
1

CS347
Lecture 13

May 23, 2001

2

• Basic SQL
• Relational algebra
• Following aspects of centralized DB

– Query processing: query plans, cost estimation,
optimization

– Concurrency control techniques
– Recovery methods

3

• Primarily lecture notes
• No required textbook
• Some lecture material drawn from

M. Tamer Ozsu and Patrick Valduriez, "Principles of
Distributed Database Systems," Second Edition,
Prentice Hall 1999.

4

Software:
Application
SQL Front End
Query Processor
Transaction Proc.
File Access

P

M ...

• Simplifications:
• single front end
• one place to keep locks
• if processor fails, system fails, …..

5

• Multiple processors, memories, and disks
– Opportunity for parallelism (+)
– Opportunity for enhanced reliability (+)
– Synchronization issues (-)

• Heterogeneity and autonomy of “components”
– Autonomy example: may not get statistics for query

optimization from a site

6

Select new
investments

Application

RDBMS Files
Stock
ticker
tape

Portfolio History of
dividends,
ratios,...

7

Data management with multiple processors
and possible autonomy, heterogeneity.
Impacts:

• Data organization
• Query processing
• Access structures
• Concurrency control
• Recovery

8

• Introductory topics
– Database architectures
– Distributed versus Parallel DB systems

• Distributed database design
– Fragmentation
– Allocation

9

Shared memory

P P P...

M

...

P

M

P

M
...

P

M

Shared disk

10

P

M

...
P

M

P

M

Shared nothing

Number of other “hybrid” architectures are possible.

11

• Reliability
• Scalability
• Geographic distribution of data
• Performance
• Cost

12

• Typically, parallel DBs:
– Fast interconnect
– Homogeneous software
– Goals: High performance and Transparency

• Typically, distributed DBs:
– Geographically distributed
– Disconnected operation possible
– Goal: Data sharing (heterogeneity, autonomy)

13

• Parallel DB:
– Distribute/partition/sort…. data to make certain DB

operations (e.g., Join) fast

• Distributed DB:
– Given data distribution, find query processing

strategy to minimize cost (e.g. communication cost)

14

Top-down approach:
• have a database
• how to split and allocate to individual sites

Multi-databases (or bottom-up):
• combine existing databases
• how to deal with heterogeneity & autonomy

15

• Fragmentation
• Allocation

Note: issues not independent, but studied
separately for simplicity.

16

Employee relation E (#,name,loc,sal,…)
40% of queries: 40% of queries:

Qa: select * Qb: select *
from E from E
where loc=Sa where loc=Sb
and… and ...

Motivation: Two sites: Sa, Sb
Qa → ← QbSa Sb

17

Name Loc Sal
5
7
8

Sa 10
Sally Sb 25
Tom Sa 15

Joe

5
8

Sa 10
Tom Sa 15
Joe 7 Sb 25Sally

..

..

..
..

F = {F1,F2}

At Sa At Sb

E

F1 = σloc=Sa(E) F2 = σloc=Sb(E)

⇒ primary horizontal fragmentation

18

• Horizontal Primary
depends on local attributes

R Derived
depends on foreign relation

• Vertical

R

19

• Round robin
• Hash partitioning
• Range partitioning

20

R F0 F1 F2

t1 t1
t2 t2
t3 t3
t4 t4
... t5

• Evenly distributes data
• Good for scanning full relation
• Not good for point or range queries

21

R F0 F1 F2

t1→h(k1)=2 t1
t2→h(k2)=0 t2
t3→h(k3)=0 t3
t4→h(k4)=1 t4
...

• Good for point queries on key; also for joins
• Not good for range queries; point queries not on key
• Good hash function even distribution

22

R F0 F1 F2

t1: A=5 t1
t2: A=8 t2
t3: A=2 t3
t4: A=3 t4
...

• Good for some range queries on A
• Need to select good vector: else create imbalance

→ data skew
→ execution skew

4 7

partitioning
vector

V0 V1

23

Example 2: F = {F3,F4}
F1 = σsal<10(E) F2 = σsal>5(E)

Example 1: F = {F1,F2}

F1 = σsal<10(E) F2 = σsal>20(E)

➽➽➽➽ Problem: Some tuples lost!

