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Abstract

This paper describes a novel multiresolution im-
age segmentation algorithm for separating sharply fo-
cused objects-of-interest from other foreground or back-
ground objects in low depth of �eld (DOF) images, such
as sports, telephoto, macro, and microscopic images.
The algorithm takes a multiscale context-dependent ap-
proach to segment images based on features extracted
from wavelet coe�cients in high frequency bands. The
algorithm is fully automatic in that all parameters are
image independent. Experiments with the algorithm on
more than 100 low DOF images have shown results
close to the human segmentation of these images. Be-
sides high accuracy, the algorithm also provides high
speed. A 768�512 pixel image can be segmented within
two seconds on a Pentium Pro 300MHz PC.

1 Introduction

Unsupervised image segmentation [6] is invariably
one of the most challenging problems in the �eld of
computer vision. It is also crucially important in ap-
plications such as target recognition [2], image under-
standing, and content-based image database indexing
and retrieval [5, 7, 15]. In this paper, we focus on
the segmentation of low depth of �eld (DOF) images.
Low DOF is an important technique widely used by
professional photographers for various types of images,
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such as telephoto images, to emphasize a certain ob-
ject. It is also a key technique for microbiologists to
understand the 3-D structure within a specimen under
a high-power microscope.

Normal human vision is nearly infallible in segment-
ing sharply focused objects-of-interest in a low DOF
image. Most currently available segmentation algo-
rithms, however, fall far short of human performance
in this task. To mimic the human perception which
uses both global and local information in segmenta-
tion, a novel multiresolution segmentation algorithm is
developed for low DOF images. The algorithm aims
at separating sharply focused objects-of-interest from
other foreground or background objects. It is fully au-
tomatic in that all parameters are image independent.

2 Low Depth of Field

In this section, we brie
y describe the concept of
depth of �eld in photography. For convenience, we call
the sharply focused object-of-interest the OOI, and the
other out-of-focused foreground and background ob-
jects the background. In actuality, some background
objects may be closer to the camera than the OOI .

2.1 Depth of Field
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Figure 1. The optical construction of a typical
camera.

Depth of �eld (DOF) is the range of distance
from a camera that is acceptably sharp in the pho-
tograph [1, 13]. A typical camera is an optical system



containing a lens and an image screen. The lens cre-
ates images in the plane of the image screen, which is
normally parallel to the lens plane. Figure 1 illustrates
the optical construction of a typical camera.

Denote the focal length of the lens by f and its di-
ameter by a. Denote the aperture f-stop number for
this photo by p. Then f = ap. Suppose the image
screen is at distance d from the lens and the object is
at distance s from the lens. If the object is in focus,
then the Gaussian thin lens law holds:
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s
+

1

d
=

1

f
:

A point closer or farther away from the lens than s is
imaged as a circle, as shown in Figure 1. Assume the
largest circle that a human can tolerate, namely, the
circle of minimum confusion, has a diameter of c. A
point is considered sharp if and only if the image of the
point is smaller than the circle of minimum confusion.
As shown in Figure 1, df and dr are the front and the
rear DOF limits, respectively.

By simple geometry, it can be shown that

df =
scp(s � f)

f2 + cp(s � f)
; dr =

scp(s � f)

f2 � cp(s� f)
:

Usually the size of the circle of minimum confusion
is �xed for a given image size. For a �xed circle of min-
imum confusion, we conclude from the above equations
that larger aperture, closer object distance, or longer
focal length, leads to lower DOF.

2.2 Low DOF and Photography

(a) sport (b) telephoto (c) close-up

(d) macro (e) microscopic

Figure 2. Types of images with low DOF.
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Figure 3. High DOF images.

With low DOF, only the OOI is in sharp focus,
whereas background objects are typically blurred to
out-of-focus. Photographers often use low DOF to cre-
ate a sense of depth in two dimensional photograph.
Examples are shown in Figure 2. If we look at a typi-
cal sports image such as Figure 2(a), the player is much
sharper than the background crowds. We know imme-
diately that the player is in the foreground and is the
OOI. As shown in Figure 2 (b)�(d), low DOF is also
used in telephoto, closeup, and macro photography to
distinguish the object-of-interest and the background.
Due to the special focal length of microscopic lenses,
images obtained from microscopes are usually of low
DOF (Figure 2(e)). For comparison, Figure 3 shows
that in high DOF images, both the OOI and the back-
ground are sharply focused.

