Evaluating the Web

PageRank

Hubs and Authorities

PageRank

- Intuition: solve the recursive equation: "a page is important if important pages link to it."
In high-falutin' terms: importance = the principal eigenvector of the stochastic matrix of the Web.
- A few fixups needed.

Stochastic Matrix of the Web

Enumerate pages.
Page i corresponds to row and column i.
$M[i, j]=1 / n$ if page j links to n pages, including page $i ; 0$ if j does not link to i.

- $M[i, j]$ is the probability we'll next be at page i if we are now at page j.

Example

Suppose page j links to 3 pages, including i

Random Walks on the Web

Suppose \mathbf{v} is a vector whose $i^{\text {th }}$ component is the probability that we are at page i at a certain time.
\rightarrow If we follow a link from i at random, the probability distribution for the page we are then at is given by the vector $M \mathbf{v}$.

Random Walks --- (2)

-Starting from any vector \mathbf{v}, the limit $M(M(\ldots M(M \mathbf{v}) \ldots))$ is the distribution of page visits during a random walk.

- Intuition: pages are important in proportion to how often a random walker would visit them.
The math: limiting distribution = principal eigenvector of $M=$ PageRank.

Example: The Web in 1839

Simulating a Random Walk

\checkmark Start with the vector $\mathbf{v}=[1,1, \ldots, 1]$ representing the idea that each Web page is given one unit of importance.

- Repeatedly apply the matrix M to \mathbf{v}, allowing the importance to flow like a random walk.
Limit exists, but about 50 iterations is sufficient to estimate final distribution.

Example

- Equations v $=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2+m \\
& m=a / 2
\end{aligned}
$$

y	1	1	$5 / 4$	$9 / 8$		$6 / 5$
$\mathrm{a}=$	1	$3 / 2$	1	$11 / 8$	\ldots	$6 / 5$
m	1	$1 / 2$	$3 / 4$	$1 / 2$		$3 / 5$

Solving The Equations

-Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
\checkmark Add in the fact that $y+a+m=3$ to solve.

- In Web-sized examples, we cannot solve by Gaussian elimination; we need to use relaxation (= iterative solution).

Real-World Problems

Some pages are "dead ends" (have no links out).

- Such a page causes importance to leak out.
-Other (groups of) pages are spider traps (all out-links are within the group).
- Eventually spider traps absorb all importance.

Microsoft Becomes Dead End

Example

- Equations v $=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2 \\
& m=a / 2
\end{aligned}
$$

y	1	1	$3 / 4$	$5 / 8$		0
a						
m	1	$1 / 2$	$1 / 2$	$3 / 8$	\ldots	0
1	$1 / 2$	$1 / 4$	$1 / 4$		0	

M’soft Becomes Spider Trap

Example

- Equations v $=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2 \\
& m=a / 2+m
\end{aligned}
$$

y	1	1	$3 / 4$	$5 / 8$		0			
a									
m							$\quad 1$	$1 / 2$	$1 / 2$
:---	:---								
$3 / 8$	\ldots								
0									
1	$3 / 2$								
$7 / 4$	2								

Google Solution to Traps, Etc.

- "Tax" each page a fixed percentage at each interation.
- Add the same constant to all pages.
- Models a random walk with a fixed probability of going to a random place next.

Example: Previous with 20\% Tax

\rightarrow Equations $\mathbf{v}=0.8(M \mathbf{v})+0.2$:

$$
\begin{aligned}
y & =0.8(y / 2+a / 2)+0.2 \\
a & =0.8(y / 2)+0.2 \\
m & =0.8(a / 2+m)+0.2
\end{aligned}
$$

y						
$\mathrm{a}=$	1	1.00	0.84	0.776		$7 / 11$
m	1	0.60	0.60	0.536	\ldots	$5 / 11$
1	1.40	1.56	1.688		$21 / 11$	

General Case

- In this example, because there are no dead-ends, the total importance remains at 3.
\checkmark In examples with dead-ends, some importance leaks out, but total remains finite.

Solving the Equations

-Because there are constant terms, we can expect to solve small examples by Gaussian elimination.
\rightarrow Web-sized examples still need to be solved by relaxation.

Speeding Convergence

- Newton-like prediction of where components of the principal eigenvector are heading.
Take advantage of locality in the Web.
Each technique can reduce the number of iterations by 50\%.
- Important --- PageRank takes time!

Predicting Component Values

- Three consecutive values for the importance of a page suggests where the limit might be.
1.0

Guess for the next round
0.55

Exploiting Substructure

\rightarrow Pages from particular domains, hosts, or paths, like stanford. edu or www-db.stanford.edu/~ullman tend to have higher density of links.
\rightarrow Initialize PageRank using ranks within your local cluster, then ranking the clusters themselves.