➽➽➽➽ Tuples with 5 < sal < 10 are duplicated

24

Prefer to deal with replication explicitly

Example: F = { F5, F6, F7 }

F5 = σsal<=5(E)
F6 = σ5 < sal<10(E)
F7 = σsal>=10(E)

�Then replicate F6 if desired as part of allocation

25

R ⇒ F = {F1,F2,….}
(1) Completeness

∀∀∀∀t ∈∈∈∈ R, ∃∃∃∃ Fi ∈∈∈∈ F such that t ∈∈∈∈ Fi

(2) Disjointness
Fi ∩ Fj = Ø, ∀∀∀∀ i,j such that i ≠ j

(3) Reconstruction
∃∃∃∃ ∇∇∇∇ such that R = ∇∇∇∇ Fi

i

26

• Given simple predicates Pr = {p1, p2,.. pm} and
relation R.

• Generate “minterm” predicates

M = {m | m = ∧∧∧∧ pk*, 1 ≤ k ≤ m}, where
pk* is either pk or ¬ pk

• Eliminate useless minterms and simplify M to
get M’.

• Generate fragments σm(R) for each m ∈ M’.

27

• Example: say queries use predicates
A < 10, A > 5, Loc = SA, Loc = SB

• Eliminate and simplify minterms
A < 10 ∧∧∧∧ A > 5 ∧∧∧∧ Loc = SA ∧∧∧∧ Loc = SB
A < 10 ∧∧∧∧ A > 5 ∧∧∧∧ Loc = SA ∧∧∧∧ ¬(Loc = SB)

• Final set of fragments
(5 < A < 10) ∧∧∧∧ (Loc = SA)
(5 < A < 10) ∧∧∧∧ (Loc = SB)
(A ≤ 5) ∧∧∧∧ (Loc = SA)
(A ≤ 5) ∧∧∧∧ (Loc = SB)
(A ≥ 10) ∧∧∧∧ (Loc = SA)
(A ≥ 10) ∧∧∧∧ (Loc = SB)

Work out details
for all minterms.

5 < A < 10

28

• Elimination of useless fragments/predicates
depends on application semantics:
– e.g.: if Loc ≠ SA and ≠ SB is possible, must retain

fragments such as (5 <A < 10) ∧∧∧∧ (Loc≠SA) ∧∧∧∧
(Loc≠SB)

• Minterm-based fragmentation generates
complete, disjoint, and reconstructible
fragments. Justify this

statement.

29

• E (#,name,loc,sal,…) with common queries
Qa: select * from E where loc = SA and…
Qb: select * from E where loc = SB and…

• Three choices for Pr and hence F[Pr]:
– Pr = {} F1 = F[Pr] = {E}
– Pr = {Loc = SA, Loc = SB}

F2 = F[Pr] = {σloc=SA (E), σloc=SB (E)}
– Pr = {Loc = SA, Loc = SB, Sal < 10}

F3 = F[Pr] = {σloc=SA ∧∧∧∧ sal< 10(E), σ loc=SB ∧∧∧∧ sal< 10(E),
σloc=SA ∧∧∧∧ sal ≥ 10(E), σloc=SA ∧∧∧∧ sal ≥ 10 (E)}

30

Loc=SA ∧∧∧∧
sal < 10

Loc=SA ∧∧∧∧

sal ≥ 10

Loc=SB ∧∧∧∧
sal < 10

Loc=SB ∧∧∧∧

sal ≥ 10

F1

F3F2

Qa: Select … loc = SA ...

Qb: Select … loc = SB ...

Prefer F2 to F1 and F3

31

• Completeness
Set of predicates Pr is complete if for every
Fi ∈ F[Pr], every t ∈ Fi has equal probability
of access by every major application.

• Minimality
Set of predicates Pr is minimal if no Pr’ ⊂ Pr

is complete.