2.3 Low DOF and Image Segmentation

The normal human vision system (HVS) is nearly in-
fallible in understanding both low DOF and high DOF
photographs. For the case of understanding high DOF
photographs, human knowledge plays a key role. For
example, the HVS is capable of interpreting a lake in a
scene as a 
at surface. The HVS can also understand
cartoon sketches when no detailed texture information
is available.

On the other hand, for images with substantially dis-
tinct depths, such as images with low DOF, the HVS
also uses depth information to assist image understand-
ing. Low DOF is often used for images in which the
background is distracting to viewers. This is the main
reason that low DOF is an important technique for pro-
fessional photographers. Low DOF microscopic imag-
ing is also important for microbiologists who use a low
DOF microscope to determine the 3-D structure of a
specimen from 2-D slices.

Recent work has taken advantages of DOF in the
�eld of computer vision and image understanding.
Among others [3, 10, 11, 14, 12], Yim and Bovik [16]
have explored the possibility of depth perception using



a sequence of images taken with di�erent image plane
distances. Yim and Bovik [16] have also provided a
detailed survey of these techniques.

DOF could be an important clue to a computer vi-
sion system for understanding images with a low DOF.
In fact, a unique DOF is associated with any photo-
graphic image taken by a conventional camera. Our
algorithm detects di�erent depths in a low DOF im-
age by analyzing wavelet coe�cients and segments the
image according to the DOF information.

3 Classi�cation Features

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

Original  Image Wavelet  Transform

HH

LH

HL 

LL

Figure 4. The wavelet coefficients at the same
spatial location in the high frequency bands
for a block in an image.

We divide an image into blocks and classify each
block as background or object-of-interest. The classi�er
uses two features, the average intensity of an image
block and the variance of wavelet coe�cients in the
high frequency bands. The average intensity is used to
test how similar one block is to another. The variance
of wavelet coe�cients in the high frequency bands is
the main feature to distinguish background and OOI.
As we assume that only the OOI is in focus in a low
DOF image, details in the OOI are captured but those
in background are not. The details in the OOI result in
larger high frequency energy in an image. We measure
the high frequency energy by the variance of wavelet
coe�cients in the high frequency bands, i.e., the LH,
HL and HH bands shown in Figure 4. For any image
block, the variance of wavelet coe�cients at the same
spatial location in the three high frequency bands is
used as a feature for the image block. We denote this
feature as v. Suppose an image is speci�ed by a set of
pixels I = f(m;n); m = 0; :::;M � 1; n = 0; :::; N � 1g
and its wavelet coe�cients are fwm;n; (m;n) 2 Ig.
Without loss of generality, consider block f(m;n); m =
0; :::; s � 1; n = 0; :::; s � 1g. The wavelet coe�-
cients for the block in LH, HL, and HH band are
fwm;n;m = 0; :::; s=2� 1; n = N=2; :::; N=2+ s=2� 1g,
fwm;n;m = M=2; :::;M=2 + s=2 � 1; n = 0; :::; s=2�

1g, and fwm;n;m = M=2; :::;M=2 + s=2 � 1; n =
N=2; :::; N=2 + s=2 � 1g respectively. The feature v
is then calculated as the variance of the wavelet coef-
�cients in all the three sets. For other shifted image
blocks, their wavelet coe�cient blocks for calculating v
are shifted correspondingly, as shown in Figure 4.

original traditional high frequency
image edge detection band of WT

Figure 5. Comparison of the traditional edge
detection and wavelet transform.

In our current implementation, the Haar wavelet
transform is used. We expect Daubechies' wavelet
transforms [4] with short length �lters will give sim-
ilar results. Figure 5 shows a comparison between tra-
ditional edge detection and a wavelet transform. The
OOI stands out more distinctly in the high frequency
band of the wavelet transform than that does in the
traditional edge detected image.

4 The Algorithm

The classi�cation algorithm consists of three steps:

1. initial classi�cation at the lowest scale

2. recursive process to adjust the crude classi�cation
result using a multiscale approach

3. post-processing to obtain smooth boundaries and
to remove small isolated regions

As shown in Figure 6, we start with a large block
size. A crude classi�cation is performed with the large
blocks. At every increased scale, the blocks are subdi-
vided into four child blocks, forming a quad-tree struc-
ture. Child blocks inherit the classes of parent blocks
as their initial classes. The classi�er then adjusts the
classes of the child blocks according to their features
and their context, which is represented by the statis-
tics of their neighboring blocks. After the adjustment
is performed, the classi�er increases the scale and re-
peats the previous step until the maximum scale is
reached. This multiscale approach is motivated by a



similar context-dependent classi�cation structure, de-
veloped and applied to document segmentation by Li
and Gray [9].
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Figure 6. Flow chart of the algorithm.

