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Expected Background

* Basic SQL
» Relational algebra
* Following aspects of centralized DB

— Query processing: query plans, cost estimation,
optimization

— Concurrency control techniques

— Recovery methods



Reading Material

* Primarily lecture notes
* No required textbook
* Some lecture material drawn from

M. Tamer Ozsu and Patrick Valduriez, "Principles of
Distributed Database Systems," Second Edition,
Prentice Hall 1999.



Centralized DBMS

» Software:

Application

M Ej Ej Query Processor
Transaction Proc.

File Access

* Simplifications:

* single front end

 one place to keep locks
* if processor fails, system fails, .....



Distributed DB

* Multiple processors, memories, and disks
— Opportunity for parallelism (+)
— Opportunity for enhanced reliability (+)

— Synchronization issues (-)

« Heterogeneity and autonomy of “components™

— Autonomy example: may not get statistics for query
optimization from a site



Heterogeneity
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Big Picture

Data management with multiple processors
and possible autonomy, heterogeneity.
Impacts:

 Data organization

* Query processing

* Access structures

« Concurrency control

* Recovery



Today’s topics

 Introductory topics

— Database architectures

— Daistributed versus Parallel DB systems
 Distributed database design

— Fragmentation

— Allocation



Common DB architectures
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Common DB architectures

Shared nothing

p p p

M%M%... 5=

Number of other “hybrid” architectures are possible.
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Selecting the “right” architecture

Reliability

Scalability

Geographic distribution of data
Performance

Cost
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Parallel vs. Distributed DB system
* Typically, parallel DBs:

— Fast interconnect
— Homogeneous software

— Goals: High performance and Transparency

» Typically, distributed DBs:
— Geographically distributed

— Disconnected operation possible

— Goal: Data sharing (heterogeneity, autonomy)
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Typical query processing scenarios

e Parallel DB:

— Distribute/partition/sort. ... data to make certain DB
operations (€.g., Join) fast

e Distributed DB:

— Given data distribution, find query processing
strategy to minimize cost (e.g. communication cost)
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Distributed DB Design

Top-down approach:

 have a database

* how to split and allocate to individual sites

Multi-databases (or bottom-up):

* combine existing databases

* how to deal with heterogeneity & autonomy
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Two 1ssues 1n top-down design

* Fragmentation

 Allocation

Note: 1ssues not independent, but studied

separately for simplicity.
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Example

Employee relation E (#,name,loc,sal,...)

40% of queries: 40% of queries:
Qa: select * Qb: select *
from E from E
where loc=Sa where loc=Sb
and. .. and ...

Motivation: Two sites: Sa, Sb

Qa— |Sa < Sb
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At Sa

# Name Loc Sal

51 Joe |Sa| 10
E |7 Sally | Sb| 25
8| Tom |Sa| 15
/\Ii: {F19F2}
5| Joe |Sa| 10 /| Sally | Sb| 25
8| Tom | Sa | 15 :

Fl — Gloc=Sa(E)

F2 — Gloc=Sb(E)

— primary horizontal fragmentation

At Sb
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Horizontal partitioning techniques

* Round robin
* Hash partitioning
* Range partitioning
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Round robin

R Fo Fi ko
t1 tl
t2 t2
t3 t3
t4 t4
" 5

* Evenly distributes data
* Good for scanning full relation

« Not good for point or range queries
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Hash partitioning

R Fo Fi F»

t1—h(k1)=2 > t1
t2—h(k2)=0 —t2
t3—h(k3)=0 —t3
t4—h(k4)=1 > t4

* Good for point queries on key; also for joins
« Not good for range queries; point queries not on key
* Good hash function = even distribution
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Range partitioning

R Fo Fi @ I
tl: A=5 partitioning »t1

t2: A=8 vector . 12
t3: A=2 417 13

t4: A=3 Vo Vi t4

e Good for some range queries on A
» Need to select good vector: else create imbalance

— data skew
— execution skew
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Which are good fragmentations?
Example 1: F = {F,F,}

Fl - Gsal<10(E) F2 — Gsal>2O(E)

B Problem: Some tuples lost!

Example 2: F = {F,,F,}
F) = Gg<10(E) F) = Gg-5(E)

B Tuples with 5 <sal <10 are duplicated 23



Prefer to deal with replication explicitly

Example: F ={ F,, F,, F- }
FS — Gsal<=5(E)

Fg =05 sa<10(E)
F7 — Gsal>=10(E)

=Then replicate F if desired as part of allocation
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Horizontal Fragmentation Desiderata

R = F={F,F,,....}
(1) Completeness
Vte R, dF.€ Fsuchthat te F,

(2) Disjointness
F.NFj=0, V 1,; such thati#]

(3) Reconstruction |
3V such that R=V F.
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Generating horizontal fragments

Given simple predicates P, = {p,, p,,-- .,y and
relation R.

Generate “minterm” predicates
M={m|m=Ap™* | <k<m}, where
p,* 1s either p, or —~p,
Eliminate useless minterms and simplify M to

get M.

Generate fragments O_(R) for eachm e M’.
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o h 1o Example

Example: say queries use predicates
A <10, A>5, Loc=S,, Loc = Sg

Eliminate and simplify minterms
A<IOA~A>S5—~Toee=5~—Toc=53

* Final set of fragments
(5<A<10) A (Loc=8S,)
(5 <A<10) A (Loc=Sp)
(A< 5)A (Loc=S8S,)
(A< 5)A (Loc=Sy)
(A=10) A (Loc=S,)
(A=10) A (Loc=Sg)
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More on Horizontal Fragmentation

« Elimination of useless fragments/predicates
depends on application semantics:

—e.g..1if Loc # S, and # Sz 1s possible, must retain
fragments such as (5 <A <10) A (Loc#S,) A
(Loc#Sy)

* Minterm-based fragmentation generates
complete, disjoint, and reconstructible

fragments. -
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Choosing simple predicates

* E (#,name,loc,sal,...) with common queries
Qa: select * from E where loc = S, and...

