Distributed Databases

CS347
Lecture 13
May 23, 2001

Expected Background

* Basic SQL
» Relational algebra
* Following aspects of centralized DB

— Query processing: query plans, cost estimation,
optimization

— Concurrency control techniques

— Recovery methods

Reading Material

* Primarily lecture notes
* No required textbook
* Some lecture material drawn from

M. Tamer Ozsu and Patrick Valduriez, "Principles of
Distributed Database Systems," Second Edition,
Prentice Hall 1999.

Centralized DBMS

» Software:

Application

M Ej Ej Query Processor
Transaction Proc.

File Access

* Simplifications:

* single front end

 one place to keep locks
* if processor fails, system fails,

Distributed DB

* Multiple processors, memories, and disks
— Opportunity for parallelism (+)
— Opportunity for enhanced reliability (+)

— Synchronization issues (-)

« Heterogeneity and autonomy of “components™

— Autonomy example: may not get statistics for query
optimization from a site

Heterogeneity

Select new
Investments
/ Application
Stock —— |
ticker RDBMS Flles
tape Hist f
| istory o
Portfolio dividends,

ratios,...

Big Picture

Data management with multiple processors
and possible autonomy, heterogeneity.
Impacts:

 Data organization

* Query processing

* Access structures

« Concurrency control

* Recovery

Today’s topics

 Introductory topics

— Database architectures

— Daistributed versus Parallel DB systems
 Distributed database design

— Fragmentation

— Allocation

Common DB architectures

Pl [P| [P

M Be

Shared memory

P P
M M
]]

Shared disk

Common DB architectures

Shared nothing

p p p

M%M%... 5=

Number of other “hybrid” architectures are possible.

10

Selecting the “right” architecture

Reliability

Scalability

Geographic distribution of data
Performance

Cost

11

Parallel vs. Distributed DB system
* Typically, parallel DBs:

— Fast interconnect
— Homogeneous software

— Goals: High performance and Transparency

» Typically, distributed DBs:
— Geographically distributed

— Disconnected operation possible

— Goal: Data sharing (heterogeneity, autonomy)

12

Typical query processing scenarios

e Parallel DB:

— Distribute/partition/sort. ... data to make certain DB
operations (€.g., Join) fast

e Distributed DB:

— Given data distribution, find query processing
strategy to minimize cost (e.g. communication cost)

13

Distributed DB Design

Top-down approach:

 have a database

* how to split and allocate to individual sites

Multi-databases (or bottom-up):

* combine existing databases

* how to deal with heterogeneity & autonomy

14

Two 1ssues 1n top-down design

* Fragmentation

 Allocation

Note: 1ssues not independent, but studied

separately for simplicity.

15

Example

Employee relation E (#,name,loc,sal,...)

40% of queries: 40% of queries:
Qa: select * Qb: select *
from E from E
where loc=Sa where loc=Sb
and. .. and ...

Motivation: Two sites: Sa, Sb

Qa— |Sa < Sb

16

At Sa

Name Loc Sal

51 Joe |Sa| 10
E |7 Sally | Sb| 25
8| Tom |Sa| 15
/\Ii: {F19F2}
5| Joe |Sa| 10 /| Sally | Sb| 25
8| Tom | Sa | 15 :

Fl — Gloc=Sa(E)

F2 — Gloc=Sb(E)

— primary horizontal fragmentation

At Sb

17

/e Horizontal

Fragmentation

> J Primary

R

<4

>

>

 Vertical

R

f

ue

v

depends on local attributes
Derived
depends on foreign relation

e

18

Horizontal partitioning techniques

* Round robin
* Hash partitioning
* Range partitioning

19

Round robin

R Fo Fi ko
t1 tl
t2 t2
t3 t3
t4 t4
" 5

* Evenly distributes data
* Good for scanning full relation

« Not good for point or range queries

20

Hash partitioning

R Fo Fi F»

t1—h(k1)=2 > t1
t2—h(k2)=0 —t2
t3—h(k3)=0 —t3
t4—h(k4)=1 > t4

* Good for point queries on key; also for joins
« Not good for range queries; point queries not on key
* Good hash function = even distribution