To get complete and minimal Pr use predicates that are
“relevant” in frequent queries

Different from completeness
of fragmentation

32

• Example: Two relations Employee and Jobs
E(#, NAME, SAL, LOC)
J(#, DES,…)

• Fragment E into {E1, E2} by LOC

• Common query:
“Given employee name, list projects (s)he works in”

33

E1

(at Sa) (at Sb)

E2
NM Loc Sal
5 Joe Sa 10
8 Tom Sa 15
…

NM Loc Sal
7 Sally Sb 25
12 Fred Sb 15
…

Description
5 work on 347 hw
7 go to moon
5 build table
12 rest
…

J

34

E1

(at Sa) (at Sb)

E2
NM Loc Sal
5 Joe Sa 10
8 Tom Sa 15
…

NM Loc Sal
7 Sally Sb 25
12 Fred Sb 15
…

J1 J2

J1 = J E1 J2 = J E2

Des
5 work on 347 hw
5 build table
…

Des
7 go to moon
12 rest
…

35

R, fragmented as F = {F1, F2, …, Fn}
⇓⇓⇓⇓

S, derive D = {D1, D2, …, Dn} where Di =S Fi

Convention: R is called the owner relation
S is called the member relation

36

• J1 U J2 ⊂ J (incomplete fragmentation)
• For completeness, enforce referential integrity

constraint
join attribute of member relation

⇓
joint attribute of owner relation

Des
…
33 build chair
…

Example: Say J is

37

NM Loc Sal
5 Joe Sa 10
…

NM Loc Sal
5 Fred Sb 20
…

E1 E2

Description
5 day off
…

Description
5 day off
…

Description
5 day off
…

J1

J

J2

Fragmentation
is not

disjoint!

Common way to enforce disjointness: make join
attribute key of owner relation.

38

E1

NM Loc Sal
5 Joe Sa 10
7 Sally Sb 25
8 Fred Sa 15
…

NM Loc
5 Joe Sa
7 Sally Sb
8 Fred Sa
…

Sal
5 10
7 25
8 15
…

E

E2

Example:

R[T] ⇒ R1[T1], R2[T2],…, Rn[Tn] Ti ⊆ T

➽ Just like normalization of relations

39

R[T] ⇒ Ri[Ti], i = 1.. n

• Completeness: ∪Ti = T

• Reconstruction: Ri = R (lossless join)
– One way to guarantee lossless join: repeat key in each

fragment, i.e., key ⊆⊆⊆⊆ Ti ∀∀∀∀ i

• Disjointness: Ti ∩ Tj = {key}
– Check disjointness only on non-key attributes

40

E1(#,NM,LOC)
E2(#,SAL)

Example:
E(#,NM,LOC,SAL) E1(#,NM)

E2(#,LOC)
E3(#,SAL)

Which is the right vertical fragmentation?
…..

41

A1 A2 A3 A4 A5
A1 78 50 45 1 0

A2 50 25 28 2 0

A3 45 28 34 0 4

A4 1 2 0 20 75

A5 0 0 4 75 40

• Ai,j ⇒ a measure of how “often” Ai and Aj
are accessed by the same query

• Hand constructed using knowledge of queries and
their frequencies

Cluster attributes
based on affinity

R1[K,A1,A2,A3]
R2[K,A4,A5]

42

Example: E ⇒ F1 = σloc=Sa(E); F2 = σloc=Sb(E)

Site a
Site b

Fragment E

•Do we replicate fragments?

•Where do we place each copy of each fragment?

Site c
F1

F1

F2

43

• Origin of queries
• Communication cost and size of answers,

relations, etc.
• Storage capacity, storage cost at sites, and size of

fragments
• Processing power at the sites
• Query processing strategy

– How are joins done? Where are answers collected?
• Fragment replication

– Update cost, concurrency control overhead

44

• What is the best placement of fragments and/or
best number of copies to:
– minimize query response time
– maximize throughput
– minimize “some cost”
– ...

• Subject to constraints
– Available storage
– Available bandwidth, processing power,…
– Keep 90% of response time below X
– ...

Very hard problem

45

• Query processing
– Decomposition
– Localization
– Distributed query operators
– Optimization (briefly)

46

• Ozsu and Valduriez. “Principles of Distributed
Database Systems” – Chapter 5

