"MEGAGENES: Dynamic Mega Networking of Genomic Services"

"For consideration by NSF Organization unit": KDI/KN

In response to NSF 99-29, closing date 02/01/99

Foundational research and Prototype development and research

Proposers:

Gio Wiederhold, Prof. Comp.Science, Elect.Eng., and Medicine

Russ Altman, Assoc. Prof. Medicine and Comp.Science

Dorothea Beringer, Research Associate, Computer Science

Stanford University, Stanford CA 94305

Title of the project:

Dynamic Mega Networking of Genomic Services

Abreviation: MegaGeneS

MegaGeneS Summary

We propose to develop a dynamic approach to networking remote, large-scale knowledge resources, focusing on the procedural knowledge embedded in those systems. We call this approach MegaGeneS, Dynamic Mega Networking of Genomic Services. We plan to demonstrate the MegaGeneS approach using genomic resources and their processing capabilities. Such resources exist at many diverse sites. There has been done much work on integrating information using advanced database technology. However, most of these information sources have their own powerful search and processing engines, and some of them focus on intelligent processing of data brought in from the customers domains. For instance, GRAIL at ORNL recognizes and estimates functionality of exon DNA segments using neural-net technology. Integrating the results of these processing services is now performed by the researchers in an ad-hoc fashion, since there is today no systematic approach to integrating remote processes and computations.

Fundamental to our model is the recognition that knowledge is also represented by active programs contributed by experts. So far, such processing knowledge has been hard to integrate and communicate. Programs that embody such knowledge are effective and in regular use today, but the traditional programming paradigm for integration requires constructing a single program, normally residing at the customer’s site. In contrast, our approach is to provide a very-high level language for composition of remote computational processes. The language serves two aspects: 1. The obvious is to compile invocations to remote computational services and control the data flow among them; and 2. Provide a model of the overall computation for reuse and

adaptation.

The compiled code uses existing client-server protocols to reach the remote services. Wrappers adapt the protocols to the diversity of protocols and resources, and provide an interface which allows the execution of remote services in parallel. A prototype compiler and wrapper templates exist and have been demonstrated, so that MegaGeneS can focus on domain-relevant system issues and on collaboration with resources and specialists in the genome domain.
The MegaGeneS approach enhances collaboration and maintainability. Use of a high- level language does mean that detailed control over the resources and communication is lost, but enables compiler-based optimization, following the paradigm that led to modern, single process programming languages. By focusing on very large modules and services, the efficiency for the end-user is not longer a matter of coding, but of effective composition, invoking effective components, and an efficient flow of data among the modules. The structure of CHAIMS allows several novel optimizations, but we seek support from other sources for this aspect of our research.

By providing a process-driven model alternative to integration at the client, at mediating sites, or at warehouses, we broaden the choices available in scientific collaboration. Our intent is not to determine whether a data-centric or a processing-centric approach is best; they each have their place. A simple simile is, say, that in order to locate a destination when driving, sometimes it is best to have a map that is interpreted by the driver, and at other times it is best to have sequential instructions to follow, perhaps with some alternatives to deal with traffic conditions.

MegaGeneS will present process-oriented knowledge integration as a complement to paradigms based on information modeling. The collaboration of computer scientists with developers and users of genomic resources will guarantee validating the relevance of the concept and allow identification of unmet issues in knowledge networking.

Project description

1. Objective of MegaGeneS.

In the MegaGeneS proposal we will perform foundational research by modeling, developing and testing a dynamic approach to networking remote, large-scale knowledge resources, focusing on the procedural knowledge embedded in those systems. Procedural knowledge controls processing. It is mainly embedded within programs, and secondarily in the usage pattern of the user who invokes these programs. Today, formal validation of process models is limited in terms of complexity and cannot deal adequately with the wide range of computational methods encountered in practice. However, in the CHAIMS project we have defined and prototyped a high-level mega-programming language (CLAM), a high-level access protocol for various distribution systems (CPAM), and the supporting composition system consisting of a compiler for CLAM and wrappers for CPAM, in order to have a communication infrastructure, so that we can validate the process model in use with actual remote services, and also assess system efficiency and effectiveness for end-users. Our specific research will address issues relating to multi-server control and interoperation, heterogeneity of languages and interfaces, scalability, and support for user interaction.

