

OSMEGA – Stanford University

Project Description

11.
Background

1.1.
CHAIMS
1
1.2.
Composed Systems
2
1.3.
Megaprogramming
3
1.4.
Basic Architecture of CHAIMS and OSMEGA
4
1.5.
CHAIMS invocation structure
6
1.6.
Current status
7
2.
OSMEGA Project Description
8
2.1.
Optimization objectives
8
2.2.
OSMEGA and CHAIMS
10
2.3.
Mega optimization versus traditional optimization
12
3.
OSMEGA: Project Plan
12
3.1.
Specific Research Tasks
12
3.2.
Application domains and testbed
13
3.3.
Expected results and impacts
13
3.4.
Dissemination of results
14
3.5.
Project management and investigators
14
4.
Results from Prior NSF Support
14
5.
Project Milestones and Performance Goals
15
6.
Space and Equipment Commitments
15

1.
Background

1.1.
CHAIMS

We have developed an infrastructure that will enable the insertion of optimal scheduling of distributed computations. This infrastructure supports a new high-level, composition only system, CHAIMS, which provides access to heterogeneous services, either directly or via wrappers. Communication among the modules is achieved by using existing distributed systems, such as CORBA [Siegel:96], Java's RMI [Downing:98], DCE [RosenberryKF:94], DCOM [Platt:97] (now part of Windows DNA), or directly via TCP/IP sockets. The CHAIMS protocol furthermore partitions individual remote computations into pieces that can be individually managed (SETUP, INVOCATION, and EXTRACTION of results), so that greater parallelism can be achieved than is possible with integrated remote computations.

The principles that drove the definition of CHAIMS are a clear separation between providing services and composing services, allowing heterogeneity across boundaries of distribution protocols, and a vision of achieving a high degree of parallel operation. Our current work is supported in part by DARPA. Early work was supplemented by the Commercenet Consortium. These efforts had to focus on relatively short-range demonstrations, as in logistics, and do not support essential long-term research, such as exploiting the potential for optimization.

The CHAIMS megaprogramming system we have developed has a purely compositional language targeted for use by domain experts. It generates synchronous calls that transmit data and initiate remote asynchronous processes. The handling of various distribution protocols is taken over by the CHAIMS compiler, which uses commercially available client-server protocols. The compiler will also be responsible for the novel compile-time as well as run-time optimization techniques enabled by the approach of CHAIMS to composition. In the context of the OSMEGA project we will focus on exploring, integrating, and evaluating these optimization techniques.

[image: image1.wmf]Domain expert (composer)

writes

megaprogram

 for

composition.

CHAIMS

 automates

generation of client

 for

distributed system and

optimized scheduling

.

Megamodule

 provider

provides processed

knowledge.

CHAIMS

Megamodules

Figure 1: The CHAIMS paradigm

1.2.
Composed Systems

The traditional model of writing software is that the customer creates a specification, a systems engineer designs a solution, and the pieces are parceled out to programmers for implementation, testing, integration and delivery. However, it is becoming clear that this model of creating programs is no longer valid for large systems. Bruce Blum, in Beyond Programming [Blum:96, pp 263 af], predicts, based on significant experience, that no future large systems will be written from the ground up; the cost is just too much, especially when there exists much valuable legacy. He then defines the paradigm change as moving from a product development mentality to an approach where solutions are matched to problems. Similarly, Laszlo Belady states that there will be two types of programs in the future, type A, existing programs representing solutions, and type B, programs that compose the type A programs into an executable architecture [Belady:91].

CHAIMS is a compiler that generates type B programs. It includes a repository that describes the sources and interfaces for type A modules so that appropriate linkages can be compiled. But more is needed than simple composition. The programmer writing the type B program must conceptualize the performance of the available type A modules for the problem and data they will receive. The organization of the B program will reflect the resulting expectations to gain at least adequate performance. The insight required to create optimal schedules may exceed the composing programmers' capability, since many A modules are presented as black boxes, and do not reveal their performance models.

Optimization of the B program in large composed systems becomes an important issue, especially in computing and data intensive domains. Because we are composing remote services, new possibilities for optimization arise. Remote services can be executed in parallel, resulting in considerable gains in execution time whenever the services are of substantial complexity. When large volumes of data may be needed for setup, inter-computer communication, and result reporting, there will be significant benefits in minimizing the frequency, the volume, and the routing of such transfers. Yet the domain experts writing a megaprogram in order to compose services should not be burdened with doing these optimizations manually. We want to free those composers from any tasks not directly related to their domain knowledge. Therefore any optimization should be taken over by the CHAIMS system.