4.1 Initial Classification

For the initial classi�cation, we start with a large
block size S � S, which is usually set to 32� 32 for an
image of around 768 � 512 pixels in our applications.
We denote the lowest scale by r = 0. By avoiding over-
localization, large blocks provide a more distinguished
feature v, de�ned in the previous section, for the two
classes: background and OOI. Although classi�cation
performed on the large blocks is crude, we compensate
this by adjusting the classes at higher scales.

Denote the blocks at scale r = 0 by S(0) =
f(i; j); i = 0; :::; I; j = 0; :::; Jg and the feature v for
the blocks by vi;j; (i; j) 2 S(0). We then divide vi;j
into two clusters using the k-means clustering algo-
rithm [8]. One cluster represents the background, and
the other represents the OOI. In the view that the
OOI has a higher average v, we set the cluster with
the higher average v as the OOI class. Denote the
background cluster center by v(0), and the OOI cluster
center by v(1). The k-means algorithm determines the
class of block (i; j), (i; j) 2 S(0), at scale r = 0, by
ci;j = min�1k=0;1(vi;j � v(k))2.

At the end of the initial classi�cation, we delete
small isolated background regions to avoid smooth re-
gions of the OOI being mistakenly classi�ed.

4.2 Multiscale Context Dependent Classification

The second step in the classi�cation is to adjust the
segmentation result obtained in the �rst step using con-
text information through a multiscale approach. At
each increased scale, the blocks are divided into a quad-
tree with 4 child blocks. The parent block of block (i; j)
is denoted by (~i;~j), where ~i = bi=2c, ~j = bj=2c. De-
note the set of blocks at scale r by S(r), r = 1; :::; R,

where R is the maximum scale set by users. The block
size at scale R is the �nest resolution that a user needs.
We choose R as the scale at which one block is a single
pixel in our applications.

The feature v and the average intensities of blocks at
scale r are evaluated. The initial classes of the blocks
are set to the classes of their parent blocks. For every
block which is adjacent to a block with a di�erent class,
the classi�er decides whether to switch the class of one
of the blocks according to their v, and the similarity to
their parent blocks.

The multiscale approach is used to solve the con
ict
of over-localization and high resolution classi�cation.
By gradually reducing the block size, the classi�er can
track the more global properties of a block through
its parent block. At the same time, a high resolution
classi�cation is achieved eventually. The details of the
algorithm are provided in the list below.

1. Set 1! r.

2. Divide blocks in S(r) into blocks in S(r+1). Set
r + 1! r.

3. Calculate features vi;j and average intensities xi;j
for blocks (i; j) 2 S(r).

4. For each block (i; j) 2 S(r) segmented as the OOI,
if any of its four neighbors is segmented as back-
ground, adjust the classes as follows.

(a) Set 0! k.

(b) For the kth neighbor block (m;n), set

ipbackground = 1 if one of the following con-
ditions is satis�ed

i. The di�erence between the average in-
tensity xm;n of block (m;n) and that
of its parent block is larger than both
a threshold and the di�erence between
xm;n and the average intensity of the par-
ent block of (i; j).

ii. The feature vi;j is closer to the center
of the OOI cluster, i.e., (vi;j � v(1))2 <
(vi;j � v(0))2

(c) For the kth neighbor block (m;n), set

ipOOI = 1 if one of the following conditions
is satis�ed

i. The di�erence between the average in-
tensity xi;j of block (i; j) and that of
its parent block is larger than the dif-
ference between xi;j and the average in-
tensity of the parent block of (m;n), and
jxi;j � x ~m;~nj < �, where � is a threshold.



ii. The di�erence between the average in-
tensity xi;j of block (i; j) and that of its
parent block is larger than the di�erence
between xi;j and the average intensity of
the parent block of (m;n), and vi;j is
much closer to v(0).

(d) If 
ipOOI = 1 and 
ipbackground = 0, switch
the class of block (i; j) to background.

(e) If 
ipOOI = 0 and 
ipbackground = 1, switch
the class of block (m;n) to the OOI.

(f) If block (i; j) is switched to background, and
some neighbor block is switched to the OOI,
change the class of the neighbor block back
to background.

