
CS347

Lecture 1
April 4, 2001
©Prabhakar Raghavan

Query

• Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

Term-document incidence

1 if play contains
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Incidence vectors

• So we have a 0/1 vector for each term.
• To answer query: take the vectors for

Brutus, Caesar and Calpurnia
(complemented) è bitwise AND.

• 110100 AND 110111 AND 101111 =
100100.

Answers to query

• Antony and Cleopatra, Act III, Scene ii
• Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
• When Antony found Julius Caesar dead,
• He cried almost to roaring; and he wept
• When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
• Lord Polonius: I did enact Julius Caesar I was killed i' the
• Capitol; Brutus killed me.

Bigger corpora

• Consider n = 1M documents, each with
about 1K terms.

• Avg 6 bytes/term incl spaces/punctuation
– 6GB of data.

• Say there are m = 500K distinct terms
among these.

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s
and 1’s.

• But it has no more than one billion 1’s.
– matrix is extremely sparse.

• What’s a better representation?

Why?

• Documents are parsed to extract words
and these are saved with the Document
ID.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Inverted index

• After all documents
have been parsed the
inverted file is sorted by
terms

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

• Multiple term
entries in a single
document are
merged and
frequency
information added

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

• The file is commonly split into a
Dictionary and a Postings file

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

• Where do we pay in storage?
Doc # Freq

2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Two conflicting forces

• A term like Calpurnia occurs in maybe one
doc out of a million - would like to store
this pointer using log2 1M ~ 20 bits.

• A term like the occurs in virtually every
doc, so 20 bits/pointer is too expensive.
– Prefer 0/1 vector in this case.

Postings file entry

• Store list of docs containing a term in
increasing order of doc id.
– Brutus: 33,47,154,159,202 …

• Consequence: suffices to store gaps.
– 33,14,107,5,43 …

• Hope: most gaps encoded with far fewer
than 20 bits.

Variable encoding

• For Calpurnia, use ~20 bits/gap entry.
• For the, use ~1 bit/gap entry.
• If the average gap for a term is G, want to

use ~log2G bits/gap entry.

γ codes for gap encoding

• Represent a gap G as the pair <length,offset>
• length is in unary and uses log2G +1 bits to

specify the length of the binary encoding of
• offset = G - 2log2G

• e.g., 9 represented as 1110001.
• Encoding G takes 2 log2G +1 bits.

Length Offset

What we’ve just done

• Encoded each gap as tightly as possible, to
within a factor of 2.

• For better tuning (and a simple analysis) -
need some handle on the distribution of gap
values.

Zipf’s law

• The kth most frequent term has frequency
proportional to 1/k.

• Use this for a crude analysis of the space
used by our postings file pointers.

Rough analysis based on Zipf

• Most frequent term occurs in n docs
– n gaps of 1 each.

• Second most frequent term in n/2 docs
– n/2 gaps of 2 each …

• kth most frequent term in n/k docs
– n/k gaps of k each - use 2log2k +1 bits for each

gap;
– net of ~(2n/k).log2k bits for kth most frequent

term.

Sum over k from 1 to 500K

• Do this by breaking values of k into groups:
group i consists of 2i-1 ≤ k < 2i.

• Group i has 2i-1 components in the sum,
each contributing at most (2ni)/2i-1.

• Summing over i from 1 to 19, we get a net
estimate of 340Mbits ~45MB for our index.

Work out
calculation.

Caveats

• This is not the entire space for our index:
– does not account for dictionary storage;
– as we get further, we’ll store even more stuff in

the index.

• Assumes Zipf’s law applies to occurrence
of terms in docs.

• All gaps for a term taken to be the same.
• Does not talk about query processing.

Issues with index we just built

• How do we process a query?
• What terms in a doc do we index?

– All words or only “important” ones?

• Stopword list: terms that are so common
that they’re ignored for indexing.
– e.g., the, a, an, of, to …
– language-specific.

