
4 Query Flocks

Goal: apply a-priori trick and other association-rule tricks to a more general class of complex queries.

4.1 Query Flock Notation

A query
ock is a generate-and-test system consisting of:

1. A query with parameters; we write the query in Datalog to simplify certain optimizations later.

2. A �lter condition that says when the values of the parameters yields a query result that we accept.

� Note that the query
ock is really a single query about its parameters; the parametrized-query com-
ponent is not the real query.

Example 4.1 : Frequent item pairs in a relation Baskets(BID; item) can be written as the query
ock:

Answer(b) <- Baskets(b,$1) AND Baskets(b,$2)

COUNT(Answer) >= s

If we replace parameters $1 and $2 by values, e.g., \diapers" and \beer," respectively, then the query is
asking for the set of basket ID's such that the basket contains both diapers and beer. The condition on the
answer says that there must be at least s such baskets, where s is the support threshold. Thus, this query

ock asks the usual question about the parameters $1 and $2: \which pairs of items appear in at least s
baskets?" 2

Example 4.2 : Here is a less usual example. It supposes relations:

1. Cust(name; attr; value). Tuple (n; a; v) means the customer with name n has value v for attribute a.
For instance, (Sue; age; 45) means that Sue is of age 45.

2. Buys(name; prod) tells what products each customer buys.

3. Type(prod; type) tells the type of each product, e.g., product \Coke" is of type \soft drink."

Here is the query
ock that asks for values of some attribute that occur at least s times among buyers of a
certain type of product:

Answer(n) <- Cust(n,$a,$v) AND Buys(n,p) AND Type(p,$t)

COUNT(Answer) >= s

2

4.2 Execution Strategies

The analog of a-priori is the observation that if we delete one or more subgoals from a Datalog query, the
size of the set of answers can only increase. Our hope is that by computing some temporary relations using
a subset of the subgoals, we can �lter the sets of values for one or more parameters, using computations that
are much less expensive than computing the entire query about the full set of parameters.

We can describe the intermediate steps, as well as the �nal computation of the parameter-values that
pass the test by a sequence of steps of the form

<Relation> := FILTER(<parameters>, <query>, <condition>)

� The query is the
ock query, with zero or more subgoals eliminated. A requirement is that this query
be safe; i.e., every variable appearing in the head appears in a nonnegated subgoal involving a relation
(i.e., not a subgoal involving an arithmetic comparison like a < b).

13

� The parameters are those appearing in the query.

� The condition is the same as the condition of the
ock itself.

Example 4.3 : The
ock of Example 4.1 might be solved by using the �rst subgoal to �lter $1 and the
second subgoal to �lter $2.

OK1($1) := FILTER({$1}, Answer(b) <- Baskets(b,$1), COUNT(Answer) >= s)

OK2($2) := FILTER({$2}, Answer(b) <- Baskets(b,$2), COUNT(Answer) >= s)

OK($1,$2) := FILTER({$1,$2}, Answer(b) <- Baskets(b,$1) AND

Baskets(b,$2) AND OK1($1) AND OK2($2),

COUNT(Answer) >= s)

� Of course a clever
ocks compiler recognizes that these two �ltering steps are really the same and only
computes one of OK1 and OK2.

� The reason a-priori often saves a lot of time is because the join of four relations at the last step
[computation of OK($1; $2)] can be carried out in an order that reduces the size of intermediate
relations, when compared with just joining Baskets with itself, as suggested by the ordering of Fig. 6.

Baskets OK1 Baskets OK2

JOIN JOIN

JOIN

Figure 6: Preferred order for join in market-basket
ock

� Notice that the ordering in Fig. 6 is not a left-deep ordering, which suggests that the typical commercial
DBMS would not �nd this order, and a query-
ocks compiler needs to feed simpler queries to the DBMS
so the right order of join is used by the DBMS.

2

Example 4.4 : Now let us consider how we might use �lter steps to improve the running time of the �nal
join in Example 4.2. Using just the Cust subgoal is a �lter on f$a; $vg, but there is no useful �lter for just
one of these parameters. We cannot use:

Answer(n) <- Type(p,$t)

to �lter $t, because the query is not safe (n appears in the head but not the body). However,

Answer(n) <- Buys(n,p) AND Type(p,$t)

is safe and may be used. A possible plan for optimizing this query
ock is in Fig. 7. Figure 8 shows the
preferred join order for the �nal step. 2

14

OK1($a,$v) := FILTER({$a,$v}, Answer(n) <- Cust(n,$a,$v),

COUNT(Answer) >= s)

OK2($t) := FILTER({$t}, Answer(n) <- Buys(n,p) AND Type(p,$t),

COUNT(Answer) >= s)

OK($a,$v,$t) := FILTER({$a,$v,$t}, Answer(n) <- Cust(n,$a,$v), AND

Buys(n,p) AND Type(p,$t) AND

OK1($a,$v) AND OK2($t),

COUNT(Answer) >= s)

Figure 7: Query-
ock plan for Example 4.2

OK1 Cust Type OK2

JOIN JOIN

JOIN

Buys

JOIN

Figure 8: Join order for �nal step in Fig. 7

15

