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Evaluating the Web

PageRank

Hubs and Authorities
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PageRank

�Intuition: solve the recursive equation: 
“a page is important if important pages 
link to it.”

�In high-falutin’ terms: importance = 
the principal eigenvector of the 
stochastic matrix of the Web.

� A few fixups needed.
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Stochastic Matrix of the Web

� Enumerate pages.

� Page i  corresponds to row and column i.

� M [i,j ] = 1/n if page j links to n pages, 
including page i ; 0 if j does not link to i.

� M [i,j ] is the probability we’ll next be at 
page i if we are now at page j.
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Example

i

j

Suppose page j links to 3 pages, including i

1/3
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Random Walks on the Web

�Suppose v is a vector whose i th

component is the probability that we are 
at page i at a certain time.

�If we follow a link from i at random, the 
probability distribution for the page we 
are then at is given by the vector M v.
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Random Walks --- (2)

�Starting from any vector v, the limit     
M (M (…M (M v ) …)) is the distribution 
of page visits during a random walk.

�Intuition: pages are important in 
proportion to how often a random 
walker would visit them.

�The math: limiting distribution = 
principal eigenvector of M = PageRank.
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Example: The Web in 1839

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    1

m    0  1/2   0

y    a     m
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Simulating a Random Walk

�Start with the vector v = [1,1,…,1] 
representing the idea that each Web 
page is given one unit of importance.

�Repeatedly apply the matrix M to v, 
allowing the importance to flow like a 
random walk.

�Limit exists, but about 50 iterations is 
sufficient to estimate final distribution. 
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Example

�Equations v = M v :

y = y /2 + a /2

a = y /2 + m

m = a /2

y

a    =

m

1

1

1

1

3/2

1/2

5/4

1

3/4

9/8

11/8

1/2

6/5

6/5

3/5

. . .
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Solving The Equations

�Because there are no constant terms, 
these 3 equations in 3 unknowns do not 
have a unique solution.

�Add in the fact that y +a +m = 3 to 
solve.

�In Web-sized examples, we cannot 
solve by Gaussian elimination; we need 
to use relaxation (= iterative solution).



11

Real-World Problems

�Some pages are “dead ends” (have no 
links out).

� Such a page causes importance to leak out.

�Other (groups of) pages are spider traps
(all out-links are within the group).

� Eventually spider traps absorb all importance.
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Microsoft Becomes Dead End

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    0

m    0  1/2   0

y    a     m
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Example

�Equations v = M v :

y = y /2 + a /2

a = y /2

m = a /2

y

a    =

m

1

1

1

1

1/2

1/2

3/4

1/2

1/4

5/8

3/8

1/4

0

0

0

. . .
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M’soft Becomes Spider Trap

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    0

m    0  1/2   1

y    a     m
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Example

�Equations v = M v :

y = y /2 + a /2

a = y /2

m = a /2 + m

y

a    =

m

1

1

1

1

1/2

3/2

3/4

1/2

7/4

5/8

3/8

2

0

0

3

. . .
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Google Solution to Traps, Etc.

�“Tax” each page a fixed percentage at 
each interation.

�Add the same constant to all pages.

�Models a random walk with a fixed 
probability of going to a random place 
next.
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Example: Previous with 20% Tax

�Equations v = 0.8(M v ) + 0.2:

y = 0.8(y /2 + a/2) + 0.2

a = 0.8(y /2) + 0.2

m = 0.8(a /2 + m) + 0.2

y

a    =

m

1

1

1

1.00

0.60

1.40

0.84

0.60

1.56

0.776

0.536

1.688

7/11

5/11

21/11

. . .
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General Case

�In this example, because there are no 
dead-ends, the total importance 
remains at 3.

�In examples with dead-ends, some 
importance leaks out, but total remains 
finite.
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Solving the Equations

�Because there are constant terms, we 
can expect to solve small examples by 
Gaussian elimination.

�Web-sized examples still need to be 
solved by relaxation.
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Speeding Convergence

�Newton-like prediction of where 
components of the principal eigenvector 
are heading.

�Take advantage of locality in the Web.

�Each technique can reduce the number 
of iterations by 50%.

� Important --- PageRank takes time!
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Predicting Component Values

�Three consecutive values for the 
importance of a page suggests where 
the limit might be.