We plan to demonstrate the approach using genomic resources and their processing capabilities. Such resources exist at many diverse sites. Today, these capabilities are used by an end-user invoking computations, cutting and pasting intermediate results into local workspaces, combining and editing results from multiple computations, and iterating to the desired result. The complexity of invoking remote services and combining their results is such that few end-users will use more than three of the dozens of available resources, even when all the services are accessible through user-friendly interfaces [Bilofsky:99]. To make these services accessible to end-users, on-site programming staff write the tedious code needed to invoke protocols as CORBA and PERL-scripts, simplifying the choices and presentation for the end-users. Since scale is an essential parameter in knowledge management, we are sure to discover

new qualitative issues during the proposed research.

2. Scientific principles

The use of a high-level language, as in CHAIMS, which focuses on composition, provides a systematic approach to integrating remote processes and computations. By having the language focus only on composition, we can keep it simple, making it both an effective representation tool for collaboration and a real platform for analysis and translation to actual execution. Closing the loop by compilation and execution with remote services allows validation and motivation for end-user domain collaborators.

Underlying our paradigm is the recognition that knowledge is not only represented by data, rules, and constraints, but also by active programs. Many such programs performing genomic analyses have been developed, tested, and are being maintained by domain experts. These programs embody effective knowledge, but today are typically executed in isolation, one invocation at a time. Process-based knowledge has been hard to communicate; its composition and integration into larger systems is frustrating. For instance, Java applets provide portable computation, but do not support integration of computations from multiple sources.

The problem, as we see it, is that the traditional programming paradigm for integration requires a single focus of ownership, even when it is distributed and organized with careful modularization. This paradigm surrenders collaboration and maintainability in order to gain control and efficiency. In our mega-programming approach, composing the services of autonomous programs, we are willing to give up fine-grained control for the benefits of expert maintenance at the source sites in a collaborative setting. The services are not owned by the clients, thus moving the model closer to a knowledge sharing paradigm.

By focusing on very large modules and services, the efficiency of the composed system is not longer a matter of coding, but of effective composition, of selecting effective components, and of managing an efficient flow of data among the modules.

3. Current state and future goals.

We have been able to develop the required infrastructure for megaprogramming from earlier funding, and see now the need to prove and scale the technology in a realistic setting. Central to this infrastructure is a new high-level, composition only language, CLAM, which provides access to heterogeneous services, either directly or via wrappers. Our current work is supported in part by DARPA, and earlier work was supported by the Commercenet Consortium. These efforts had to focus on relatively short-range demonstrations, as in logistics, and do not support essential long-term research.

The design of CHAIMS encompasses three objectives: 1. Scalability, 2. Natural parallelism, and 3. Optimizability. In MegaGeneS we will expend our efforts on the first of these objectives, by wrapping and exploiting realistic resources, moving to modern representations for data interchange, validating the language concepts, and providing a graphical user interface. The second objective, parallel operation, is intended to come nearly for free, since we only have to assure that remote services are not constrained by imposing synchronous control on them. The third objective, optimization, is the topic of software-oriented research proposals.

Data exchange among services is handled currently by wrapping the objects to be transmitted according to the ASN.1 protocols for packaging data objects. However, these conventions are not dynamic and must be fixed in the compiling phase of CHAIMS. It appears that our objectives in gaining scalability might be better served by a more modern convention. The potential for growth and flexibility provided by XML are worthy of investigation, and the associated DTD description may help also in selecting methods to be used.

[image: image1.wmf] Defines

resource

composition

CHAIMS

automates

generation of

client program and

network interfaces

Allocation of roles and layers for distributed, networked collaboration

Resource provider

provides processes

incorporating

knowledge

Public & private

 Resources

Mega

-

program

domain expert

Layer for sharing

a process model

Layer for sharing

resources

Customer

instance

Client-server protocols

CHAIMS

Model

 View

 Process

interaction

Service

 Views

4. Language concepts

CHAIMS separates computational services, and managing and composing those services. It can also be viewed as an order-of-magnitude scale-up of object-oriented principles. All computation is performed by external services or local, compliant service modules. The CHAIMS language CLAM only provides primitives for composition and monitoring of remote computations. The principal commands are SETUP, ESTIMATE, INVOKE, EXAMINE, EXTRACT and TERMINATE. Iterations among these commands provide flexibility and effectiveness of execution control. To focus on principles, rather than on any particular approach, we allow heterogeneity across service providers, in terms of source languages and also of distribution protocols. For communication we have used CORBA, DCE, JAVA RMI, and DCOM, and will investigate new conventions, as KQML and XML as well.

