

MegaGene – Stanford University
[image: image8.png]

MegaGene Project Description

Table of content
1
Introduction
1
2
MegaGene Project Description
5
2.1
Make composition available to non-technical domain experts
6
2.2
Optimization
6
2.3
Scientific approach: Architecture of the CHAIMS system
9
2.4
Multi-disciplinary application domains
11
3
MegaGene Research Plan
12
3.1
Current status of CHAIMS
12
3.2
MegaGene: Specific research tasks in the context of KDI
13
3.3
Multi-disciplinary aspects of MegaGene and its advances to Computer Science and Genomics
14
3.4
Connection to KDI-KN goals and objectives
14
3.5
Roles of investigators
15
4
Results of Prior NSF Support
16
5
Dissemination of Results
16
6
Project Schedule and Performance Goals
17

7
Management of the Joint Project
17
1
Introduction

Knowledge is not only represented by data, rules, and constraints, but also by active programs contributed by experts. So far, this kind of knowledge has been difficult to integrate and communicate. Programs that embody such knowledge are effective and in regular use today, but integrating their functionality into larger systems is frustrating. The problem, as we see it, is that the traditional programming paradigm is to design a single unitized program, trading maintainability and collaboration for the sake of control and efficiency. In contrast, megaprogramming refers to the creation of large-scale programs through a process of composition [BoehmS:92]. In our megaprogramming approach for composing services of autonomous programs, we are willing to give up control for the benefits of expert maintenance at the source sites in a collaborative setting [WiederholdWC:92]. By focusing on very large modules and services, the efficiency is no longer a matter of coding, but of effective composition, effective components, and an efficient flow of data among the modules [BeringerTJW:98C].

Megaprogramming distinguishes itself from database integration by incorporating knowledge embedded in programs, rather than limiting itself to declarative knowledge applied to databases. Database functionality can be incorporated into megaprogramming through server programs that execute SQL SELECT statements, but these languages – focusing on a single verb – are known to have inherently limited computational capabilities [AhoU:79]. Object-oriented technology increases the procedural capabilities of distributed objects, but is restricted to single protocols and coherent libraries [AtkinsonBM:95]. Furthermore, the black-box paradigm underlying distributed objects disables crucial optimizations, a focus of this MegaGene proposal.

Motivating Example

A motivating example for our approach is in genomics, or more precisely bio-informatics, the science and business of deriving relevant information from a combination of gene, biochemical, biological, and clinical resources [AltmanAC:97], [ChenFA:97], [DavidsonOB:95], [DoE:93], [FelicianoA:98], [FelicianoCA:97], [GennariCAM:98], [HonEa:98], [SchmidtGA:97], [WeiA:98]. For example, genomic information is available from many and varied procedural sources: Genbank at NLM, GDB (stored using OPM, moving to Oak Ridge National Lab), Swiss Prot. OMIM at Johns Hopkins. DNA fragment (EST) information from Merck and public sources is available at Washington Univ., finding metabolic pathways (EcoCyc) is provided at SRI International, joint querying support for functional information (MAGPIE) is available from Argonne, etc. There has been much work on linking these information sources using advanced database technology. However, most of these sources have their own powerful search and processing engines. Integrating these service capabilities has only been performed spottily; for instance the partial incorporation of BLAST into OPM at Lawrence Berkeley labs, and similar single point efforts in many dispersed research groups. A broader, but small scale effort has been the development of bio-widgets, initiated by David Searls at the Univ. of Pennsylvania. These programs have focused on processing for information visualization, although an expanded focus is being proposed now through OMG as a Life-Sciences group initiative, using CORBA for remote method access.

For instance, to determine the effect of a compound that has been identified through high-throughput filtering as binding to a yet unknown protein, further analysis is initiated. A BLAST search is performed to locate similarities in protein databases. Depending on the nature of the "hits" that BLAST produces, known proteins may be identified and the biological functions in which they participate can be assessed. Candidate proteins can be matched to generating locations in the human genome. Many human disease patterns are also matched to genome sequences. Structurally similar proteins will have similar functions. Metabolic pathways in other organisms are analyzed for evidence of similarity of function. In some cases, we have three-dimensional structures determined experimentally, typically from X-ray crystallography, which provide detailed information about the way in which the compound may bind the protein, and how the protein may produce its function. These structures also provide hints about how molecules may interact to regulate each other's activity. New techniques, as mass spectroscopy for DNA analysis, are coming on-line, and have to be smoothly integrated.
Throughout this process there is information flow to be managed from one source to another. Often iterations are needed among the computational modules while false leads are being eliminated. Eventually, results of the investigations are used to drive further bench or pre-clinical investigations. Many of these analyses can proceed in parallel, and be initiated as soon as partial information is available. The bio-scientist understands these interactions, but does not now have a tool for flexible control at a reasonably high level.

Traditional view of knowledge networking

Information is required for decision making. In simple cases a decision maker may consult one or more databases, derive manually some projections and conclusions, and then use the result to initiate actions. In more complex cases information comes from many sources, some information involving complex processing. Staff may execute programs to reduce the information, and the decision maker uses these processed results. If the projections are complex, the information may be entered into a spreadsheet or more specialized software for analysis.

[image: image1.wmf] Domain expert

Client computer

Control &

Computation

Services

I/O

a

b

c

d

e

Wrappers

to resolve

differences

I/O

Data

Resources

 Remote data access, centralized computation at the client side

Figure 1: Data based client-server approach without CHAIMS.

For the decision maker the derived knowledge is crucial, although the base data and knowledge used in the derivation provides the foundation. In genomics the decision maker would be a bio-scientist, in shipping it would be a logistics specialist, in finance it would be an investment counselor. We consider such a person the domain expert, as opposed to the more specialized computing staff providing data and programs. The domain expert integrates the results of prior processing to extract the information, using a higher-level process. The problem with the traditional, segmented approach is that automated integration of the support processes is difficult. Just acquiring raw source data by using modern database integration technology is also inadequate, since the source information is difficult to process without the relevant context. To gain the required knowledge, we need to access knowledge about the processing. The processing knowledge is typically procedural, e.g., it implements a specific function, say, the match of an EST sequence to a DNA-string, the procedure for calculating the best route between two cities, or the conversion of risk factors into a beta-function. Database technology does not include the processes. Yet to convert data into information without knowledge is impossible. Object-oriented methods make advances in that direction. But they have scaling and distribution problems, thus limiting their applicability today to tightly integrated domains, even when some of the computation can be distributed [Betz:94].