Related Work

Other methods for composition are more limited than CHAIMS. The MANIFOLD language presents a hierarchical model, but assumes consistency and control over the modules being composed. [ArbabHS:93]. The communication system Polylith together with the composition tool Polygen have been used to prototype a number of applications [CallahanP:91], but have not moved to a higher level of language. Optimization has not been considered a major objective. LINDA does support parallelism [Carriero:89], but does not optimize module execution dynamically. HADAS, with the coordination language ISL, composes autonomous Java modules using RMI based on a reflective and mobile object model [Ben-Shaul:97], yet it neither addresses heterogeneity in the same broad way as CHAIMS, nor is it concerned with optimizations on the client side.

Automating optimization is even more crucial in the flexible world of Internet-based computational services than for processes that gain parallelism within high-performance systems. The entire environment is constantly subject to change, as new resources emerge or algorithms improve. To bring the knowledge about changes to the software composer is cumbersome without assistance, and the composer, being an application domain expert cannot do it all, exploiting the results as well as manually maintaining the infrastructure and keeping the configuration optimal.

1.3.
Megaprogramming

We define our work as supporting megaprogramming. Megaprogramming refers to the creation of large-scale programs through a process of composition [BoehmS:92]. In the megaprogramming approach, while composing the services of autonomous programs, composers are willing to give up control for the benefits of expert maintenance at the source sites in a collaborative setting [WiederholdWC:92]. By focusing on very large modules and services, efficiency is no longer a matter of coding, but of effective composition, accessing effective components, and an efficient flow of data among the modules [BeringerTJW:98].

Megaprogramming distinguishes itself from database integration by incorporating knowledge embedded in programs, rather being limited to declarative knowledge applied to databases. Database functionality can be incorporated into megaprogramming through server programs that execute SQL SELECT statements, but these languages - like SQL, focusing on a single verb - are known to have inherently limited computational capabilities [Ullman:89].

Megaprogramming can also be viewed as a large-scale object-oriented (OO) technology. OO increases the procedural capabilities of distributed objects [Booch:91], but is restricted in practice to single protocols and coherent libraries [AtkinsonBM:95]. Megaprogramming scales the object-oriented paradigm to autonomous service objects. This scaling invalidates some of the implicit assumptions in managing object-oriented systems. For instance, the black-box paradigm underlying distributed objects disables crucial optimizations. Yet new optimization options, described later on, arise due to the megaprogramming paradigm - the focus of this OSMEGA proposal.

Concepts that lead to CHAIMS and OSMEGA are grounded in earlier research, at Stanford and elsewhere. The NSF funded research on Paradata developed parallel data access for engineering data [Hall:91]. The scalability of the object-oriented paradigm for multiple clients was investigated in [Wiederhold:86v] and led to a major project, funded by NLM, to automate the creation and updating of objects from relational databases [BarsalouSKW:91]. The domain of initial application was instrument data used for cell-analysis in genomics. The underlying technological results are now integrated in various commercial systems, including SunSoft's DOE [KellerJA:93]. Later work dealt explicitly with heterogeneous information sources and provided experience leading to the research proposal of CHAIMS and now OSMEGA [Wiederhold:92a], [AgarwalKSW:95].

1.4.
Basic Architecture of CHAIMS and OSMEGA

The components of our architectural model are conventional clients and servers. Novel is that we have a high-level language (called CLAM, Composition Language for Autonomous Megamodules) in the client to manage the server invocations, rather than an application which is hand-coded and issues low-level protocol invocations. We also assume a separation of concerns and skills for programming and composing in CLAM on the client side, and providing megamodules on the server side.

Composition of processes

In the CHAIMS architecture all computation and information processing is done at the servers' side, within the original context of the data, as shown in Figure 2. We place few constraints on the servers; by default we expect them to be remote and relatively autonomous, while able to respond to the CHAIMS protocol CPAM (CHAIMS Protocol for Autonomous Megamodules). To satisfy the CPAM protocol the servers have to provide a number of methods. Servers can be natively CHAIMS compliant (like services "c" and "e" in Figure 2). For non-native servers (like services "a", "b", and "d" in Figure 2) compliance is achieved by wrapping legacy modules with the help of wrapper templates (see Figure 3). The client receives the kind of information actually needed, i.e., processed information. This information is managed by the client, which is a high-level CHAIMS program written in CLAM.

[image: image2.wmf]Client program

Domain expert / Composer

Distributed

Computation

 Services

IO module

 Infrastructure: Remote, distributed, parallel computation of a, b, c, d, e

IO module

Wrapper

Legacy

Module

a

b

c

d

e

Native

CHAIMS

Module

Control Flow

Data Flow

MEGA modules

Figure 2: Approach of CHAIMS

The CHAIMS environment

CHAIMS composes distributed megamodules using the client-server paradigm. The environment of CHAIMS consists of four main parts as shown in Figure 3:

1. The compiler, which translates a program written in CLAM into an executable client (CSRT).

2. The generated client (CSRT), which selects the best path and executes the primitive calls

3. Distribution systems, as provided through existing client-server software

4. CHAIMS-compliant megamodules, either wrapped or native

A megamodule provider sets up autonomous CHAIMS compliant services, either by creating new megamodules, or by wrapping existing legacy servers. The provided megamodules are made public via the repository that serves as an information source about existing megamodules, including the methods they offer, the protocols they use, and the sites where they reside.