5. If r � R, go to step 2; else, stop.

The algorithm above checks all the OOI blocks ad-
jacent to background blocks and switches the classes of
the block and its neighbors if needed. Since all back-
ground blocks adjacent to an OOI block are compared
to the OOI block, it is thus redundant to go through
all the background blocks as well and compare them
with their neighboring blocks. The thresholds used in
the algorithm are pre-selected and �xed for any test
image. Note that the cluster centers v(0) and v(1) for
background and OOI are �xed through all the scales.
Also, the features vi;j are discarded at very high scales.
When the scale is su�ciently high, the blocks shrink to
very small sizes. Small blocks in both background and
OOI are likely to be smooth, thus vi;j, which are the
variances of wavelet coe�cients in the high frequency
bands, are no longer good indicators for classes. We
thus use the segmentation results obtained from pre-
vious scales as context, and classify based only on the
closeness of average intensities.

The algorithm examines blocks on the boundaries of
OOI and background because the boundary regions are
most likely to be incorrectly classi�ed. Consequently,
the algorithm can be viewed as a multiscale edge re-
�ner. At the boundary regions, a parent block may
contain both classes. A sub-block which is incorrectly
segmented as the class of its parent block is likely to
have properties rather di�erent from its parent block.
In our case, the properties are the feature v and the av-
erage intensity. If a sub-block happens to have a closer
average intensity to those of its neighboring blocks with
the other class, and its own feature v is also closer to
the other class, we switch its class.

After the multiscale re�ning of edges is completed,
the segmented image is passed through a postprocessor,
which removes small isolated regions and smoothes the
boundaries.

5 Experimental Results

The system has been implemented by C on UNIX
platforms. The experiments were performed on a Pen-
tium Pro 300MHz LINUX workstations. The algo-
rithm has achieved high accuracy when tested on more
than 100 low DOF images, many with inhomogeneous
foreground or background distractions. The segmen-
tation results obtained were very close to the human
partitioning of these images. Besides its high accuracy,
the algorithm is very fast. An image of 768� 512 pix-
els can be segmented within two seconds on a Pentium
Pro 300MHz PC.

An example is shown in Figure 7 to illustrate how
the progressive segmentation proceeds. Six scales are
used starting with block size 32�32 and going to 1�1.
The segmentation result at the scale of block size 2�2
is omitted due to limited space. Figure 8 shows the
segmentation results for images in Figure 2(a), (b), (c).

original block size = 32

block size = 16 block size = 8

block size = 4 block size = 1

Figure 7. The sequence of multiscale refine-
ment results.

We evaluate classi�cation performance by sensitiv-
ity, speci�city, and error rate. Sensitivity is de�ned
as the ratio of the area of the OOI identi�ed to the
total area of OOI in the image. Speci�city is de�ned
as the ratio of the area of the background identi�ed
to the total area of the background in the image. For
segmented images shown in Figure 8, the sensitivity,
speci�city, and error rate (Pe) are provided by Table 1.
For a typical low DOF image, such as the jet plane im-
age, the sensitivity and speci�city are both above 95%.
For a more di�cult image, such as the fox image, the
system demonstrates a high accuracy of 90% sensitiv-
ity and 80% speci�city. We expect other edge-based or



Figure 8. First row: human segmentation.
Second row: computer segmentation.

Image Resolution Sen. Spec. Pe

(a) 256� 172 73:7% 97:5% 5:5%
(b) 768� 512 90:7% 80:1% 16:1%
(c) 512� 768 97:5% 96:4% 3:4%

Table 1. Segmentation results.

snake-based segmentation algorithms to perform worse
on images with so much background distraction.

Our algorithm has the following limitations:

1. It cannot be applied to segment high DOF images.

2. It is not designed to segment those low DOF im-
ages for which some high-level human knowledge
or image stereo is required in the human region
determination process. Unlike many other edge-
based segmentation algorithms, we rely on the
sharp details of the OOI. However, if the OOI is
highly smooth, the algorithm may fail.

3. It is designed to segment fully focused OOI. For
some applications, the DOF may be so low that
the OOI itself may include out-of-focus regions.
The algorithm is not capable of segmenting the
entire OOI in this case.

4. The performance of the algorithm is lower when
the image resolution or the image quality is low.

6 Conclusions

In this paper, we have described a novel multiresolu-
tion context-dependent unsupervised image segmenta-

tion algorithm for low depth of �eld images. The algo-
rithm has achieved high accuracy and high speed when
tested on more than 100 low DOF images, many with
inhomogeneous foreground or background distractions.
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