Knowledge, be it encoded by rules or by processes, must be maintained to keep its value. But knowledge itself is subject to change. As the world changes, resources broaden, and algorithms improve. Bringing this knowledge and its changes to the client, i.e., to the domain expert with the responsibility to act on the derived knowledge, is cumbersome without assistance. In important large-scale cases no single person can manage it all: the infrastructure, the processing, and the exploitation of the result. It is also very unlikely that all of the processing can be performed at the client side, since sources will be heterogeneous, and programs and rules are often bound to their local engines. Dealing with multiple remote computations as well as remote data raises the hurdle to effectively obtain information at the client side in order to gain the desired knowledge.

As shown in Figure 1, in the traditional approach data may be remote, but all processing modules are within the (fat) client computer. Wrappers resolve differences among heterogeneous resources.

Approach of CHAIMS

In contrast to the traditional approach, in CHAIMS (Compiling High-level Access Interfaces for Multi-site Software) all computation and information processing is done at the servers’ side, within the original context of the data, as shown in Figure 2.

[image: image2.wmf]

 Domain expert

 Client workstation

Computation

Services

IO module

MEGA modules

IO module

 Infrastructure: Remote, distributed, parallel computation of a, b, c, d, e

a

b

c

d

e

Data

Resources

Sites

R

T

S

U

T

C

Figure 2: Approach of CHAIMS.

In contrast to Figure 1, in Figure 2 the processing is no longer in the client, it has been moved to the server side where also the knowledge needed for implementing and maintaining the processing is available. We place few constraints on the servers; we expect them to be remote and relatively autonomous, although able to respond to the CHAIMS protocol. CHAIMS compatibility may be native (as in service “d”) or achieved through a wrapper (services “a”, “b”, “c”, and “e”). The client receives the kind of information actually needed, i.e., processed information. This information is managed by high-level processing knowledge, based on controlling data from the client himself. With multiple servers the information can be controlled to flow among them. Some servers may focus on recent temporal information (e.g., time, outside temperatures, etc.), others provide base functions. The role of the domain expert on the client side is focused on the application problem: the expert no longer has to deal with raw data for which local processing has to be performed, requiring client knowledge about remote resource conventions. Instead, the domain expert only chooses the desired services and asks for their results to be transferred, thus just composing the desired high-level processing without having to know the internals of the processing and without writing and maintaining the processing functions.

Servers providing processed information already exist for end-users today, but without supporting yet the integrated vision. Many more are expected to come into existence. In the context of the CHAIMS project we refer to them as megamodules. Composing such services offered by megamodules poses many challenges due to the fact that these megamodules are autonomously managed, provide lengthy and complex computations resulting in large amount of dataflows, and are accessible via various distribution systems.

Thus the goal of our initial CHAIMS research and development was to investigate a new level of interactivity and flow of information and knowledge between domain experts and servers capable of providing processing as well as data to the domain experts. CHAIMS allows the persons at the server and the client to act in concert to gain the knowledge needed by the domain expert, with each of the persons involved contributing their specific skills, yet not needing knowledge and skills located on the other side.

Moving on to the higher level of a purely compositional language

In CHAIMS a domain expert does not write client code in a traditional language. Instead the client code is generated by the CHAIMS compiler from a megaprogram, which is written in the CHAIMS megaprogramming language. In order to meet the challenges of composing megamodules, CHAIMS megaprogramming is purely compositional. In contrast to client applications that use (remote) components for certain parts of a program and implement other parts with a traditional programming language in the same client program, in CHAIMS all the computation takes place in the megamodules. If a new type of computation is required, a new megamodule is created, which even if locally resident is accessed via the CHAIMS paradigm. The megaprogram only composes megamodules, and the CHAIMS language only offers primitives for composition. Since the language only focuses on composing megamodules, it can afford to offer new and more powerful ways for interacting with megamodules and invoking their services. Figure 3 shows the primitives of the CHAIMS megaprogramming language. The domain expert writing a megaprogram is called domain programmer.

[image: image3.wmf]Pre-invocation:

SETUP

: set up the connection to a

 megamodule

SET-, GETATTRIBUTES

: set global parameters in a

 megamodule

ESTIMATE

: get estimate of execution time for optimization

Invocation and result gathering:

INVOKE

: start a specific method

EXAMINE

: test status of an invoked method

EXTRACT

: extract results from an invoked method

Termination:

TERMINATE

: terminate a method invocation or a connection to

 a

 megamodule

Control:

WHILE, IF

Figure 3: The CHAIMS primitives.

CALL Dissection

A feature of the CHAIMS language is that the traditional CALL or remote-procedure-call (RPC) statement has been dissected into several statements to achieve appropriate control over the megamodules. The traditional CALL as found in most procedural and object-oriented languages is well suited for calling functions and methods within the same program in a synchronous environment. Yet when moving to large-scale distributed programming, too many diverse tasks need to be carried out by the CALL statement: handling the binding to a remote server, setting general parameters, invoking the method desired, and retrieving the results. By having separate primitives for these tasks we give the domain programmer and the compiler more control over the execution of the invocations. The primitives themselves can be synchronous, since they do not induce computational delays. Through this dissection the domain programmer obtains the ability to introduce control over the timing of the invocations and can insert and rearrange primitives for optimization. Furthermore, having several primitives instead of one synchronous CALL statement gives us the support for asynchronous calls of methods and concurrent execution of megamodules.
The CHAIMS language offers neither arithmetic operations nor any input or output functions. These are taken care of by specialized megamodules, which are used like any other megamodules. Intrinsic megamodules for mathematical functions as well as megamodules for input and output are available as part of the CHAIMS environment. Alternatively the customer can provide specialized megamodules offering such functions. Outside of control requirements, the megaprogram itself does not inspect the contents of the data it receives. It simply forwards this data to other megamodules for further processing or as output. Thus, the paradigm of a purely compositional language leads to a clear separation between the data view and the composition view.
Heterogeneity of distribution protocols

Megamodules may reside within different middleware systems. There are already a few well-accepted distribution protocols such as DCE, CORBA, DCOM and RMI [Platt:97], [RosenberryKF:94], [Siegel:96], [Szyperski:98] and there is no reason to expect that one will dominate all the others.

A domain programmer should not be required to know the details of all these protocols. As such, it is necessary for a megaprogramming environment to interface to heterogeneous protocols and to provide a means of transferring data transparently between them. In order to facilitate this, the CHAIMS compiler generates client code for the different distribution protocols that the particular servers need. The CHAIMS megaprogramming language does not distinguish between the different protocols; any need to separate features is done by the system and is hidden from the domain programmer. The extent to which this commonality can be achieved is a research question for us.
Support concurrency by asynchronous service calls

Megamodules are distributed and therefore can operate in parallel. Megamodules may be of substantial size, and the invocation of their services may take a long time. Thus it becomes imperative to take advantage of the inherent parallelism among megamodules. We achieve concurrent execution of megamodules by moving away from synchronous method invocations towards asynchronous method invocations. Several methods can be invoked in parallel, and the results of these invocations are extracted only when needed for further execution. Thus synchronization only takes place when necessary.