The composer writes a megaprogram in the CHAIMS language CLAM, using the information about megamodules found in the repository. The megaprogram is compiled into the CRST (client side run time) by the CHAIMS compiler. The CSRT consists of the compiled megaprogram, all the necessary stubs for the various distribution systems, and, as part of the research proposed here, also a run-time scheduler.

At execution time, the CSRT communicates with the various megamodules by using CPAM on top of various distribution systems like CORBA, RMI and DCE. The use of these various protocols is completely hidden to the composer who needs neither to deal with that level of programming nor to be aware of which megamodules use which distribution system – that is taken care of entirely by the CHAIMS compiler, using the information placed into the repository. This leads to a clear separation of the composition view (the megaprogram) and the transportation view.

The protocol CPAM consists of the nine primitives SETUP, ESTIMATE, GETPARAM, SETPARAM, INVOKE, EXAMINE, EXTRACT, TERMINATE and TERMINATEALL. The semantics of these primitives are analogous to the ones of CLAM, as described below.

[image: image3.wmf]e

 Composer

 (Domain Expert)

d

a

b

c

Distribution System (CORBA, RMI…)

CSRT,

incl

. run-time scheduling

Megaprogram

(written in CLAM)

 writes

CHAIMS

Compiler

 generates

MEGA modules

CHAIMS

Repository

adds information to

Megamodule

Provider

Wrapper

Templates

wraps non-CHAIMS

compliant megamodules

 information

 information

run-time execution

composition process

CPAM protocol

Figure 3: Architecture

Heterogeneity

Our approach differs from popular distributed architectures in that we are willing to admit heterogeneity of protocols. This has two scientific benefits:

1. Conceptual: we will deal with the generalization of the underlying capabilities and facilities, rather than with syntactical niceties

2. Practical: we need not enforce one single protocol on all providers, gaining access to more resources

We do believe that technology is a long way from having the perfect protocol. Protocols will always differ in suitability: wide-area network versus local area network performance, reliability and recovery, stability under conditions of change, and provision of security [WiederholdBSQ:96]. The high-level interface provided to the composer means that CHAIMS will be able to integrate new protocols as they become available, without restructuring domain-specific megaprograms and reorganizing their capabilities.

Separation of concerns

The role of the domain expert who is the composer is focused on the application problem: the expert no longer has to deal with raw data for which local processing has to be performed, requiring client knowledge about remote resource conventions. Instead, the domain expert only chooses the desired services and asks that their results be transferred, thus just composing the desired high-level processing without having to know the internals of the processing and without writing and maintaining the processing functions. Many web-based services providing processed information exist today, such as weather services, airline ticket and book sales, and services for genomics [GennariCAM:98] [Searls:98] [Barsalou:88] and for manufacturing [CramsieEa:97]. Many more are expected to come into existence, for instance due to the acceptance of XML [Connolly:97]. Yet there are few protocols supporting an integrated vision

Both actors in the composition process, the megamodule provider and the composer, will do programming, but at quite different levels of abstraction. The CHAIMS system provides the interface and the language through which they communicate (CLAM for the composer, CPAM for the megamodule provider), just as is seen today in the use of database management systems (DBMS) where the SQL programmers are quite distinct from the programmers who work at DBMS development. We assume as well that the role of composing services and the role of providing services are occupied by different persons with differing skills and objectives.

1.5.
CHAIMS invocation structure

The client megaprogram only composes megamodules, and the language CLAM used for writing the megaprogram only offers primitives for composition and for simple control flow (see Figure 4). Since the language only focuses on composing megamodules, it can afford to offer new and more powerful ways of interacting with megamodules and invoking their services.

[image: image4.wmf]Pre-invocation:

SETUP

: set up the connection to a

 megamodule

SET-, GETPARAM

: preset parameters in a

 megamodule

ESTIMATE

: get cost estimation for optimization

Invocation and result gathering:

INVOKE

: start a specific method

EXAMINE

: test status and progress of an invoked method

EXTRACT

: extract results from an invoked method

Termination:

TERMINATE

: terminate a method invocation

TERMINATEALL

: terminate a connection to a megamodule

Control:

WHILE, IF

Figure 4: The primitives of CLAM

An important feature of CLAM is the decomposition of the traditional call in order to achieve appropriate control over the megamodules. The traditional synchronous CALL or RPC statements as found in most procedural and object- oriented languages are adequate for calling functions and in a synchronous environment. Yet when moving to large-scale distributed programming, too many diverse tasks need to be carried out by the CALL statement: handling the binding to a remote server, setting general parameters, invoking the desired method, and retrieving the results. By having separate primitives for the tasks of setup (SETUP), invocation (INVOKE) and extraction (EXTRACT) we give the composer and the compiler more control over the execution of the invocations. This enables scheduling of invocations and insertion and rearrangement of primitives for optimization. The primitives themselves can be synchronous since they don't induce computational delays. This allows simpler clients, as they can remain sequential even when services of megamodules are executed in parallel.