1.0

0.7
0.6 0.55

Guess for the next round
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Exploiting Substructure

�Pages from particular domains, hosts, 
or paths, like stanford.edu or 
www-db.stanford.edu/~ullman

tend to have higher density of links.

�Initialize PageRank using ranks within 
your local cluster, then ranking the 
clusters themselves.
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Strategy

�Compute local PageRanks (in parallel?).

�Use local weights to establish intercluster
weights on edges.

�Compute PageRank on graph of clusters.

�Initial rank of a page is the product of its 
local rank and the rank of its cluster.

�“Clusters” are appropriately sized regions 
with common domain or lower-level detail.
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In Pictures

2.0

0.1

Local ranks

2.05

0.05Intercluster weights

Ranks of clusters

1.5

Initial eigenvector

3.0

0.15
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Hubs and Authorities

�Mutually recursive definition:
� A hub links to many authorities;

� An authority is linked to by many hubs.

�Authorities turn out to be places where 
information can be found.
� Example: course home pages.

�Hubs tell where the authorities are.
� Example: CSD course-listing page.
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Transition Matrix A

�H&A uses a matrix A [i,j ] = 1 if page i
links to page j, 0 if not.

�AT, the transpose of A, is similar to the 
PageRank matrix M, but AT has 1’s 
where M has fractions.
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Example

Yahoo

M’softAmazon

y     1    1    1

a     1 0    1

m  0    1    0

y    a     m

A =
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Using Matrix A for H&A

�Powers of A and AT diverge in size of 
elements, so we need scale factors.

�Let h and a be vectors measuring the 
“hubbiness” and authority of each page.

�Equations: h = Aa; a = AT h.

� Hubbiness = scaled sum of authorities of linked 
pages.

� Authority = scaled sum of hubbiness of 
predecessor pages. 
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Consequences of Basic Equations

�From h = Aa; a = AT h we can 
derive:
� h = AAT h

� a = ATA a

�Compute h and a by iteration, 
assuming initially each page has one 
unit of hubbiness and one unit of 
authority.
� Pick an appropriate value of .
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Example

1 1 1

A =  1 0 1

0 1 0

1 1 0

AT = 1 0 1

1 1 0

3 2 1

AAT= 2 2 0

1 0 1

2 1 2

ATA= 1 2 1

2 1 2

a(yahoo)

a(amazon)

a(m’soft)

=

=

=

1

1

1

5

4

5

24

18

24

114

84

114

. . .

. . .

. . .

1+√3
2

1+√3

h(yahoo)      =       1

h(amazon)   =       1

h(m’soft)     =       1

6

4

2

132

96

36

. . .

. . .

. . .

1.000

0.735

0.268

28

20

8
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Solving the Equations

�Solution of even small examples is 
tricky, because the value of is one of 

the unknowns.
� Each equation like y = (3y +2a +m) lets 

us solve for in terms of y, a, m ; equate 
each expression for 

�As for PageRank, we need to solve big 
examples by relaxation.
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Details for h --- (1)

y = (3y +2a +m)

a = (2y +2a )

m = (y  +m)

�Solve for 

3y +2a +m) = a / (2y +2a ) = 

m / (y  +m)
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Details for h --- (2)

�Assume y = 1.

3 +2a +m) = a / (2 +2a ) =            

m / (1+m)

�Cross-multiply second and third:

a +am = 2m +2am  or a = 2m /(1-m )

�Cross multiply first and third:

1+m = 3m + 2am +m 2 or a =(1-2m -m 2)/2m
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Details for h --- (3)

�Equate formulas for a :

a = 2m /(1-m ) = (1-2m -m 2)/2m

�Cross-multiply:

1 - 2m - m 2 - m + 2m 2 + m 3 = 4m 2

�Solve for m : m = .268

�Solve for a : a = 2m /(1-m ) = .735
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Solving H&A in Practice

�Iterate as for PageRank; don’t try to 
solve equations.

�But keep the scale of values within 
bounds.

� Example: scale to keep the largest 
component of the vector at 1.
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H&A Versus PageRank

�If you talk to someone from IBM, they 
will tell you “IBM invented PageRank.”

� What they mean is that H&A was invented 
by Jon Kleinberg when he was at IBM.

�But these are not the same.

�H&A has been used, e.g., to analyze 
important research papers.


