragment and replicate join
- General fragment and replicate join
- Semi-join programs
- Aggregation and duplicate removal

Parallel/distributed sort

- Input: relation R on
 - single site/disk
 - fragmented/partitioned by sort attribute
 - fragmented/partitioned by some other attribute
- Output: sorted relation R
 - single site/disk
 - individual sorted fragments/partitions

Basic sort

Given R(A,...) range partitioned on attribute A,
 sort R on A

- Each fragment is sorted independently
- Results shipped elsewhere if necessary

Range partitioning sort

- Given R(A,...) located at one or more sites, <u>not</u> fragmented on A, sort R on A
- Algorithm: range partition on A and then do basic sort

Selecting a partitioning vector

- Possible centralized approach using a "coordinator"
 - Each site sends *statistics* about its fragment to coordinator
 - Coordinator decides # of sites to use for local sort
 - Coordinator computes and distributes partitioning vector
- For example,
 - Statistics could be (min sort key, max sort key, # of tuples)
 - Coordinator tries to choose vector that equally partitions relation

Example

- Coordinator receives:
 - From site 1: Min 5, Max 9, 10 tuples
 - From site 2: Min 7, Max 16, 10 tuples
- Assume sort keys distributed uniformly within [min,max] in each fragment
- Partition R into two fragments

Variations

- Different kinds of statistics
 - Local partitioning vector
 - Histogram

Site 1

3 4 3
$$\leftarrow$$
 # of tuples

5 6 8 10 \leftarrow local vector

- Multiple rounds between coordinator and sites
 - Sites send statistics
 - Coordinator computes and distributes initial vector V
 - Sites tell coordinator the number of tuples that fall in each range of V
 - Coordinator computes final partitioning vector V_f

Parallel external sort-merge

- Local sort
- Compute partition vector
- Merge sorted streams at final sites

Parallel/distributed join

Input: Relations R, S

May or may not be partitioned

Output: R > S

Result at one or more sites

Partitioned Join

Note: Works only for equi-joins

Partitioned Join

- Same partition function (f) for both relations
- f can be range or hash partitioning
- Any type of local join (nested-loop, hash, merge, etc.)
 can be used
- Several possible scheduling options. Example:
 - partition R; partition S; join
 - partition R; build local hash table for R; partition S and join
- Good partition function important
 - Distribute join load evenly among sites

Asymmetric fragment + replicate join

- Any partition function f can be used (even round-robin)
- Can be used for any kind of join, not just equi-joins

General fragment + replicate join

- •Asymmetric F+R join is a special case of general F+R.
- •Asymmetric F+R is useful when S is small.

Semi-join programs

• Used to reduce communication traffic during join processing

•
$$R \bowtie S = (R \bowtie S) \bowtie S$$

= $R \bowtie (S \bowtie R)$
= $(R \bowtie S) \bowtie (S \bowtie R)$

- Using semi-join, communication cost = 4 A + 2 (A + C) + result
- Directly joining R and S, communication cost = 4(A + B) + result

Comparing communication costs

- Say R is the smaller of the two relations R and S
- $(R \bowtie S) \bowtie S$ is cheaper than $R \bowtie S$ if size $(\Pi_A S)$ + size $(R \bowtie S)$ < size (R)
- Similar comparisons for other types of semi-joins
- Common implementation trick:
 - Encode $\Pi_A S$ (or $\Pi_A R$) as a bit vector
 - − 1 bit per domain of attribute A

001101000010100

n-way joins

- To compute $R \bowtie S \bowtie T$
 - Semi-join program 1: R' \bowtie S' \bowtie T where R' = R \bowtie S & S' = S \bowtie T
 - Semi-join program 2: R'' \bowtie S' \bowtie T where R'' = R \bowtie S' & S' = S \bowtie T
 - Several other options

• In general, number of options is exponential in the number of relations

Other operations

- Duplicate elimination
 - Sort first (in parallel), then eliminate duplicates in the result
 - Partition tuples (range or hash) and eliminate duplicates locally
- Aggregates
 - Partition by grouping attributes; compute aggregates locally at each site

Example

sum(sal) group by dept

Example

Does this work for all kinds of aggregates?

Aggregate during partitioning to reduce communication cost

Query Optimization

- Generate query execution plans (QEPs)
- Estimate cost of each QEP (\$,time,...)
- Choose minimum cost QEP

- What's different for distributed DB?
 - New strategies for some operations (semi-join, range-partitioning sort,...)
 - Many ways to assign and schedule processors
 - Some factors besides number of IO's in the cost model

Cost estimation

- In centralized systems estimate sizes of intermediate relations
- For distributed systems
 - Transmission cost/time may dominate

Data distribution and result re-assembly cost/time

Optimization in distributed DBs

- Two levels of optimization
- Global optimization
 - Given localized query and cost function
 - Output optimized (min. cost) QEP that includes relational and communication operations on fragments
- Local optimization
 - At each site involved in query execution
 - Portion of the QEP at a given site optimized using techniques from centralized DB systems

Search strategies

- 1. Exhaustive (with pruning)
- 2. Hill climbing (greedy)
- 3. Query separation

Exhaustive with Pruning

- A fixed set of techniques for each relational operator
- Search space = "all" possible QEPs with this set of techniques
- Prune search space using heuristics
- Choose minimum cost QEP from rest of search space

Example

- 1 Prune because cross-product not necessary
- 2 Prune because larger relation first

Hill Climbing

- Begin with initial feasible QEP
- At each step, generate a set S of new QEPs by applying 'transformations' to current QEP
- Evaluate cost of each QEP in S
- Stop if no improvement is possible
- Otherwise, replace current QEP by the minimum cost QEP from S and iterate

Example

$$R\bowtie S\bowtie T\bowtie V$$

Rel.	Site	# of tuples
R	1	10
S	2	20
T	3	30
V	4	40

• Goal: minimize communication cost

• <u>Initial plan:</u> send all relations to one site

To site 1: cost=20+30+40=90

To site 2: cost=10+30+40= 80

To site 3: cost=10+20+40= 70

To site 4: cost=10+20+30=(60)

• <u>Transformation:</u> send a relation to its neighbor

Local search

• Initial feasible plan

P0: R
$$(1 \rightarrow 4)$$
; S $(2 \rightarrow 4)$; T $(3 \rightarrow 4)$
Compute join at site 4

• Assume following sizes: $R \bowtie S \Rightarrow 20$ $S \bowtie T \Rightarrow 5$ $T \bowtie V \Rightarrow 1$

cost = 50

Next iteration

- P1: $S(2 \rightarrow 3)$; $R(1 \rightarrow 4)$; $\alpha(3 \rightarrow 4)$ where $\alpha = S \bowtie T$ Compute answer at site 4
- Now apply same transformation to R and α

Resources

• Ozsu and Valduriez. "Principles of Distributed Database Systems" – Chapters 7, 8, and 9.