The CHAIMS language CLAM must be consistent and simple to allow flexibility in optimization. For that reason, arithmetic operations and input or output functions are taken care of in CLAM by specialized native megamodules. These are available as part of the CHAIMS environment; but the customer can provide alternative megamodules offering such functions. Outside of control requirements, the megaprogram itself does not inspect or transform data it receives, it only forwards extracted data to other megamodules for further processing or for output. Thus, the paradigm of a purely compositional language leads to a clear separation between the data view and the composition view.

Megamodules are distributed and therefore can operate in parallel. Megamodules may be of substantial size, and the invocation of their services may take a long time. Thus it becomes imperative to take advantage of the inherent parallelism among megamodules which is made easy due to the asynchrony introduced by splitting up the traditional call statement into SETUP, INVOKE and EXTRACT. Several methods within a module can be invoked in parallel as well, and the results of these invocations are extracted only when needed for further execution. Thus synchronization only needs to take place when necessary due to data dependencies.

In a widely distributed environment, the availability of megamodules and the allocation of resources they need are beyond the control of the composer. The challenge increases as megamodules become larger and more resource intensive. Also, several megamodules may offer the same functionality. Therefore a client must be able to check the capability of megamodule services and get performance estimates from megamodules prior to the invocation of their services. This is achieved by the ESTIMATE primitive. The ESTIMATE statement also plays a crucial role in model-free optimization [Wiederhold:92m] and scheduling as it will be explored within the OSMEGA project.

Further features of CLAM include presetting of parameters (SETPARAM and GETPARAM) and partial extraction of results (EXAMINE, EXTRACT). Partial extraction not only allows retrieval of just some of the result parameters. For instance, in case of simulation servers that iteratively improve their results, it allows clients to get initial results that can then be used for optimizing the future flow of control.

1.6.
Current status

Within our current research funded under the DARPA EDCS program we have defined the CHAIMS megaprogramming language CLAM and the CHAIMS protocol CPAM. We have implemented a basic CHAIMS infrastructure consisting of a simple compiler for compiling CHAIMS megaprograms for single distribution systems and of wrapper templates for wrapping non-CHAIMS compliant services. We are now working on a CHAIMS compiler that generates clients communicating in several distribution systems simultaneously. The basic infrastructure does not include any optimization, since that aspect has not yet been funded. The first functional demonstration using the CHAIMS infrastructure exists; more comprehensive demonstration examples are under development and will be shown at the EDCS Demo Days June 1999 in Baltimore. These examples will also serve as a test-bed for future research.

We have published various articles [BeringerTJW:98x] [BeringerTJW:98] [PerrechonWB:97] [TornabeneJW:98C] [TornabeneJW98:98S] [WiederholdWC:92] and have submitted some further publications [MelloulBSW:99] [SampleBMW:99]. We have also set up two web demos about the concepts of CHAIMS. These demos, as well as detailed information about CLAM, CPAM and the CHAIMS infrastructure, are available on our web-site (http://www-db.stanford.edu/CHAIMS).

2.
OSMEGA Project Description

The foci for OSMEGA are the various optimizations possible in the context of automated composition of distributed services as found e.g., in CHAIMS. The goal is an optimal execution of a megaprogram. The quantitative information needed is provided by the ESTIMATE primitive, and scheduling of result extraction is controlled by the EXAMINE primitive.

2.1.
Optimization objectives

The optimizations proposed in OSMEGA are distinct from conventional code optimizations, which remain available to the creators of the megamodules. The optimization we consider all have the potential of increasing the responsiveness to the composer by an order-of-magnitude, while reducing the aggregate demand on the network and their servers.

The optimizations we expect to be able to analyze and demonstrate in the OSMEGA project are based on parallel execution of megamodules. To the extent that megamodules are not constrained by data dependencies, we can achieve fully parallel operation, as sketched in Figure 6. This level of optimization can be achieved by handcoding of current protocols, and here our contribution is the automation of such optimization in a heterogeneous setting. However, our CPAM protocol allows us to improve immediately on this concept:

1. Exploitation of the partitioning of the modules into three execution pieces: SETUP, INVOCATION, and EXTRACTION. The CHAIMS protocol allows the optimization and parallelisation to be performed on finer granularities, as sketched in Figure 5. The equivalent concept in compiler optimization is the creation of a larger number of smaller basic blocks [AhoU:79].