21

Range partitioning

R Fo Fi @ I
tl: A=5 partitioning »t1

t2: A=8 vector . 12
t3: A=2 417 13

t4: A=3 Vo Vi t4

e Good for some range queries on A
» Need to select good vector: else create imbalance

— data skew
— execution skew

22

Which are good fragmentations?
Example 1: F = {F,F,}

Fl - Gsal<10(E) F2 — Gsal>2O(E)

B Problem: Some tuples lost!

Example 2: F = {F,,F,}
F) = Gg<10(E) F) = Gg-5(E)

B Tuples with 5 <sal <10 are duplicated 23

Prefer to deal with replication explicitly

Example: F ={ F,, F,, F- }
FS — Gsal<=5(E)

Fg =05 sa<10(E)
F7 — Gsal>=10(E)

=Then replicate F if desired as part of allocation

24

Horizontal Fragmentation Desiderata

R = F={F,F,,....}
(1) Completeness
Vte R, dF.€ Fsuchthat te F,

(2) Disjointness
F.NFj=0, V 1,; such thati#]

(3) Reconstruction |
3V such that R=V F.

25

Generating horizontal fragments

Given simple predicates P, = {p,, p,,-- .,y and
relation R.

Generate “minterm” predicates
M={m|m=Ap™* | <k<m}, where
p,* 1s either p, or —~p,
Eliminate useless minterms and simplify M to

get M.

Generate fragments O_(R) for eachm e M’.

26

o h 1o Example

Example: say queries use predicates
A <10, A>5, Loc=S,, Loc = Sg

Eliminate and simplify minterms
A<IOA~A>S5—~Toee=5~—Toc=53

* Final set of fragments
(5<A<10) A (Loc=8S,)
(5 <A<10) A (Loc=Sp)
(A< 5)A (Loc=S8S,)
(A< 5)A (Loc=Sy)
(A=10) A (Loc=S,)
(A=10) A (Loc=Sg)

27

More on Horizontal Fragmentation

« Elimination of useless fragments/predicates
depends on application semantics:

—e.g..1if Loc # S, and # Sz 1s possible, must retain
fragments such as (5 <A <10) A (Loc#S,) A
(Loc#Sy)

* Minterm-based fragmentation generates
complete, disjoint, and reconstructible

fragments. -

28

Choosing simple predicates

* E (#,name,loc,sal,...) with common queries
Qa: select * from E where loc = S, and...

Qb: select * from E where loc = Sz and...

» Three choices for P.and hence F[P_]:
~P={} F,=F[P]={E}
— P.={Loc=S,, Loc = Sg}
F,= F[P]= {Gloc=SA (E)> Oloc-sB (E)}
— P.={Loc=S,, Loc = Sg, Sal < 10}
F;= F[P/]= {Gloc=SA A sal< IO(E)9 O 10c=SB A sal< IO(E)9

Cloc=sA rsal > 10(E)s Oloc=sa s> 10 (E)} N

Loc=S, A
sal < 10

Loc=S, A
sal = 10

Loc=Sg A
sal < 10

Loc=Sg A
sal = 10

Qa: Select ... loc = S, ...

Qb: Select ... loc = S5 ...

|

Prefer F,to F, and F,

30

Desiderata for simple predicates

Different from completeness

o Completeness of fragmentation

Set of predicates P, 1s complete if for every
F.e F[P], every t € F. has equal probability
of access by every major application.

* Minimality

Set of predicates P, 1s minimal ifno P’ P,
1s complete.

To get complete and minimal P, use predicates that are
“relevant” 1n frequent queries 31

Derived horizontal fragmentation

« Example: Two relations Employee and Jobs
E(#, NAME, SAL, LOC)

J(#, DES,...)