2 MegaGene Project Description

In MegaGene we plan to exploit the infrastructure provided by earlier and ongoing CHAIMS research and development to perform novel research on the optimization of information and control flow. The approach will be demonstrated using bio-informatics resources, a dynamic and exciting application area in which we have an active interest. The approach is sketched in this section and the architectural objective is illustrated in Figures 5 and 6. Specifically we will:

1. Enable megaprogramming by domain experts, specifically in bio-informatics.

2. Provide for dynamic optimization of the resulting megaprogram.

3. Implement the CHAIMS architecture to support computing as seen in bio-informatics.

4. Consider explicitly issues raised due to the multi-disciplinary nature of the MegaGene proposal and the general megaprogramming environment.

These task areas are highly interrelated, so that the descriptions below make many cross-references.

2.1 Make composition available to non-technical domain experts

We distinguish between two types of actors in the composition process: (1) the megamodule provider and (2) the domain expert at the client side, also called the domain programmer (see Figure 4). Both actors will do programming, but at quite different levels of abstraction. The CHAIMS system provides the interface and the language through which they communicate, just as is seen today in the use of database management systems (DBMS), where the SQL programmers are quite distinct from the programmers who work at the DBMS provider, unlikely ever to meet.

We hence assume that these two roles are occupied by different persons with differing skills and objectives. Megamodule providers are classical programmers who write new or wrap existing megamodules for certain problem domains in order to make them available for domain programmers. Module providers need to be knowledgeable about the specific technical distribution protocol used to export their services, and must have the technical skills to program and maintain megamodules.

The domain programmer must focus on having domain and tool knowledge. The challenge is to free the domain programmer from excessive knowledge of distributed system protocols and details of computational programming. Domain programmers need to be experts in composition and know the services required in their domain of application. It is unreasonable to put both domain and coding requirements on the domain expert, as is the case today, say, when CORBA is used to access remote services. As a consequence, today the bio-scientist needs technical staff to deal with any but the most simple services.

[image: image4.wmf]Domain expert

 writes

megaprogram

 for

composition.

CHAIMS automates

generation of client for

distributed system.

Megamodule

 provider

provides processed

knowledge.

CHAIMS

Figure 4: Separation of skills in MegaGene

CHAIMS provides as an interface a megaprogramming language for composing services offered by distributed megamodules. The power of a language versus a collection of protocols is that it provides for automation and optimization through a language-specific compilation process. The CHAIMS megaprogramming language hides the details and uniqueness of the various distribution protocols used for communication, and it obviates the necessity to write in a common programming language. These tasks are taken care of by the composition system. The domain programmer just needs to be able to write megaprograms in the CHAIMS megaprogramming language, a task that even could be replaced by graphical composition [StickelEa:94].

2.2 Optimization

Large-scale computing in an environment with multiple servers induces a need for novel ways of optimization and control. The optimizations considered in the CHAIMS megaprogramming paradigm are distinct from conventional code optimizations. Code optimization remains available to the creators of the megamodules. The optimizations we consider at the CHAIMS level all have the potential of increasing the responsiveness to the client program by an order-of-magnitude, while reducing the aggregate demand on the network and its servers.

Pre-invocation estimates

In a widely distributed environment, controlling the performance of megamodules and the allocation of resources they need are beyond the control of the domain programmers. The challenge increases as megamodules become larger and more resource intensive. Furthermore, several megamodules may offer the same functionality. Therefore a client must be able to check the availability of megamodule services and get performance estimates from megamodules prior to the invocation of their services. This is best done at run-time, as the compile-time estimation may change by the time the megaprogram is executed. The CHAIMS language therefore provides pre-invocation estimates through an explicit ESTIMATE call [Wiederhold:92m]. This call overcomes the problem faced in scaling the black-box object-oriented paradigm where the compiler cannot know the performance of the remote method that is being invoked, disabling effective optimization.
Scheduling

Optimization involves estimation of component performance and scheduling. By separating these two functions the CHAIMS paradigm provides a new tool to the domain programmer. Using experience or results from the ESTIMATE call the invocation of the megamodules can be scheduled to maximize the overlap of computations. Typically SETUP calls will be scheduled early, and INVOKE calls as soon as all the required data are ready. EXTRACT calls will be scheduled when the result is needed. The CHAIMS compiler can now optimize the execution order of the CHAIMS primitives in order to minimize delays. In contrast, in conventional server environments the calls are only performed when the result is needed, reducing overlap greatly. Systems that provide asynchrony can start setup and computation when the data are ready, but the required management of parallelism tends to be complex in languages that are not inherently focused on large-scale computation [ReedEa:96].

The ESTIMATE statement delivers a mean value of the execution costs and its uncertainty as provided by the megamodule or its wrapper. It is available both at compile time and during execution. More accurate results will be delivered at execution time. The domain programmer or the CHAIMS compiler can use execution time estimates to choose alternative schedules. The creation of alternative schedules at compile-time and selecting from them at execution time is a new research challenge, previously only investigated in highly homogeneous parallel computing [Roy:92]. Balancing compile-time scheduling and execution-time re-optimization in the realistic environment provided by genomic processing should provide guidance beyond what can be obtained by abstract simulations. At the same time we will develop the model needed to make the results more generally applicable, and move these scheduling tasks into the CHAIMS compiler.

Dynamic processing control

Using experience or results from the ESTIMATE call also allows an adjustment of the performance of the required megamodule functions by optimizing various SETUP parameters, e.g., search parameters or simulation parameters. Such parameters influence the speed and quality of the results, and the domain programmer may need to try several settings and retrieve overview results before deciding on the final parameter settings. This assessment needs to be performed at execution-time, but the results can be fed back to provide constraints for subsequent compile-time optimization.

These concepts are sufficiently novel that our research must first provide us with some experience before we can attempt to bring these interactions into the CHAIMS compiler. The flexibility of CHAIMS should allow us to move beyond the current state of-the-art [AdveEa:96].
Dynamic extraction optimization

The EXAMINE statement informs the client megaprogram when any results are available from a megamodule and the EXTRACT statement enables selective transmission of results useful for control to the client program. We plan to exploit the CHAIMS language by getting rough overview results from megamodules as early as feasible. Obtaining early overview information helps to determine further invocation parameters. In many situations, a domain programmer does not know right away how to set the processing, search or simulation parameters in order to get to the desired state and the related output from a megamodule. Trial and error is often necessary. Yet for determining these parameters the domain programmer often does not need and is not interested in all of the output. A good response time is of higher importance, improved by reduced execution time and a smaller volume of dataflow.