[image: image5.wmf]M1

M4

(<M1+M2)

e

M3

 (>M1+M2)

a

d

(<a+b)

e

b

c

 (>a+b)

invoke a method

set up / setattributes

time

prior time

extract results

before piecewised

optimization

Figure 5: Exploiting parallelism of megamodule pieces

2. Maximize overlap of module pieces that are not constrained by data dependencies. Here we can borrow principles from parallel processing, scaling them up to a heterogeneous environment [Roy:92]. For instance, many SETUPs will not be constrained and can be invoked early. EXTRACTs are only constrained by the EXAMINE result and can be freely rescheduled to serve subsequent INVOKEs. Once data-flows have been identified as being distinct, and SETUP and INVOKE functions have been moved to the earliest feasible point in time, parallel execution of megamodules is enabled, as indicated in Figure 6 for modules "c", "d" and {"a","b"}.

[image: image6.wmf]a

d

(<a+b)

e

b

c

 (>a+b)

i1

e1

e4

e3

e2

i3

i4

i5

i2

e5

time

a

d

e

b

c

i1

 e1

 e2

 e3

 e4

 e5

i2

i3

i4

i5

time

data dependencies

execution of a method

non-optimized, or

handprogrammed

exploring parallelism

according to estimates and

based on dataflow dependencies

invoke a method

i

e

extract results

Figure 6: Exploiting parallelism of megamodules with non-linear data dependencies

The CHAIMS paradigm is intrinsically parallel, so no additional complexity is introduced, as is done when starting from conventional programming languages [BlumeEa:96]. Rearrangements have been investigated for relatively homogeneous parallel systems [ChoiEa:91], but we expect the concepts to extend well within our model.

3. Allowing multiple invocations for a single SETUP. Since certain SETUPs are very costly, this can greatly reduce the running time of processes that are executed iteratively. An example is the bringing in of a database segment that covers a geographical region during setup, and then performing in-memory searches for specific paths. Once this case is recognized in flow analysis, the optimization follows the concepts of optimizations under category 2.

4. Allowing partial and multiple EXTRACTs for a given INVOKE. A client needs to extract only what is needed for subsequent INVOKEs and for the final output module. Whenever INVOKEs iterate to obtain a better result before presenting the final, complete solution, the communication load can be greatly reduced. Furthermore, when controlling results are generated early, they can be acquired when needed, whereas descriptive results can wait. Partial EXTRACT enhances the parallel execution of methods.

5. Rearrangement of the overall execution sequence in order to minimize single execution times. This rearrangement serves to reduce input volumes to costly module pieces. For instance, INVOKEs which reduce data volumes being submitted to other INVOKEs should be given preference. We will borrow principles from database optimization [Ullman:89].

6. Allowing direct dataflows between megamodules. Where modules use EXTRACTed data as input to another INVOKE or SETUP it may be much more efficient to ship the data among them than to ship the data into and out of the controlling client, depending on the location and quality of connection of the various megamodules and the client. Say that an analysis being performed in the U.S. uses two processes provided by Japanese experts, we would save delay and cost by avoiding a Trans-Pacific roundtrip. This becomes especially important when the data-volume is large and the connection among the megamodules is better than between megamodules and client. The objective of this optimization is sketched in Figure 7.

[image: image7.wmf]Client program

Distributed

Computation

 Services

IO module

IO module

a

b

c

d

e

Control Flow

Data Flow

Figure 7: Dataflow optimization by direct data routing among megamodules

OSMEGA has the objective of enabling CHAIMS to perform these various optimization tasks automatically, thus freeing the domain expert of the necessity to worry and to know about various optimization needs and possibilities. The domain expert has to define the composition needed, the optimization of this composition should be taken care of by the CHAIMS system, just as it takes care of heterogeneity and distribution protocol issues.

2.2.
OSMEGA and CHAIMS

Taking advantage of the primitives available in CHAIMS

The optimization will be carried out before and during execution. Prior to execution we will create an executable graph structure. Any path along the graph will lead to a correct execution sequence. We will omit any path that is strictly worse than other paths. At run-time, the module performance estimations will be more precise, and specific branches of the paths can be selected. The run-time optimizer can either select a single path, or, if the optimization is strictly on performance and not on resource utilization, may initiate multiple remote execution paths in parallel and select which module provides the earliest suitable results for extraction using the EXAMINE statement [Roy:92].

The ESTIMATE primitive provides a mean value of the execution cost and its uncertainty. It is available both at compile time and during execution. More accurate results will be delivered at execution time. The CHAIMS compiler will insert breakpoints for rescheduling the execution flow. At these breakpoints the system can use execution time estimates to choose alternative schedules. The creation of alternative schedules at compile-time and selecting from them at execution time is a new research challenge, previously only investigated in highly homogeneous parallel computing. Typically SETUP calls will be scheduled early, and INVOKE calls as soon as all the required data are ready. EXTRACT calls will be scheduled when the result is needed. The use of the ESTIMATE primitive is especially important in those cases where an early invocation of a method can bring considerable savings in time, yet as the invocation is embedded in a conditional branch of the control flow, can also result in unnecessary expenditure of fees and server execution time. In contrast to other cost optimization approaches, we do not have to build up a cost histogram on the client side, we get up-to-date information at compile and run time.