Qb: select * from E where loc = Sz and...

» Three choices for P.and hence F[P_]:
~P={} F,=F[P]={E}
— P.={Loc=S,, Loc = Sg}
F,= F[P]= {Gloc=SA (E)> Oloc-sB (E)}
— P.={Loc=S,, Loc = Sg, Sal < 10}
F;= F[P/]= {Gloc=SA A sal< IO(E)9 O 10c=SB A sal< IO(E)9

Cloc=sA rsal > 10(E)s Oloc=sa s> 10 (E)} N



Loc=S, A
sal < 10

Loc=S, A
sal = 10

Loc=Sg A
sal < 10

Loc=Sg A
sal = 10

Qa: Select ... loc = S, ...

Qb: Select ... loc = S5 ...

|

Prefer F,to F, and F,
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Desiderata for simple predicates

Different from completeness

o Completeness of fragmentation

Set of predicates P, 1s complete if for every
F.e F[P ], every t € F. has equal probability
of access by every major application.

* Minimality

Set of predicates P, 1s minimal ifno P’ P,
1s complete.

To get complete and minimal P, use predicates that are
“relevant” 1n frequent queries 31



Derived horizontal fragmentation

« Example: Two relations Employee and Jobs
E(#, NAME, SAL, LOC)

J(#, DES,...)

* Fragment E into {E,, E,} by LOC

« Common query:

“Given employee name, list projects (s)he works 1n”
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E1

# NM Loc Sal E ) # NM Loc Sal
3) Joe Sa 10 7/ | Sally Sb 25
8 Tom Sa 15 12 | Fred Sb 15
(at Sa) (at Sb)

# Description

5 work on 347 hw

/ go to moon

5 build table

12 rest
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E1

J1

#

NM Loc Sal

5 Joe Sa 10
8 Tom Sa 15
(at Sa)

# Des
5 work on 347 hw
5 build table

Ji=J< k1

E2

)2

# NM Loc Sal
7 | Sally Sb 25
12 | Fred Sb 15
(at Sb)
# Des
/ go to moon
12 rest
J2=J<XE2
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Derived horizontal fragmentation

R, fragmented as F = {F,, F,, ..., F_}

|

S, derive D = {D,, D,, ..., D_} where D.=SIXF,

Convention: R is called the owner relation

S 1s called the member relation
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Completeness of derived fragmentation

# Des

Example: Say J 1s

33 build chair

« J, UJ,cJ (incomplete fragmentation)

* For completeness, enforce referential integrity
constraint

join attribute of member relation

U

joint attribute of owner relation
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E1

J1

|

# NM Loc Sal E> # NM Loc Sal
S Joe Sa 10 S Fred Sb 20
e é )
J Z& Dejcr'p;o” Fragmentation
S IS not
disjoint!
/ N
# Description ] # Description
5 day off 2 S day off

attribute key of owner relation.

Common way to enforce disjointness: make join J
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Vertical fragmentation

. # NM Loc Sal
Examp le: E 5 | Joe Sa 10
7 | Sally Sb 25
8 Fred Sa 15

# NM Loc # Sal

El 5T Joe | sa E2 51 10

7 | Sally Sb 7 25

8 Fred Sa 8 15

R[T] = Ry[T[, Ry[T,],..., R |T,] T;cT

1] —

B Just like normalization of relations 38



Properties
R[T]= RJT],i=1..n

 Completeness: UT.=T

« Reconstruction: ><]| R, =R (lossless join)

— One way to guarantee lossless join: repeat key 1n each
fragment, 1.e., key c T, V1

* Disjointness: T; N T, = {key}
— Check disjointness only on non-key attributes
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Grouping Attributes

'E1(#,NM,LOC)

| E2(#.SAL)
Example: / \
E(#NM,LOC,SAL) " E1(#,NM)

{ E2(#,LOC)

 E3(#,SAL)

Which 1s the right vertical fragmentation?
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Attribute affinity matrix

A, A, Ay A, As;  Cluster attributes
N

/ .
Ap | 718 50 4 I 0 | based on affinity
A, [ 500 25 @ 28 2 0 l
Ay [\45 28\ 34 0 4 RIKA. A A
A 1 2 0 20 75 LKA A A

) R [K A4IA5]
A 0 0 4 40 2L
\ D,

* A;; = ameasure of how “often” A; and A,
are accessed by the same query

« Hand constructed using knowledge of queries and

their frequencies al



Allocation

Example: E = Fl — GIOC:Sa(E); F2 — GIOC:Sb(E)

Site b

*Do we replicate fragments?

*Where do we place each copy of each fragment?
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Issues

Origin of queries
Communication cost and size of answers,
relations, etc.

Storage capacity, storage cost at sites, and size of
fragments

Processing power at the sites

Query processing strategy

— How are joins done? Where are answers collected?

Fragment replication

— Update cost, concurrency control overhead .



Optimization problem

* What 1s the best placement of fragments and/or
best number of copies to:

— minimize query response time
— maximize throughput

— minimize ‘“some cost”
- Very hard problem

* Subject to constraints
— Available storage
— Available bandwidth, processing power,...
— Keep 90% of response time below X
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Looking Ahead

* Query processing

— Decomposition

— Localization

— Daistributed query operators
— Optimization (briefly)
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Resources

e Ozsu and Valduriez. “Principles of Distributed
Database Systems” — Chapter 5
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