For computational modules that can deliver results incrementally, as is frequent in simulation, the ability to extract and check partial state results is crucial. For instance, in weather simulation more computation always delivers better results, but at a high cost, since the gridding becomes finer. If the initial results indicate the proximity of a weather front it may be wise to request fine-grid results. If the conditions are smooth, coarse-grid results are adequate and can be extracted without delay. Such control strategies are now employed in a number of domains, but invariably hard coded and not under dynamic control of the domain expert.

In bio-informatics the complexity of matches has a wide range. Obtaining more results by employing a more generous filter is only useful if the resources exist to follow up on all the results. Today such decisions are made by the bio-scientist, without computational assistance. Here some factors are involved beyond the scope of even the megaprogram, since some of the resources are bench and instrument-capacity constrained. We will investigate their incorporation into the CHAIMS paradigm, but cannot be certain about the degree of automation that will be feasible.

Reducing Bandwidth requirements

The ability to INVOKE computations repeatedly without a complete SETUP process not only reduces the computational load on the server but also the amount of data being shipped over the network. Use of the EXTRACT statement also reduces bandwidth demands. For instance, today the 56Kb/s limit on GenBank delays both search and updating. By enabling partial results to be extracted and analyzed for relevance, repetitive transmission of complete results can be eliminated. The CHAIMS language and system provide unique capabilities to reduce bandwidth requirements, optimizing client service times and at the same time off-loading servers and networks. The effect of this capability will be measured, but will require no specific research effort, since it is inherent in the CHAIMS approach.

Network dataflow optimization

A very significant optimization, overriding all traditional concerns about efficiency, is automatic optimization of dataflows between megamodules by providing direct dataflows between megamodules. The difference is illustrated by comparing Figure 2 and Figure 5. Let's assume we have two megamodules a and b at the sites R and T, and a megaprogram at site C. The megaprogram extracts from megamodule a some information i that it routes on to megamodule b for further processing. Let's assume that the transfer times and costs between site R and C, between site T and C, and between site R and T are the same. Let's further assume that the volume of information i is very large, and that we can neglect the cost of exchanging some additional CHAIMS control-messages between sites compared to the cost for transferring information i. By enabling a direct dataflow between site R and T, we thus can gain a factor 2 in transfer time and transfer costs.

[image: image5.wmf]Data

Resources

Computation

Services

IO module

MEGA modules

IO module

Objective: Optimized parallel dataflow, distinct from control flow

d

e

c

b

a

 Domain expert

 Client workstation

Sites

R

T

S

U

T

C

Figure 5: Network dataflow optimization
In many cases this factor will even be higher, because the computational server sites R, S, T and U may be closer in terms of transmission capability than the client site C, or two megamodules may reside on the same site as in case of b and e. This is especially true if the bio-scientist is in a laboratory without excellent connectivity, while for the servers high-quality connectivity is part of the required investment. Therefore optimization of dataflows is a very important issue in the optimization of large-scale distributed systems that can serve a broad segment of bio-scientists, and not only those in well-supported centers. Much of our research will focus on this novel and important capability. It will require features in wrappers that do not currently exist and separation of information flows into data- and control-functions that have not been previously formalized.
Parallel network dataflow
Once dataflows have been identified as being distinct, and SETUP and INVOKE functions have been moved to the earliest feasible point in time, parallel execution of megamodules is enabled, as indicated in Figure 5 for modules b and {c,d}. The CHAIMS paradigm is intrinsically parallel, and no specific optimization should be required to gain the benefits of parallel execution, as is needed when starting from conventional programming languages [BlumeEa:96]. Our research here must focus on not inadvertently disabling parallel execution of megamodules.

Mega optimization versus traditional optimization

In summary, the CHAIMS infrastructure enables significant dataflow optimizations. Some of them can be invoked now by the domain programmer, but in the long-range should not be a burden or a distraction for a domain expert. Our research will focus on enabling automation, while not disabling powerful optimizations that are based on domain expertise. Having a language interface resolves these conflicting demands. Information from the expert can be utilized, but schedules can be optimized within well defined constraints. Since the CHAIMS language avoids computation and hides all but the control data, scheduling is simplified for the compiler.

Many lower level scheduling tasks do lend themselves to automation. Implementing those reduces the demands placed on the domain programmer. For instance, the configuration of a network can be complex, and is also subject to change. Resources may move, and available capacities depend on aggregate usage. Therefore, this level of dataflow optimization has to be taken care of automatically by the CHAIMS system.

Traditional optimization methods have focused, quite successfully, on compile-time optimization. The CHAIMS primitives and the CHAIMS architecture have the potential to support both run-time and compile-time optimization, thus conforming to the dynamic nature of a distributed environment. In MegaGene we intend to combine these technologies with research results from dynamic query optimization for databases [GrafeK:89].

2.3 Scientific approach: Architecture of the CHAIMS system

Our approach differs from popular distributed architectures in that we are willing to admit heterogeneity of protocols. Allowing heterogeneity of protocols has two scientific benefits:

1. Conceptual: we will deal with the generalization of the underlying capabilities and facilities, rather than with syntactical niceties.

2. Practical: we need not enforce one single protocol on all participants, gaining access to more resources.

We do believe that technology is long ways away from having the perfect protocol. Protocols will always differ in suitability: wide-area network versus local area network performance, reliability and recovery, stability under conditions of change, and provision of security [WiederholdBSQ:96]. The high-level interface provided to the domain programmer means that CHAIMS will be able to integrate new protocols as they become available, without restructuring domain-specific megaprograms and reorganizing their capabilities.

The runtime environment

CHAIMS composes distributed megamodules using the client server paradigm. Therefore, as shown in Figure 6 the runtime environment of CHAIMS consists of the three main parts

· CSRT (client side run time),

· distribution system,

· CHAIMS-compliant megamodules on the server side.

The kind of distribution system depends on the distribution protocol needed for the megamodules, e.g., for CORBA the distribution system consists of one or several ORBs. Of course, the megamodules must be registered within their distribution system, and the CSRT must be able to communicate to the various distribution systems needed for a specific task.

All the computation takes place in the megamodules. The client just invokes the various computational services and routes the data from one to the other.