In conventional server environments the calls are only performed when the result is needed, reducing overlap greatly. Systems that provide asynchrony can start setup and computation when the data are ready, but the required management of parallelism tends to be complex in languages that are not inherently focused on large-scale computation [ReedEa:96].

The EXAMINE primitive informs the client megaprogram when any results are available from a megamodule and the EXTRACT primitive enables partial extraction of results for the immediate invocation of further methods as well as for control. When functionally identical modules are invoked in parallel, EXAMINE can provide information to select one and TERMINATE the other module invocations.

Specifically, we plan to exploit the CHAIMS language by getting rough overview results as early as feasible from megamodules. Response time can be improved transmitting smaller result volumes during early iterations. For computational modules which can deliver results incrementally, as is frequent in simulation, checking a few results and altering parameters is common, but in conventional invocations all possible relevant data are transmitted to the client . For instance, in weather simulation more computation always delivers better results, but at a high cost, since the gridding becomes finer. If initial results indicate the proximity of a weather front, it may be wise to request fine-grid results. If the conditions are smooth, coarse grid results are adequate and can be extracted without delay. Such control strategies are now employed in a number of domains, but invariably hard coded and not under dynamic control of the module composer [SkamarockOS:89].

EXAMINE also allows to start several megamodules providing similar results in parallel, to test their progress and to abort, after some time, the slower invocation. Combining ESTIMATE with EXAMINE allows the client to wait with examining the status of an invocation until a result can be expected, again reducing communication loads. Such optimization techniques require a collaboration of the compiler and the run-time scheduler. It is unrealistic to expect that a human composer can manage them.

Implementation of OSMEGA

In OSMEGA we will explore the implications of the optimizations mentioned above in a heterogeneous environment. We will design the necessary control mechanisms between megaprograms and services and develop the optimization algorithms for the compiler. We will integrate the techniques listed as 1 to 5 (section 2.1) into the CHAIMS compiler and add code into the CSRT so that at execution time all remaining optimization choices can be resolved dynamically.

We will also investigate techniques for direct data exchange between services, the sixth optimization listed above. An actual implementation will depend on the rate of advances in client-server communication protocols, since we will need to split control flow and dataflow. It would not be economically feasible for us to try to leapfrog commercial progress here.

While these optimization concepts are based on well-understood principles, we have not seen them used in large-scale distributed computations. We are able to begin to explore them because we have a high-level language that documents the compositional intent without the noise and confusion of other computational or structural objectives. There appear to be synergies among these techniques as well, so we expect to bring together and jointly assess methods from compiling, databases (e.g., [HellersteinS:93], [GraefeK:89]), and parallel systems.

The combination of these concepts is sufficiently novel that our research must first provide us with some experience before we can attempt to bring these interactions into the CHAIMS compiler. The flexibility of CHAIMS should allow us to move beyond the current state of-the-art [AdveEa:96].

2.3.
Mega optimization versus traditional optimization

In summary, the CHAIMS infrastructure enables significant optimizations. These can be invoked now by the composer, but in the long-range should not be a burden or a distraction for a composer. Our research will focus on enabling automation, while not disabling optimizations that are based on domain expertise. Many lower level scheduling tasks do lend themselves to automation. Implementing those reduces the demands placed on the composer. For instance, the configuration of a network can be complex, and is also subject to change. Resources may move, and available capacities depend on aggregate usage. Therefore, this level of optimization has to be taken care of automatically by the CHAIMS system. Since the CHAIMS language avoids computation and hides all but the control data, the various optimization techniques outlined are well suited for automation.

Traditional optimization methods have focused, quite successfully, on compile-time optimization. The CHAIMS primitives and architecture have the potential to support both run-time and compile-time optimization, thus conforming to the dynamic nature of a distributed environment

3.
OSMEGA: Project Plan

3.1.
Specific Research Tasks

OSMEGA will focus on optimizing the scheduling of the composition of megamodules. We will also investigate optimization of dataflows between megamodules.

Specific tasks will be:

1. Using the results of the ESTIMATE primitive at compile-time to generate feasible and effective alternate paths in the CSRT. Paths that definitely (or with a high probability) will be subsumed by other paths will not be generated.

2. Adding the insertion of decision points into the generated client by the CHAIMS compiler and adding a run-time scheduler to the generated client that chooses the actual best path at execution time.

3. Assembling the pieces into an executable prototype, and linking it to one or more distribution systems and multiple megamodules, exploiting earlier work.

4. Enhancing the basic CHAIMS infrastructure. For instance, we must extend the CHAIMS capabilities to reformat data before forwarding it to other megamodules. This function has been deferred until a real need for such conversion arises. Similar issues may emerge during the development of the prototype.