Repeat postings size calculation if 100 most frequent terms
are not indexed.

Issues in what to index

• Cooper’s vs. Cooper vs. Coopers.
• Full-text vs. full text vs. {full, text} vs. fulltext.
• Accents: résumé vs. resume.

Cooper’s concordance of Wordsworth was published in 1911.
The applications of full-text retrieval are legion: they include
résumé scanning, litigation support and searching published
journals on-line.

Punctuation

• Ne’er: use language-specific, handcrafted
“locale” to normalize.

• State-of-the-art: break up hyphenated
sequence.

• U.S.A. vs. USA - use locale.
• a.out

Numbers

• 3/12/91
• Mar. 12, 1991
• 55 B.C.
• B-52
• 100.2.86.144

Case folding

• Reduce all letters to lower case
– proper nouns - from language module

• e.g., General Motors
• Fed vs. fed
• SAIL vs. sail

Thesauri and soundex

• Handle synonyms and homonyms
– Hand-constructed equivalence classes

• e.g., car = automobile
• your Ô you’re

• Index such equivalences, or expand query?
– More later ...

Spell correction

• Look for all words within (say) edit distance
3 (Insert/Delete/Replace) at query time
– e.g., Alanis Morisette

• Spell correction is expensive and slows the
query (upto a factor of 100)
– Invoke only when index returns zero matches.
– What if docs contain mis-spellings?

Stemming

• Reduce terms to their roots before indexing
– language dependent
– e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to

compress.

for exampl compres and
compres are both accept as
equival to compres.

Porter’s algorithm

• Commonest algorithm for stemming
English

• Conventions + 5 phases of reductions
– phases applied sequentially
– each phase consists of a set of commands
– sample convention: Of the rules in a compound

command, select the one that applies to the
longest suffix.

Typical rules in Porter

• sses → ss
• ies → i
• ational → ate
• tional → tion

So far: terms are the units of
search

• What about phrases?
• Proximity: Find Gates NEAR Microsoft.

– Need index to capture position information in
docs.

• Zones in documents: Find documents with
(author = Ullman) AND (text contains
automata).

Evidence accumulation

• 1 vs. 0 occurrence of a search term
– 2 vs. 1 occurrence
– 3 vs. 2 occurrences, etc.

• Need term frequency information in docs

Ranking search results

• Boolean queries give inclusion or exclusion
of docs.

• Need to measure proximity from query to
each doc.

• Whether docs presented to user are
singletons, or a group of docs covering
various aspects of the query.

Clustering and classification

• Given a set of docs, group them into
clusters based on their contents.

• Given a set of topics, plus a new doc D,
decide which topic(s) D belongs to.

The web and its challenges

• Unusual and diverse documents
• Unusual and diverse users, queries,

information needs
• Beyond terms, exploit ideas from social

networks
– link analysis, clickstreams ...

Course administrivia

• Course URL:
http://www.stanford.edu/class/cs347

• TA’s: Taher Haveliwala, Brent Miller,
Sriram Raghavan

• Grading:
– 30% from midterm
– 40% from final
– 30% from group project.

Group project

• Groups of 4-5
• Strongly encouraged to build apps, not

search engines
• Strongly encouraged to use one of the local

corpora
• Short and not onerous on programming
• Details to be updated on course page

– Lead: Brent Miller; Discussion 4/11TBA

Class schedule

• Lectures MW 1250-205pm, Thornton 102
• April 11 - guest lecture by Dr. Andrei

Broder, Chief Scientist at Altavista
• Apr 30 - mid-term in class
• May 23 onwards - Distributed Databases,

Sriram Raghavan lecturing

Resources for today’s lecture

• Managing Gigabytes, Chapter 3.
• Modern Information Retrieval, Chapter 7.2
• Porter’s stemmer:

http//www.sims.berkeley.edu/~hearst/irbook/porter.html

• Shakespeare: http://www.theplays.org

