
•1

1

Distributed Databases
Review

CS347
June 6, 2001

2

Fragmentation
• How to partition relation into various pieces/fragments
• Types:

– Primary Horizontal
– Derived Horizontal
– Vertical
– Hybrid of the above possible

• Desiderata
– Completeness: don’t lose tuples
– Disjointness: no duplicate tuples
– Reconstruction: make sure you can get back original

relation

3

Minterm-based horizontal frag.
• Simple predicates Pr = {p1, p2,.., pm} and R.
• Generate “minterm” predicates from Pr

• Eliminate and simplify (depends on app semantics)
• Generate fragment σm(R) for each minterm “m”.

• Simple predicates:
– Pr must be complete (do not under fragment) and

minimal (do not over fragment)
– Use predicates occurring in most frequent queries

4

Derived Horizontal
• R fragmented into {R1, R2, …, Rn}
• For S, derive {S1, S2, …, Sn} where Si =S Ri

• Useful for join queries between R and S
• For completeness: referential integrity constraint S R
• For disjointness: join attribute is key of R

Vertical
• Split R by attributes
• Repeat key attribute in each vertical fragment
• Attribute affinities define grouping

5

Localization
• Convert query tree on relations into query tree on

fragments
• Simplify (∪ up & π,σ down)
• Rules

� [R: False] ⇒ Ø
� σC1[R: C2] ⇒ [R: C1 ∧∧∧∧ C2]
� [R: C1] [S: C2] ⇒ [R S: C1 ∧∧∧∧ C2 ∧∧∧∧ R.A = S.A]

� Give vertical fragments Ri = ΠAi(R), for any B ⊆ A:
ΠB (R) = ΠB [Ri | B ∩ Ai ≠ Ø]

A A

i
6

Distributed Operators
• Sort

– Basic sort (sort each individual fragment)
– Range partitioning sort (partition by sort attribute + basic sort)
– Parallel external sort merge (local sort + range partition by sort

attribute)
– Key issue: selecting partitioning vector

• Join
– Partitioned join (only for equi-joins)
– Asymmetric fragment+replicate join (fragment R, replicate S)
– General fragment+replicate join (fragment and replicate R and

S, join all possible pairs)
– Semi join programs (to reduce communication cost)

•2

7

Query Optimization
• Exhaustive + pruning

– Enumerate all possible QEP’s with given set of
operators

– Prune using heuristics (e.g., avoid cartesian products)
– Choose minimum cost QEP

• Hill climbing
– Initial feasible QEP + set of QEP transformations
– Iterate until no more cost reduction

• Transform current QEP all possible ways
• Check cost of each transformed QEP
• Choose minimum and set as current QEP