5. Wrapping of additional megamodules. We will use available functions and services, group them into modules, and wrap them in order to be CHAIMS complaint. Some of the services are available locally, others are remote.

6. Write megaprograms and evaluate the effectiveness of our optimizations. We can compile sequential and parallel paths for comparison. We will also execute paths in the CSRT with and without rescheduling to assess the benefits of dynamic optimization.

7. Assess the benefits of dataflow optimization independent of client-managed control flow and its influence on the current CHAIMS infrastructure.

8. To the extent that the commercially available client-server infrastructure permits, implement a demonstration of partitioned direct dataflow optimization.

Throughout these task we must assure that the inherent parallelism of megamodule services in CHAIMS remains effective under a variety of circumstances.

3.2.
Application domains and testbed

The composition paradigm of CHAIMS is well suited for a variety of domains. Our main foci so far have been logistics and genomics applications. In both domains, services and applications are readily available, and are often composed manually and ad-hoc, e.g., by cut and paste, primitive scripts, or dedicated software written for a specific situation and a specific distribution protocol. Our current testbed is an example from logistics. We will enhance this testbed for testing especially optimization techniques no 1, 2, 3 and 5, and later on for data flow optimization (technique no 6).

We are building an additional testbed consisting of megamodules used for aircraft design. These megamodules perform simulations and optimize designs and have to be called iteratively until a useful solution can be found. Presetting of parameters, partial extraction of results, and abortion of invocations in case the result diverge from the targeted optimum, play an important role in this example. This testbed will be well suited for testing various optimization techniques, especially no 1, 2, 3, and 4.

We are also investigating other application domains, e.g., workflow management systems [PapadopoulosA:98]. Though it is very important for us to insure the applicability of the concepts of CHAIMS to these domains, they will not be the primary testbed due to their current dependence on human interaction. Once optimization techniques have been investigated, implemented and validated in above testbeds, the expansion to other domains will allow us to propagate our findings to a larger field.

3.3.
Expected results and impacts

Computer Science will benefit from a new structure for optimization, where providers provide the estimates and client programs perform the scheduling. Managing composition and the required information and control flow using a manipulable language interface will be a significant advance.

Software Engineering Science will benefit from the development of a significant scale-up from the object-oriented approach. A validation that employs useful, large programs is essential to motivate eventual transition of the concepts into software engineering practice.

The client-server community will gain by having a language which is not bound to a single protocol, allowing broader participation and continuing improvements of supporting transport mechanisms.

The user community will benefit by gaining concepts and tools that automate the use of multiple processing services in concert, rather than being limited by heterogeneous interfaces and lack of inter-protocol interoperation. They are aware of these problem today, but have had only limited support from system-oriented computer scientists.

Achieving these objectives, or at least making significant progress in their direction, will answer the base hypothesis that this research addresses:

A language that focuses on composition, rather than all aspects of programming, is feasible and optimizable, and can overcome the barriers experienced when languages become excessively complex by attempting to do both coding and composition.

Examples of large languages that attempted both, but have not gained broad acceptance, include ALGOL68, PL/1, Ada, and CLOS, so that the problem does not seem to be one of structure or syntax, but indeed one of size and conflicting objectives. The computer language used to program the server megamodules is not an issue, since CHAIMS compliance can be provided for any envisioned server type.

3.4.
Dissemination of results

There will be three main channels for the dissemination of the results:

Publications: We expect to publish foundational insights concerning automatic optimization in the composition of large, heterogeneous, distributed and autonomous services and the experiences gained by the prototype in computer science and application venues. Ongoing progress will be available on public webpages.

Demonstrations: There exist many active companies in the area that are interested in our approach. We plan to have demonstrations for these companies as well as for industrial partners of Stanford University, some of them having shown their special interest in the concepts of megaprogramming in general and CHAIMS specifically in the past. We expect some demonstrations to also be web-accessible.

Students: Smart students are our most important product. We expect that students involved in this project will later teach and disseminate these concepts, or be employed by infrastructure companies that will address the conceptual and technical issues of composing distributed computational information sources. In addition to the named students to be supported, we expect to involve several students on a purely academic basis. We will also look for complementary industrial support for students, which becomes feasible when there is an exciting and novel project. We have been successful in the past of attracting such support, although it tends to be limited to a year-at-a-time.

3.5.
Project management and investigators

We have the infrastructure and experience to manage the effort effectively. The project will be based in the department of Computer Science at Stanford, with the principal investigator being Gio Wiederhold. Dorothea Beringer of the Computer Science Department at Stanford will be the senior investigator managing this project. Her role as research associate will be to investigate the conceptual foundations of the approach and to coordinate and supervise the work of the students in the project. Apart from Dorothea Beringer there will be three graduate students participating in the project, two of them are working on CHAIMS already. Neal Sample, a Ph.D. student, already has a background in distributed systems gained through his graduate studies at the University of Wyoming [SampleH:99]. The second student, Lawrence Melloul has performed research in CHAIMS since the summer of 1998. She has a Master’s degree in computer science and several years of industrial experience. Thus the project will be staffed with 50% female researchers, both on the student level as well as on the senior level.