A CHAIMS source program written in CLAM provides a de-facto architectural description of the systems. Since it is also compilable and executable, problems of human interpretation of software architectural models that terminate with drawings of boxes and arrows are avoided. As a language, CLAM has to tread a fine line between expressibility and simplicity.

The CHAIMS megaprogramming language is targeted to be used by domain experts and programmers that work in the application context for composing substantial systems from the available resources. A specific example of the variety of computational methods that are available in genomics is the variety of computations available to attempt to define the boundaries of introns embedded in source DNA, separating exons of the same gene. There are Markov models of various orders, multiple dependency models, neural net, and CART processes. Since all these models have been primed by learning from carefully selected and identified sequences, they are best executed at the sites where they are actively maintained. A similar wealth of methods exists for other subtasks in genomics, as the assembly of EST strings, and the breadth of computational resources is continually expanding. All these computations are also large, so that parallel execution substantially decreases the time needed and increases the options for finding a significant result.

While the genomic community shares its processes relatively liberally, we recognize that in other domains proprietary concerns will prevent the actual sharing of code, but then black-box services may be provided by contract or for incremental reimbursement. In those settings, the autonomy of remote processes supported by CHAIMS will be even more essential.

5. Scope of research

The specific research in MegaGeneS will address issues relating to multi-server control and interoperation, heterogeneity of languages and interfaces, scalability, and support for user interaction. In all these areas dealing with networks of distributed processes adds new issues to the scope of knowledge networks focused on information. We have considered the candidate technical choices for these issues, and will describe them in detail in the full proposal. User interaction will require a great deal of novel research, since we expect that the end-user will want a graphical interface for process composition, so that the CHAIMS language in turn will provide the formal specification of the process model, and be the input to compilers and optimizers. While we can build again on the experience gained in information systems and digital libraries, interaction with a process model rather than an information model will surely reveal new issues.

A process model overlaps somewhat with workflow models. Here, however, all interactions and data transfers will be directly control and mediated by the CHAIMS program, while workflow control typically depends on messages and responses, which may be acknowledged by staff. Of course, we have the advantage of only having to port information and control commands, while workflow systems must also deal with non-digital objects. Even with these distinctions, we will continue to keep abreast of workflow innovations to complement our research.

We do not intend, within the scope of this research, to advance the science of genomics itself. However, if our composition tools can support a relevant effort within the time-frame of the proposal, we will gladly spend resources to make that happen.

6. Investigators and resources

The three investigators leading this project cover the scope of MegaGeneS well. Both Russ Altman and Gio Wiederhold share appointments in Computer Science and Medicine at Stanford, and have advised students in both departments. They complement each other in terms of genomic expertise. Russ has focused more on analysis and Gio on knowledge and information infrastructures. Dorothea Beringer has gained her PhD in 1997 in large scale, object oriented software design at the EPF Lausanne, and has worked on the CHAIMS project since, while also teaching a course on large-scale software design.

There is considerable expertise at Stanford in the use of tools to explore the genomic domain. The Bioinformatics resource at our Beckman center maintains and consults a number of analysis packages, as BLAST, Decypher, FASTA, GCC, GDE, Insight, IntelliGenetics products, Look, Midas, Paracell, Phylip, RASMOL, Sybyl, etc. And we can access services outside of Stanford, as Genbank at NLM, GDB at ORNL, SwissProt at Lausanne, OMIM at Johns Hopkins, EST information from Merck at the Washington Univ., Metabolic pathways (EcoCyc) at SRI International, etc. We will be able to exploit some personal contacts to help us in assessing which tools have potential for process based interactions.

Conclusion:

In MegaGeneS we propose an approach that is complementary to the common vision of data and knowledge integration. By focusing on collaboration where the processing steps are expressed procedurally by remote services, we greatly broaden the power that networking can bring to information processing. A problem that we are facing in the NSF context is that our proposal does not fit neatly into any single one of the KDI categories. We believe that we are opening a new paradigm, which actually spans all of the categories listed. However, the Knowledge Networking area is most significant, since that is where

the contributions will focus.

===========================

_978850809.ppt

 Defines

resource

composition

CHAIMS

automates

generation of

client program and

network interfaces

Allocation of roles and layers for distributed, networked collaboration

Resource provider

provides processes

incorporating

knowledge

Public & private

 Resources

Mega-

program

domain expert

Layer for sharing

a process model

Layer for sharing

resources

Customer

instance

Client-server protocols

CHAIMS

Model

 View

 Process

interaction

Service

 Views