[image: image6.wmf]e

Domain Programmer

 (Domain Expert)

d

a

b

c

Distribution System (CORBA, RMI…)

CSRT

 Megaprogram

(in CHAIMS language)

 writes

CHAIMS

Compiler

 generates

MEGA modules

CHAIMS

Repository

adds information to

Megamdule

Provider

Wrapper

Templates

wraps non-CHAIMS

compliant

 megamodules

 information

 information

run-time execution

composition process

Figure 6: Architecture
The composition process

The composition process comprises providing megamodules on the server side by the megamodule provider and into writing and compiling a megaprogram by the domain expert on the client side.

Providing megamodules: The megamodules must be CHAIMS-compliant, i.e., they have to understand the CHAIMS-messages and must be able to provide the desired responses. In case of legacy modules, these can be wrapped by using wrapper templates. Only minimal handcoding is needed for this task. A megamodule provider is not only responsible for wrapping and installing megamodules, but also for providing information about the megamodules for those who would like to use them. This is done by a simple repository which contains information about the services offered by a megamodule, the distribution protocol needed to address it, and the site where it is located.

Writing and compiling a megaprogram: The domain programmer, a domain expert wishing to use the knowledge provided by certain megamodules, obtains information about these megamodules from the repository and associated scientific documentation, writes a megaprogram using the CHAIMS megaprogramming language, and compiles it with the CHAIMS compiler. The compiler generates the executable CSRT, which will contain any necessary stubs for the various distribution systems. The compiler is also responsible for any compile-time optimizations.
Composition view, data view, transportation view

In CHAIMS we make a clear distinction between the composition view, the data view and the transportation view. The transportation view is part of the distribution layer, the composition and the data views make up the CHAIMS layer which is on top of the distribution layer (see Figure 7).

The composition view deals with the composition of the megamodules as reflected in the CHAIMS megaprogram. The composition view is only concerned with controlling the requests to megamodules (determining the order of requests, invoking requests, checking execution, getting results). It is not concerned with the creation, modification and interpretation of data transferred between megamodules. The composition view is the only view seen by the domain expert writing a CHAIMS megaprogram.

The data transferred between megamodules is represented in the data view. The data view describes the semantics of the transferred data as well as its encoding. The choice of a particular encoding protocol for computational data is independent of the composition view and the transport view. Changing the protocol only affects the data view, i.e., those parts of the megamodules that interpret the incoming data and create the outgoing data. Thus the data view and the composition view are orthogonal to each other. The protocol for the data view we have chosen is ASN.1, with the BER encoding rules for data transfer [ISO:87]. Other protocols would have been feasible as well. We refer to the ASN.1/BER encoded data as data blobs, since for the megaprogram they are just binary large objects.

The composition view and the data view make up the CHAIMS layer. The CHAIMS layer sits above the distribution layer, which contains the transportation view. In the transportation view we use one or several distribution protocols, e.g. CORBA, DCE, DCOM or RMI. The transportation view is only concerned with the transport of messages between the megamodules and the megaprogram. The content of these messages is given by the composition view and the data view. The transportation view is neither concerned with the correct use of the CHAIMS primitives nor with the content and encoding of any computational data.

[image: image7.wmf]Transportation View

 moving around data blobs

 and CHAIMS messages

Composition View

 (

megaprogram

)

 - composition of

 megamodules

- directing of opaque

 data blobs

Data View

- exchange of data

 - interpretation of

 data

 - in/between

 megamodules

CHAIMS Layer

Distribution Layer

 Objective:

Clear separation between composition of services,

computation of data, and transport

Figure 7: Composition, data and transportation view

2.4 Multi-disciplinary application domains

General issues

Our MegaGene proposal profits from long standing collaboration of computer scientists and medical information scientists at Stanford. Frequent interactions, shared seminars, and shared students are common. But the intent of the underlying research is broader: large scale-software systems can only become viable and long-lived if there is a means to engage individuals at a variety of levels and specializations, each supplying their knowledge. In the past, large systems have been built by careful specification and integration of multi-disciplinary knowledge. Multi-disciplinary knowledge has been incorporated in built-to-order modules, but the resulting systems are hard to maintain and update since it is difficult to bring the varied expertise together again for ongoing tasks.

Examples of such broad-based systems are seen in wide-area communication support, military logistics, the space program, and the like. Success has been achieved by support and enforcement of standards, sometimes at the cost of sticking with older technology longer than ideal. When interfaces can be defined collaboration has been enabled among participants at differing levels, as seen in the TCP/IP protocol for the Internet. The Human Genome Initiative is a task of similar complexity, but here collaboration is motivated by common research interests, and some standards have emerged that enable access of shared resources, as GenBank, but composability has been elusive.

Our background in other application areas, including ongoing research on semantic interoperation using the logistics domain, will help ensure that the approaches used in MegaGene to deal with multi-disciplinary aspects will port into other domains.
Separation and collaboration

The approach we are taking is inherently multi-disciplinary, but also provides for independence of progress by providing the language-mediated separation of responsibilities, as sketched in Figure 4. Programming occurs in two layers, the domain and the support layer. The domain programmer needs to understand the services provided by the support modules, just as is the case now without composition. However, the CHAIMS system will aid in the composition task, the maintenance of the megaprogram as the infrastructure changes, and frees the domain specialist from knowing details about protocols or remote computational access. Today it is rare for a domain scientist to know more than one or two protocols, so that practical scalability of distributed systems is limited [MusenS:95].

Forcing all providers into a single protocol may be an industrial goal, but raises many issues of excessive dependency on proprietary technology, and an inability to move forward as advances become available. We see many examples of this conflict: some of the most useful applications in medicine are stuck with a technology which is viewed as obsolete by computer scientists, and for which no new trainees are available for further development [ONeil:76].

Initially we cannot expect that the providers will supply megamodules that are CHAIMS-compliant. We will hence need wrappers in most instances. Wrappers adapt modules programmed for direct remote access so they can be effectively used in composed systems [AshishK:97]. In many cases they will convert services that were programmed to have user-friendly interfaces to modules that are composition friendly. We have developed templates for wrapping to make such a collaboration relatively painless [BeringerTJW:98L].

We do not burden the provider with requirements for formal descriptions of their capabilities, as would be needed for automatic composition. Such an approach has been envisaged by some related projects [GeneserethSS:94]. We are some distance away from understanding this issue on a pragmatic level, as evidenced by follow-up research [GeneserethKD:97]. We expect that MegaGene may provide useful experience, but we will not address automation of composition, and only aid the customer and provide for optimization of the execution. In today’s practice the bio-scientists understand the tools they are using. MegaGene could also be used to access warehousing services, as being proposed by Widom et al. from Stanford and Brookhaven [Widom:98]. Adding XML as one of the protocol access languages generated by CHAIMS fits well into our paradigm and can bring the view and reformatting capabilities of the warehouse to MegaGene clients. If both projects are funded, the teams will work closely together.