* Fragment E into {E,, E,} by LOC

« Common query:

“Given employee name, list projects (s)he works 1n”

32

E1

NM Loc Sal E) # NM Loc Sal
3) Joe Sa 10 7/ | Sally Sb 25
8 Tom Sa 15 12 | Fred Sb 15
(at Sa) (at Sb)

Description

5 work on 347 hw

/ go to moon

5 build table

12 rest

33

E1

J1

#

NM Loc Sal

5 Joe Sa 10
8 Tom Sa 15
(at Sa)

Des
5 work on 347 hw
5 build table

Ji=J< k1

E2

)2

NM Loc Sal
7 | Sally Sb 25
12 | Fred Sb 15
(at Sb)
Des
/ go to moon
12 rest
J2=J<XE2

34

Derived horizontal fragmentation

R, fragmented as F = {F,, F,, ..., F_}

|

S, derive D = {D,, D,, ..., D_} where D.=SIXF,

Convention: R is called the owner relation

S 1s called the member relation

35

Completeness of derived fragmentation

Des

Example: Say J 1s

33 build chair

« J, UJ,cJ (incomplete fragmentation)

* For completeness, enforce referential integrity
constraint

join attribute of member relation

U

joint attribute of owner relation

36

E1

J1

|

NM Loc Sal E> # NM Loc Sal
S Joe Sa 10 S Fred Sb 20
e é)
J Z& Dejcr'p;o” Fragmentation
S IS not
disjoint!
/ N
Description] # Description
5 day off 2 S day off

attribute key of owner relation.

Common way to enforce disjointness: make join J

37

Vertical fragmentation

. # NM Loc Sal
Examp le: E 5 | Joe Sa 10
7 | Sally Sb 25
8 Fred Sa 15

NM Loc # Sal

El 5T Joe | sa E2 51 10

7 | Sally Sb 7 25

8 Fred Sa 8 15

R[T] = Ry[T[, Ry[T,],..., R |T,] T;cT

1] —

B Just like normalization of relations 38

Properties
R[T]= RJT],i=1..n

 Completeness: UT.=T

« Reconstruction: ><]| R, =R (lossless join)

— One way to guarantee lossless join: repeat key 1n each
fragment, 1.e., key c T, V1

* Disjointness: T; N T, = {key}
— Check disjointness only on non-key attributes

39

Grouping Attributes

'E1(#,NM,LOC)

| E2(#.SAL)
Example: / \
E(#NM,LOC,SAL) " E1(#,NM)

{ E2(#,LOC)

 E3(#,SAL)

Which 1s the right vertical fragmentation?

40

Attribute affinity matrix

A, A, Ay A, As; Cluster attributes
N

/ .
Ap | 718 50 4 I 0 | based on affinity
A, [500 25 @ 28 2 0 l
Ay [\45 28\ 34 0 4 RIKA. A A
A 1 2 0 20 75 LKA A A

) R [K A4IA5]
A 0 0 4 40 2L
\ D,

* A;; = ameasure of how “often” A; and A,
are accessed by the same query

« Hand constructed using knowledge of queries and

their frequencies al

Allocation

Example: E = Fl — GIOC:Sa(E); F2 — GIOC:Sb(E)

Site b

*Do we replicate fragments?

*Where do we place each copy of each fragment?

42

Issues

Origin of queries
Communication cost and size of answers,
relations, etc.

Storage capacity, storage cost at sites, and size of
fragments

Processing power at the sites

Query processing strategy

— How are joins done? Where are answers collected?

Fragment replication

— Update cost, concurrency control overhead .

Optimization problem

* What 1s the best placement of fragments and/or
best number of copies to:

— minimize query response time
— maximize throughput

— minimize ‘“some cost”
- Very hard problem

* Subject to constraints
— Available storage
— Available bandwidth, processing power,...
— Keep 90% of response time below X

44

Looking Ahead

* Query processing

— Decomposition

— Localization

— Daistributed query operators
— Optimization (briefly)

45

Resources

e Ozsu and Valduriez. “Principles of Distributed
Database Systems” — Chapter 5

46

