Distributed Databases

CS347 Lecture 14 May 30, 2001

Topics for the Day

- Query processing in distributed databases
 - Localization
 - Distributed query operators
 - Cost-based optimization

2

Query Processing Steps

- Decomposition
 - Given SQL query, generate one or more algebraic query trees
- Localization
 - Rewrite query trees, replacing relations by fragments
- · Optimization
 - Given cost model + one or more localized query trees
 - Produce minimum cost query execution plan

Decomposition

- Same as in a centralized DBMS
- Normalization (usually into relational algebra)

Select A,C $From \ R \ Natural \ Join \ S \\ Where \ (R.B=1 \ and \ S.D=2) \ or \ (R.C>3 \ and \ S.D=2)$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

$$(R.B = 1 \text{ v } R.C > 3) \text{ A } (S.D = 2)$$

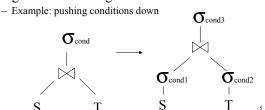
Decomposition

· Redundancy elimination

$$(S.A = 1) \land (S.A > 5) \Rightarrow False$$

 $(S.A < 10) \land (S.A < 5) \Rightarrow S.A < 5$

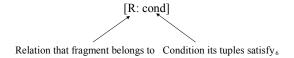
· Algebraic Rewriting

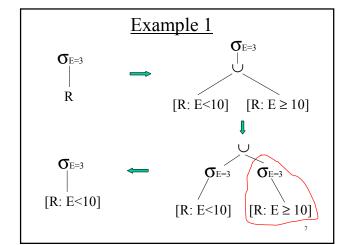


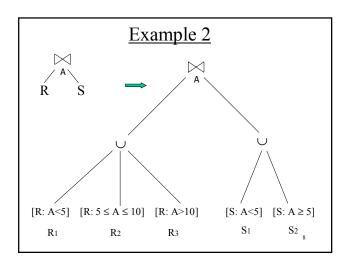
Localization Steps

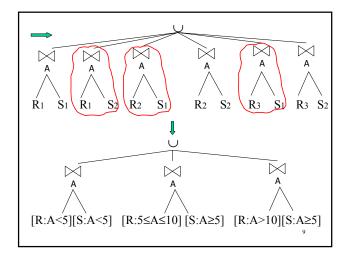
- 1. Start with query tree
- 2. Replace relations by fragments
- 3. Push \cup up & π , σ down (CS245 rules)
- 4. Simplify eliminating unnecessary operations

Note: To denote fragments in query trees









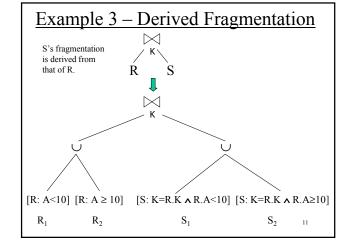
Rules for Horiz. Fragmentation

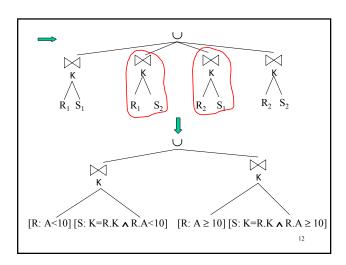
- $\sigma_{C1}[R: C_2] \Rightarrow [R: C_1 \land C_2]$
- $[R: False] \Rightarrow \emptyset$
- $[R: C_1] \bowtie [S: C_2] \Rightarrow [R \bowtie S: C_1 \land C_2 \land R.A = S.A]$
- In Example 1:

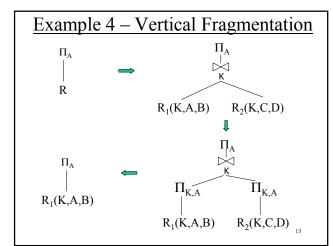
$$\sigma_{E=3}[R_2: E \ge 10] \Rightarrow [R_2: E=3 \land E \ge 10]$$
$$\Rightarrow [R_2: False] \Rightarrow \emptyset$$

• In Example 2:

[R: A<5]
$$\cong$$
 [S: A \geq 5]
 \Rightarrow [R \cong S: R.A $<$ 5 \wedge S.A \geq 5 \wedge R.A = S.A]
 \Rightarrow [R \cong S: False] \Rightarrow Ø







Rule for Vertical Fragmentation

• Given vertical fragmentation of R(A):

$$R_i = \Pi_{Ai}(R), A_i \subseteq A$$

• For any $B \subseteq A$:

$$\Pi_{B}(R) = \Pi_{B} \left[\underset{i}{\bowtie} R_{i} \mid B \cap A_{i} \neq \emptyset \right]$$

14

Parallel/Distributed Query Operations

- Sort
 - Basic sort
 - Range-partitioning sort
 - Parallel external sort-merge
- Join
 - Partitioned join
 - Asymmetric fragment and replicate join
 - General fragment and replicate join
 - Semi-join programs
- · Aggregation and duplicate removal