Within the provider level, inter-disciplinary collaboration does not have to be explicitly supported, since services can remain independent. However, we must be aware that autonomous providers are likely to have some ontological differences.
Differing ontologies

Not being addressed in CHAIMS nor part of the MegaGene research portfolio is the issue of semantic differences [StuderEa:96]. Megamodules are not only encapsulations of knowledge but also of the ontologies that specify the knowledge. Often when megamodules exchange data, the ontologies they use to describe it will differ. To compose megamodules having different ontologies requires that the data exchanged be mapped from one ontology into another one [BeringerTJW:98L]. A separate research project of ours is developing a framework to meet this challenge [JanninkPVW:98]. In the CHAIMS project we do not deal with this challenge directly. Instead we simply assume that those megamodules that are meant to exchange data also have matching ontologies, so that the CHAIMS system only has to deal with transforming data across language and distribution system boundaries, but not across ontological boundaries. For now, intermediary megamodules may be created to resolve ontological problems that need to be addressed.

Being aware of the problem of semantic mismatch will help us to keep the architectural option to deal with the issues as needed or as part of future research. Resolution of differences we do encounter will be handled by conversion modules, that can deal with our ASN.1 encapsulated data. Most other projects we are aware of, only deal with the semantic issues in a completely ad-hoc manner when it becomes unavoidable.

3 MegaGene Research Plan

3.1 Current status of CHAIMS

Within our current research funded under the DARPA EDCS program we have defined the CHAIMS megaprogramming language and are now developing a basic infrastructure. The major components are the CHAIMS compiler and the wrapper templates for CORBA, RMI and DCE. This infrastructure will allow us to effectively wrap legacy megamodules residing in either a CORBA, DCE or RMI distribution environment, and to compile and execute megaprograms. The basic infrastructure will not include any optimization, since that aspect has not been funded. We expect to have a first functional demonstration using the CHAIMS infrastructure by this autumn (1998).

We have published various articles [PerrochonWB:97], [TornabeneJW:98] and have submitted some further publications [TornabeneDJW:98], [BeringerTJW:98C], [BeringerTJW:98L]. We also have set up two web demonstrations based on the CHAIMS concepts. These are available on our website (http://www-db.stanford.edu/CHAIMS).

Concepts that lead to CHAIMS and MegaGene are grounded in earlier research. Research on knowledge-based systems, supported by ARPA/DARPA since 1977, provided the foundation (i.e., [ElMasriW:79], [DeZegherEa:88], summarized in [WiederholdEa:88]). The scalability of the object-oriented paradigm for multiple clients was investigated in [Wiederhold:86v] and led to a major project, funded by NLM, to automate the creation and updating of objects from relational databases [BarsalouSKW:91]. The domain of initial application was instrument data used for cell-analysis in genomics. The underlying technological results are now integrated in various commercial systems, including SunSoft’s DOE [KellerJA:93]. Later work dealt explicitly with heterogeneous information sources and provided experience leading to the MegaGene research proposal [Wiederhold:92a], [AgarwalKSW:95], [WiederholdWC:92].

3.2 MegaGene: Specific research tasks in the context of KDI

MegaGene will contain two interacting subprojects: (1) development of a prototype for composing genomics megamodules, and (2) research to achieve optimization of dataflows between megamodules. Because data transfers in the genomics domain tend to be very heavyweight, the optimization of dataflows between megamodules is of special importance for that domain.

Developing a prototype in genomics will include the following subtasks:

· Enhancements of the basic CHAIMS infrastructure: There may be various issues for which the basic infrastructure we have developed so far does not meet the needs of composing genomics megamodules. We are aware of some unmet needs. For instance, we must enhance the CHAIMS megaprogramming language to provide capabilities to group data before forwarding it to other megamodules. This function has been deferred until a real need for such conversion arises. Further issues will only emerge during the development of the prototype.

· Wrapping of the genomics megamodules: We will not write new genomics databases and processing functions. Instead, we will use available functions and services, group them into modules, and wrap them in order to be CHAIMS compliant. Some of the services are now available locally, others are remote. Unless we can gain convenient access, we may have to copy some services and install them on one of our machines in order to wrap them effectively, although we will also consider having local wrappers for remote resources.

· Writing megaprograms and evaluating the usefulness of CHAIMS in the domain of bio-informatics. This subtask will involve end-users of the system which will be mainly genomics researchers. The goal is to evaluate if and to what extent MegaGene improves their ability to use available genomics components in a quick and easy way.

The second subproject will be concerned with research leading to dataflow optimization. In the current version of CHAIMS, as is common in client-server computations, all data is routed via the client megaprogram, though the megaprogram does not perform any computation on those data. For large amount of data and whenever the direct path between two megamodules exchanging information is considerably shorter than the path via the megaprogram, this approach leads to intolerable delays and network traffic. From a conceptual point of view, there is no need to route all data via the site of the megaprogram. Though the control will stay with the megaprogram, the megamodules could exchange data directly. Yet because we want to free the domain programmer of technical knowledge, this optimization has to be done automatically. The subproject on optimization of dataflows consists of the following subtasks:

· Investigate the concepts of direct dataflow optimization and their influence on the current CHAIMS infrastructure.

· Specify and implement enhancements in the protocol between megaprogram and megamodules.

· Adapt the existing infrastructure so it can handle direct dataflows. A specific technical problem will be the crossing of distribution protocol boundaries, though the clear distinction between data view and transportation view will allow us to handle such heterogeneities conceptually.

· Enhance the CHAIMS-compiler for optimizing dataflows. This will probably require a mix of compile-time optimizations and generating appropriate alternative codes for run-time optimizations.

· Assure that the natural parallelism conceptually inherent in CHAIMS remains effective under a variety of circumstances.

· Use this new version of CHAIMS in the domain of genomics megamodules and evaluate its benefits over a non-optimizing version, measuring both response-time and total system loads and performance.

An overview of the project schedule is given in Section 6.

3.3 Multi-disciplinary aspects of MegaGene and its advances to Computer Science and Genomics

As indicated earlier, the MegaGene project combines two multi-disciplinary efforts, which will benefit from each other. Computer-science will benefit from the integration of distributed processing-oriented knowledge, a significant scale-up from the object-oriented approach which focuses on composing integrated programs from small units in homogeneous settings. Recognition that useful knowledge is embedded in programs becomes explicit. A validation that employs useful, large programs is essential to motivate eventual transition of the concepts into software engineering practice.