Strategy

Compute local PageRanks (in parallel?).
-Use local weights to establish intercluster weights on edges.
Compute PageRank on graph of clusters.

- Initial rank of a page is the product of its local rank and the rank of its cluster.
- "Clusters" are appropriately sized regions with common domain or lower-level detail.

In Pictures

Initial eigenvector

Hubs and Authorities

- Mutually recursive definition:
- A hub links to many authorities;
- An authority is linked to by many hubs.
- Authorities turn out to be places where information can be found.
- Example: course home pages.
-Hubs tell where the authorities are.
- Example: CSD course-listing page.

Transition Matrix A

\checkmark H\&A uses a matrix $A[i, j]=1$ if page i links to page $j, 0$ if not.
A^{T}, the transpose of A, is similar to the PageRank matrix M, but A^{T} has $1^{\prime} \mathrm{s}$ where M has fractions.

Example

Using Matrix A for H\&A

\checkmark Powers of A and A^{T} diverge in size of elements, so we need scale factors.
Let \mathbf{h} and \mathbf{a} be vectors measuring the "hubbiness" and authority of each page.
Equations: $\mathbf{h}=\lambda A \mathbf{a} ; \mathbf{a}=\mu A^{\top} \mathbf{h}$.

- Hubbiness = scaled sum of authorities of linked pages.
- Authority = scaled sum of hubbiness of predecessor pages.

Consequences of Basic Equations

\Rightarrow From $\mathbf{h}=\lambda A \mathbf{a} ; \mathbf{a}=\mu A^{T} \mathbf{h}$ we can
derive:

- $\mathbf{h}=\lambda \mu A A^{T} \mathbf{h}$
- $\mathbf{a}=\lambda \mu A^{T} A \mathbf{a}$
-Compute \mathbf{h} and \mathbf{a} by iteration, assuming initially each page has one unit of hubbiness and one unit of authority.
- Pick an appropriate value of $\lambda \mu$.

Example

$$
\left.\left.\begin{array}{l}
\mathrm{A}=\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}
\end{array} \quad \mathrm{~A}^{\mathrm{T}}=\begin{array}{|lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad \quad \mathrm{AA}^{\mathrm{T}}=\begin{array}{rrr}
3 & 2 & 1 \\
2 & 2 & 0 \\
1 & 0 & 1
\end{array} \right\rvert\, \quad \mathrm{A}^{\mathrm{T}} \mathrm{~A}=\begin{array}{|lll}
2 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

Solving the Equations

Solution of even small examples is tricky, because the value of $\lambda \mu$ is one of the unknowns.

- Each equation like $y=\lambda \mu(3 y+2 a+m)$ lets us solve for $\lambda \mu$ in terms of y, a, m; equate each expression for $\lambda \mu$.
\checkmark As for PageRank, we need to solve big examples by relaxation.

Details for \mathbf{h}--- (1)

$$
\begin{aligned}
& y=\lambda \mu(3 y+2 a+m) \\
& a=\lambda \mu(2 y+2 a) \\
& m=\lambda \mu(y+m)
\end{aligned}
$$

\rightarrow Solve for $\lambda \mu$:
$\lambda \mu=y /(3 y+2 a+m)=a /(2 y+2 a)=$

$$
m /(y+m)
$$

Details for \mathbf{h}--- (2)

\rightarrow Assume $y=1$.
$\lambda \mu=1 /(3+2 a+m)=a /(2+2 a)=$

$$
m /(1+m)
$$

Cross-multiply second and third:
$a+a m=2 m+2 a m$ or $a=2 m /(1-m)$
-Cross multiply first and third:
$1+m=3 m+2 a m+m^{2}$ or $a=\left(1-2 m-m^{2}\right) / 2 m$

Details for \mathbf{h}--- (3)

- Equate formulas for a :
$a=2 m /(1-m)=\left(1-2 m-m^{2}\right) / 2 m$
Cross-multiply:
$1-2 m-m^{2}-m+2 m^{2}+m^{3}=4 m^{2}$
Solve for $m: m=.268$
Solve for $a: a=2 m /(1-m)=.735$

Solving H\&A in Practice

\checkmark Iterate as for PageRank; don't try to solve equations.
But keep the scale of values within bounds.

- Example: scale to keep the largest component of the vector at 1.

H\&A Versus PageRank

\checkmark If you talk to someone from IBM, they will tell you "IBM invented PageRank."

- What they mean is that H\&A was invented by Jon Kleinberg when he was at IBM.
But these are not the same.
\checkmark H\&A has been used, e.g., to analyze important research papers.