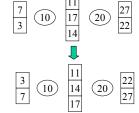
15

Parallel/distributed sort

- Input: relation R on
 - single site/disk
 - fragmented/partitioned by sort attribute
 - fragmented/partitioned by some other attribute
- Output: sorted relation R
 - single site/disk
 - individual sorted fragments/partitions

Basic sort

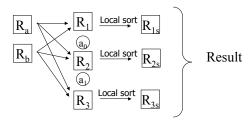
• Given R(A,...) range partitioned on attribute A, sort R on A



- Each fragment is sorted independently
- · Results shipped elsewhere if necessary

Range partitioning sort

- Given R(A,...) located at one or more sites, <u>not</u> fragmented on A, sort R on A
- Algorithm: range partition on A and then do basic sort



18

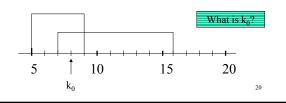
Selecting a partitioning vector

- Possible centralized approach using a "coordinator"
 - Each site sends statistics about its fragment to coordinator
 - Coordinator decides # of sites to use for local sort
 - Coordinator computes and distributes partitioning vector
- For example,
 - Statistics could be (min sort key, max sort key, # of tuples)
 - Coordinator tries to choose vector that equally partitions relation

9

Example

- Coordinator receives:
 - From site 1: Min 5, Max 9, 10 tuples
 - From site 2: Min 7, Max 16, 10 tuples
- Assume sort keys distributed uniformly within [min,max] in each fragment
- Partition R into two fragments



Variations

- Different kinds of statistics
 - Local partitioning vector

 $-\ Histogram$

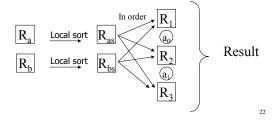
3 4 3 \leftarrow # of tuples 6 6 8 10 \leftarrow local vector

- Multiple rounds between coordinator and sites
 - Sites send statistics
 - Coordinator computes and distributes initial vector V
 - Sites tell coordinator the number of tuples that fall in each range of V
 - Coordinator computes final partitioning vector V_f

21

Parallel external sort-merge

- Local sort
- Compute partition vector
- Merge sorted streams at final sites



Parallel/distributed join

Input: Relations R, S

May or may not be partitioned

 $\underline{Output:} \quad R \bowtie S$

Result at one or more sites

Partitioned Join

Join attribute A Local join R_a R_b $R_$

Partitioned Join

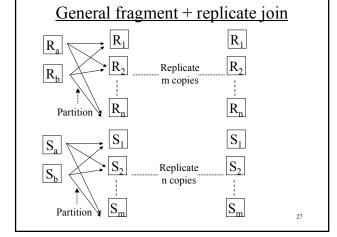
- Same partition function (f) for both relations
- f can be range or hash partitioning
- Any type of local join (nested-loop, hash, merge, etc.) can be used
- Several possible scheduling options. Example:
 - partition R; partition S; join
 - partition R; build local hash table for R; partition S and join
- Good partition function important
 - Distribute join load evenly among sites

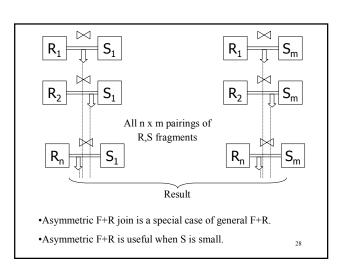
25

Asymmetric fragment + replicate join



- Any partition function f can be used (even round-robin)
- Can be used for any kind of join, not just equi-joins





Semi-join programs

- Used to reduce communication traffic during join processing
- $R \bowtie S = (R \bowtie S) \bowtie S$
 - $= R \bowtie (S \bowtie R)$
 - $= (R \bowtie S) \bowtie (S \bowtie R)$

S $\begin{bmatrix} 2 & a \\ 10 & b \\ 25 & c \\ 30 & d \end{bmatrix}$ Compute $\Pi_A(S) = [2,10,25,30]$ $R \bowtie S = \begin{bmatrix} 10 & y \\ 25 & w \end{bmatrix}$

- Using semi-join, communication cost = 4 A + 2 (A + C) + result
- Directly joining R and S, communication cost = 4(A + B) + result

30

29

Comparing communication costs

- Say R is the smaller of the two relations R and S
- $(R \bowtie S) \bowtie S$ is cheaper than $R \bowtie S$ if size $(\Pi_A S)$ + size $(R \bowtie S)$ < size (R)
- Similar comparisons for other types of semi-joins
- Common implementation trick:
 - Encode $\Pi_A S$ (or $\Pi_A R$) as a bit vector
 - 1 bit per domain of attribute A