The bio-informatics community will benefit by obtaining tools that will automate the use of multiple processing tools in concert, rather than being limited by heterogeneous interfaces and lack of inter-tool interoperation. They are aware of these problem today, but have had only limited support from system-oriented computer scientists, although many of their processing algorithms already benefit from interdisciplinary efforts. This community is active and innovative, and provides an excellent model for other disciplines dealing with a variety of voluminous knowledge and data.

Both communities will benefit from a new partitioned vision on optimization, where tool providers can provide the estimates and client programs perform the scheduling. Achieving these objectives, or at least making significant progress in that direction, will answer the base hypothesis that this research addresses:

A language that focuses on composition, rather than general programming is feasible and optimizable, and can overcome the barriers experienced when languages become excessively complex by attempting to support both coding and composition.

Examples of large languages that seemed attractive, but have not gained broad acceptance are varied, and include ALGOL68, PL/1, Ada, and CLOS, so that the problem does not seem to be one of philosophy, structure or syntax, but indeed one of size and conflicting objectives. The computer language used to program the server megamodules is not an issue, since CHAIMS compliance can be provided for any envisaged server type.

3.4 Connection to KDI-KN goals and objectives

The MegaGene research effort differs from what we expect to be the focus of most proposals, in that we address procedural knowledge. Prior research, including our own work, has generated a wealth of experience with managing declarative knowledge, but has made us aware of the current limits of scalability in that paradigm. As parallel research in declarative formalisms makes progress, we will introduce results that are scalable into the megaprogramming paradigm.

Goals and objectives

The MegaGene project helps to achieve the KDI-KN goals and objectives in the following ways: The approach of CHAIMS to composing and connecting knowledge is different from current approaches. Therefore exploring this approach will deepen our understanding of the fundamental processes through which knowledge is created, communicated, validated, and valued in distributed systems of information. Furthermore, the CHAIMS paradigm accepts the fact that the knowledge about the processing of data is distributed and best implemented where it is located, namely at the server's side.

MegaGene also accepts that such servers providing processed data will be autonomously managed, are often heavyweight, involve large amounts of data needed to be exchanged between servers, and distributed in different technical environments. Any composition system and language trying to combine and use knowledge of such servers has to take the variability and constant upgrading of protocols and processing languages into account. Therefore CHAIMS will be able to improve the performance of knowledge generation and use, collaborative computation, and remote interaction. One important element here is its capabilities for dataflow optimization. CHAIMS is not limited at all to one specific type of data or knowledge. Its strength is to provide a framework in which any electronic type of knowledge can be exchanged and composed, and it explicitly assumes that this knowledge comes from different sources, especially also from legacy sources. By allowing the processing to take place at the site of the processing specialists, and by providing the domain expert with a tool that does not impose unnecessary technical knowledge, CHAIMS will increase the effectiveness of domain experts in using knowledge provided at other places by other people. We thus especially address KN-objectives 2 and 3 of the proposal solicitation.
Research emphasis of KN

We address both foundational research and prototyping. The foundational research focuses on issues such as:

· Transforming hidden information into knowledge (megamodules) and delivering and composing that knowledge (by megaprogramming).

· Managing heterogeneity and achieving interoperability by crossing not only language and system boundaries, but also distribution protocol boundaries.

· Computational and organizational foundations for coupling knowledge by using the approach of composing megamodules by a megaprogram.

Prototyping will address the following research issues:

· Setting up a megaprogramming system that allows using the same techniques for knowledge networking in various domains. The CHAIMS prototype system will be available to outside communities.

· Evaluation of the CHAIMS approach of knowledge networking concerning its effect on quick and high quality analysis and decision making in the field of genomics.
Merits and impacts of MegaGene

The potential impact of MegaGene onto the disciplines of computer science and bio-informatics has been described in Section 3.3. Though both domains will profit individually from MegaGene, the multi-disciplinary aspect of the MegaGene project is of great importance to us. Bio-informatics will profit from large-scale software composition concepts developed in computer science – the MegaGene prototypes for genomics will only be possible due to the ongoing efforts in the CHAIMS project as well as to the research in dataflow optimization that will be part of the MegaGene project. On the other hand, research in large-scale composition will profit enormously from the experiences gained with the MegaGene prototypes for genomics, especially as genomics is one of the typical application domains for large-scale composition as used in CHAIMS.

The MegaGene project introduces a totally new paradigm for knowledge networking and large-scale composition, as described in Sections 1 and 2. Should this approach prove to be useful and superior to current techniques of composing distributed knowledge and services, MegaGene will truly bring significant and important advances to the sciences of large-scale composition in general and bio-informatics specifically.

The primary goal of MegaGene is to investigate a new approach for composing genomics knowledge. These investigations will go hand in hand with the application of the approach to real world problems – in this case to bio-informatics – by developing the genomics prototypes. Furthermore, also the researchers and students involved in MegaGene will profit from the project by exposure to advanced distributed knowledge composition as well as genomics computation, and by experiencing hands on multi-disciplinary research.

3.5 Roles of investigators

The principal investigators of the MegaGene project will be Prof. Gio Wiederhold of the Computer Science Department at Stanford and Prof. Russ Altman of the Medical Department at Stanford. Dorothea Beringer of the Computer Science Department at Stanford will be the senior investigator managing the MegaGene project. Her role as research associate will be to investigate the conceptual foundations of the approach and to coordinate and supervise the work of the students in the project. Apart from Dorothea Beringer there will be two graduate students participating in the project. Neal Sample, a PhD student, already has a background in distributed systems gained through his graduate studies at the University of Wyoming. Laurence Melloul will join Stanford University for doing research in CHAIMS. She has a masters degree in computer science and several years of industrial experience. We expect other students to participate as part of their academic objectives.

Results of Prior NSF Support

RiboWEB: Russ Altman

Dr. Altman has received an NSF CAREER award to support students on the RiboWEB project, as well as the development of curriculum in bio-informatics. The RiboWEB project is creating an internet-based collaborative environment for building three-dimensional models of large molecular ensembles, focusing currently on the structure of the bacterial ribosome. It involves three components: (1) a knowledge base of the molecular components and the published experimental data, (2) a library of computational modules that perform useful tasks on the knowledge base and (3) a user interface/session manager that tracks individual usage of the system. As such, it fits nicely into the type of systems that the CHAIMS approach is designed for, and represents an excellent testbed for the ideas described in the MegaGene proposal.