Additional graduate students will continue to be involved in the CHAIMS and OSMEGA projects as part of independent research projects towards gaining a Master's degree with a "distinction in research".

4.
Results from Prior NSF Support

TIHI, Trusted Interoperation of Healthcare Information, was funded by an NSF HPCC grant in 1994 through SRI International. TIHI has resulted in the successful development of a novel security mediator and in some significant publications [WiederholdBSQ:96], [WiederholdBSQ:96C], [WiederholdBD:98]. Papers describing our approach have been given at Medical Information and Security conferences. We have participated in the Privacy protection review for the Social Security Administration, and our statement became part of the official record. Furthermore, early technology has already been transferred to Incyte Corporation, which has funded an initial installation of a security mediator to protect genomic information.

5.
Project Milestones and Performance Goals

OSMEGA will be a three year project. The tasks described in Section 2.5 will be split up so that we can demonstrate incremental, yet essential progress each year.

In the first year OSMEGA will develop the decomposition model of the CHAIMS program and insert the optimization graph into the executable structure. That will allow us to validate the correctness of the transformations. The first year demo will consist of this prototype.

The second year will see the development of the execution time decision points for dynamic optimization based on information that is provided by the megamodules. Alternative executions will be monitored, analyzed and assessed. The effects of the alternatives will be reported in publications presenting the experiences with the prototype. Furthermore, we will explore the concepts of dataflow optimization. We will specify enhancements and changes to the CHAIMS system that would be needed to incorporate dataflow optimization.

In the final year we will re-engineer the CHAIMS system, to have a clean and exportable prototype, available for follow-up experiments here and in other locations. We analyze the significance of the mega-programming approach for future software paradigms, and disseminate the findings as widely as possible.

If the client-server infrastructure at that time permits the splitting of control and dataflows we will also experiment with the potential for dataflow optimization. In any case, we also plan to publish analytical results about the concepts and technical consequences of dataflow optimization.

6.
Space and Equipment Commitments

The Department of Computer Science, its Computer Systems Laboratory, and the Infolab within them will provide the necessary office space as well as most of the software and hardware. The basic CHAIMS software infrastructure exists already. Our laboratory currently has over 25 workstations and 7 servers of various types and manufacture. We have a network that provides very-high bandwidth interaction within the group and excellent Internet connections.

Staff for system maintenance is available. Necessary purchases covered by the award will mainly concern additional licenses for middleware systems (e.g., CORBA). We are often able to obtain hardware and software licenses at a substantial discount or as donations.

- 1 -

_974635554.ppt

e

 Composer

 (Domain Expert)

d

a

b

c

CSRT,

incl. run-time scheduling

Megaprogram (written in CLAM)

 writes

CHAIMS

Compiler

 generates

MEGA modules

CHAIMS

Repository

adds information to

Megamodule

Provider

Wrapper

Templates

wraps non-CHAIMS

compliant megamodules

 information

 information

run-time execution

composition process

CPAM protocol

Distribution System (CORBA, RMI…)

_977164394.ppt

a

d

(<a+b)

e

b

c

 (>a+b)

i1

e1

e4

e3

e2

i3

i4

i5

i2

e5

time

data dependencies

execution of a method

non-optimized, or

handprogrammed

exploring parallelism

according to estimates and

based on dataflow dependencies

a

d

e

b

c

i1

 e1

 e2

 e3

 e4

 e5

i2

i3

i4

i5

time

i

invoke a method

e

extract results

_977164796.ppt

Domain expert (composer) writes megaprogram for

composition.

CHAIMS automates generation of client for distributed system and optimized scheduling.

Megamodule provider provides processed knowledge.

CHAIMS

Megamodules

_977163695.doc

M1

M4

(<M1+M2)

e

M3

 (>M1+M2)

a

d

(<a+b)

e

b

c

 (>a+b)

invoke a method

set up / setattributes

time

prior time

extract results

before piecewised optimization

_974372561.ppt

	Pre-invocation:

		SETUP: set up the connection to a megamodule

		SET-, GETPARAM: preset parameters in a megamodule

		ESTIMATE: get cost estimation for optimization

	Invocation and result gathering:

		INVOKE: start a specific method

		EXAMINE: test status and progress of an invoked method

		EXTRACT: extract results from an invoked method

	Termination:

		TERMINATE: terminate a method invocation

		TERMINATEALL: terminate a connection to a megamodule

	Control:

		WHILE, IF

_974635061.ppt

IO module

IO module

Client program

Distributed

Computation

 Services

a

b

c

d

e

Control Flow

Data Flow

_974406174.ppt

_974372558.ppt