 $0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0$

31

n-way joins

- To compute $R \bowtie S \bowtie T$
 - <u>Semi-join program 1</u>: R' ⋈ S' ⋈ T

where R' = R \bowtie S & S' = S \bowtie T

- <u>Semi-join program 2</u>: R'' ⋈ S' ⋈ T

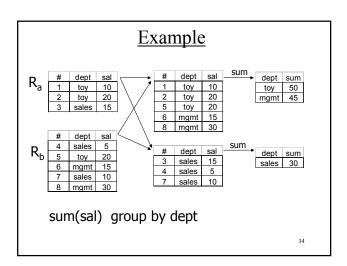
where R'' = R \bowtie S' & S' = S \bowtie T

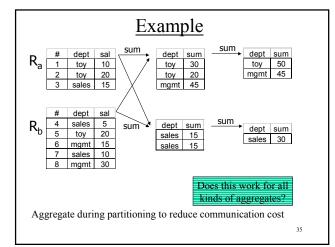
- Several other options
- In general, number of options is exponential in the number of relations

Other operations

- Duplicate elimination
 - Sort first (in parallel), then eliminate duplicates in the result
 - Partition tuples (range or hash) and eliminate duplicates locally
- Aggregates
 - Partition by grouping attributes; compute aggregates locally at each site

33





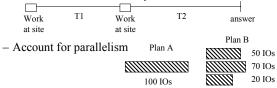
Query Optimization

- Generate query execution plans (QEPs)
- Estimate cost of each QEP (\$,time,...)
- Choose minimum cost QEP
- What's different for distributed DB?
 - New strategies for some operations (semi-join, range-partitioning sort,...)
 - Many ways to assign and schedule processors
 - Some factors besides number of IO's in the cost model

Cost estimation

- In centralized systems estimate sizes of intermediate relations
- · For distributed systems

- Transmission cost/time may dominate



- Data distribution and result re-assembly cost/time

37

Optimization in distributed DBs

- Two levels of optimization
- Global optimization
 - Given localized query and cost function
 - Output optimized (min. cost) QEP that includes relational and communication operations on fragments
- Local optimization
 - At each site involved in query execution
 - Portion of the QEP at a given site optimized using techniques from centralized DB systems

38

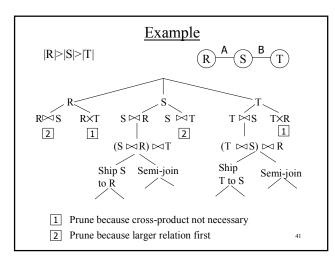
Search strategies

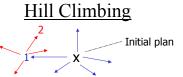
- 1. Exhaustive (with pruning)
- 2. Hill climbing (greedy)
- 3. Query separation

39

Exhaustive with Pruning

- A fixed set of techniques for each relational operator
- Search space = "all" possible QEPs with this set of techniques
- Prune search space using heuristics
- Choose minimum cost QEP from rest of search space



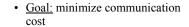


- · Begin with initial feasible QEP
- At each step, generate a set S of new QEPs by applying 'transformations' to current QEP
- Evaluate cost of each QEP in S
- Stop if no improvement is possible
- Otherwise, replace current QEP by the minimum cost QEP from S and iterate

42

Example

 $R\bowtie S\bowtie T\bowtie V$



Rel.	Site	# of tuples
R	1	10
S	2	20
T	3	30
V	4	40

 Initial plan: send all relations to one site
 To site 1: cost=20+30+40=90

To site 2: cost=10+30+40= 80 To site 3: cost=10+20+40= 70

To site 4: cost=10+20+30=(60)

• <u>Transformation:</u> send a relation to its neighbor

43

Local search

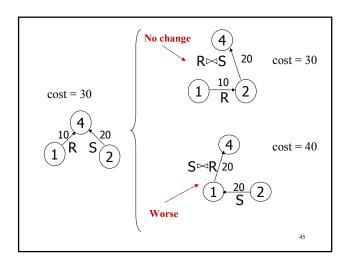
• Initial feasible plan

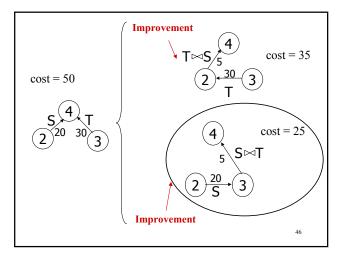
P0: R (1
$$\rightarrow$$
 4); S (2 \rightarrow 4); T (3 \rightarrow 4)
Compute join at site 4

• Assume following sizes: $R \bowtie S \Rightarrow 20$

 $S\bowtie T\Rightarrow 5$

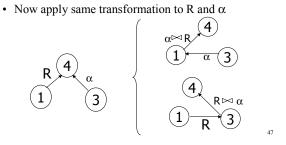
 $T\bowtie V\Rightarrow 1$





Next iteration

- P1: $S(2 \rightarrow 3)$; $R(1 \rightarrow 4)$; $\alpha(3 \rightarrow 4)$ where $\alpha = S \bowtie T$ Compute answer at site 4



Resources

• Ozsu and Valduriez. "Principles of Distributed Database Systems" – Chapters 7, 8, and 9.