TIHI: Gio Wiederhold

TIHI, Trusted Interoperation of Healthcare Information, has been funded by an NSF HPCC grant and provides yet another example for successful inter-disciplinary research. TIHI has resulted in the successful development of a security mediator and in significant publications [WiederholdBSQ:96], [WiederholdBSQ:96C], [WiederholdBD:98]. Papers describing our approach have been given at medical information and security conferences. We have participated in the privacy protection review for the Social Security Administration, and our statement will become part of the official record. Furthermore, early TIHI technology has already been transferred to Incyte Corporation, which has funded an initial installation of a security mediator to protect genomic information.

Earlier NSF supported research of Gio Wiederhold

1990-1992
Principal Investigator in ”FAUVE, Specification and Implementation of Delayed Consistency in Federated Databases” (IRIS/NSF). This research led to a number of papers and a thesis (Hall).

1988-1990
Principal Investigator in “PARADATA: Databases on Parallel Computers”. This research was funded by NSF/IRI/K&DSP and led to a number of papers and two theses (Roy, Rathmann).

1987-1990
Principal Investigator in “Support for Parallel Design in an Engineering Information System”. This research was funded under NSF DTMP 8619595 and led to a number of papers and a thesis (Qian).

1987
Principal Investigator in “A Workshop on new Issues in Materials Databases”. This project was funded under NBS and NSF MSM-8711636. The workshop led to a funding initiative at NIST.

1981-1983 Principal Investigator for Jerrold Kaplan: “Theory and Computation for Natural Language Processing”. This research was funded under NSF-IST 8023889, and led to some papers and supervision of a PhD thesis (Davidson).

Details are available on the PI's web pages: http://www-db.stanford.edu/people/gio.html.
4 Dissemination of Results

There will be three main channels for the dissemination of the results:

· Publications: We expect to publish foundational insights concerning knowledge networking by megaprogramming and the experiences gained by the prototype for genomics applications both in computer science and medical informatics venues. Ongoing progress will be available on public Web pages.

· Demonstrations: There exist many active companies in the Bay area that are interested in our approach. We plan to have demonstrations for these companies as well as for other industrial partners of Stanford University. We have both personal connections, often through former students, and linkages through industrial affiliates of Stanford University computer Science and Medical Information Science forums. We expect some demos to be web-accessible.

· Students: Smart students are our most important product. We expect that students involved in the MegaGene project will later teach and disseminate these concepts, or be employed by bio-informatics or infrastructure companies that will address the conceptual and technical issues of composing distributed computational information sources. We also expect to involve some students on a purely academic basis.
We have been successful in prior dissemination of our research, and are confident that research this novel will find an appreciative audience.
5 Project Schedule and Performance Goals

MegaGene will be a three year project. The tasks described in Section 3.2 will be split up so that we can each year demonstrate incremental, yet essential progress. Another important aspect is that we will solicit end-user involvement as early as possible. Therefore a first genomics prototype will be developed without having dataflow optimization, so that it is possible to take into account user feedback prior to the second prototype.

In the first year MegaGene will develop the genomics prototype based on the CHAIMS system without dataflow optimization. Several example megaprograms will be coded and executed with the goal to evaluate and demonstrate the usefulness of the approach in the genomics domain. The first year demo will consist of this prototype. We also expect some publications presenting the experiences with the prototype. Furthermore we will explore the concepts of dataflow optimization. We will specify enhancements and changes to the CHAIMS system that are needed to incorporate dataflow optimization, and we will also take into account change requests due to the experiences with the first prototype.

The second year will be devoted to the implementation of dataflow optimization and of any changes and enhancements specified in the first year. The second year demo will consist of a new version of CHAIMS containing the dataflow optimization. Furthermore, we also plan to publish the concepts and technical consequences of dataflow optimization.

In the third year the genomics prototype will be upgraded to the new CHAIMS system, resulting in the third year demo. The performance advantages due to dataflow optimization will be evaluated and the results published. A further third year goal is to disseminate the results of the research within and beyond the genomics community by demonstrations, conferences and meetings with companies.
6 Management of the Joint Project

The MegaGene project will involve two university departments, the Department of Computer Science and the Department of Medicine at Stanford, with principal investigators Prof. Gio Wiederhold and Prof. Russ Altman. Since both principal investigators hold courtesy appointments in each other’s departments and are already supervising students in both departments, we have the infrastructure and experience to manage the joint effort effectively. Dorothea Beringer, who has been managing the development of the infrastructure, will be responsible as a research associate for the daily management and the supervision of student researches. The fact that both departments involved in MegaGene are located in nearby buildings also simplifies the organizational aspects of the joint research effort.

1
12

[image: image8.png]_955866129.ppt

 Domain expert

 Client workstation

Computation

Services

IO module

IO module

 Infrastructure: Remote, distributed, parallel computation of a, b, c, d, e

a

b

c

d

e

R

T

S

U

T

C

MEGA modules

Data

Resources

Sites

_955975327.ppt

Domain expert writes megaprogram for

composition.

CHAIMS automates generation of client for distributed system.

Megamodule provider provides processed knowledge.

CHAIMS

_956048690.ppt

 Domain expert

Client computer

Control &

Computation

Services

a

b

c

d

e

Wrappers to resolve

differences

 Remote data access, centralized computation at the client side

I/O

I/O

Data

Resources

_955866551.ppt

e

Domain Programmer

 (Domain Expert)

d

a

b

c

CSRT

 writes

CHAIMS

Compiler

 generates

MEGA modules

CHAIMS

Repository

adds information to

Megamdule

Provider

Wrapper

Templates

wraps non-CHAIMS

compliant megamodules

 information

 information

run-time execution

composition process

Distribution System (CORBA, RMI…)

 Megaprogram

(in CHAIMS language)

_955866664.ppt

Transportation View

 moving around data blobs

 and CHAIMS messages

Composition View

 (megaprogram)

 - composition of

 megamodules

 - directing of opaque

 data blobs

Data View

 - exchange of data

 - interpretation of

 data

 - in/between

 megamodules

CHAIMS Layer

Distribution Layer

 Objective: 	Clear separation between composition of services,

		computation of data, and transport

_955866206.ppt

Computation

Services

IO module

IO module

Objective: Optimized parallel dataflow, distinct from control flow

d

e

c

b

a

 Domain expert

 Client workstation

R

T

S

U

T

C

Data

Resources

MEGA modules

Sites

_955456545.ppt

	Pre-invocation:

		SETUP: set up the connection to a megamodule

		SET-, GETATTRIBUTES: set global parameters in a megamodule

		ESTIMATE: get estimate of execution time for optimization

	Invocation and result gathering:

		INVOKE: start a specific method

		EXAMINE: test status of an invoked method

		EXTRACT: extract results from an invoked method

	Termination:

		TERMINATE: terminate a method invocation or a connection to

			 a megamodule

	Control:

		WHILE, IF

_955264107

