Evaluating the Web

PageRank Hubs and Authorities

PageRank

 Intuition: solve the recursive equation: "a page is important if important pages link to it."

In high-falutin' terms: *importance* = the principal eigenvector of the stochastic matrix of the Web.

A few fixups needed.

Stochastic Matrix of the Web

Enumerate pages.

- Page i corresponds to row and column i.
- M[i,j] = 1/n if page j links to n pages,
 including page i; 0 if j does not link to i.
 - *M*[*i*,*j*] is the probability we'll next be at page *i* if we are now at page *j*.

Example

Suppose page *j* links to 3 pages, including *i j i* 1/3

Random Walks on the Web

Suppose v is a vector whose ith component is the probability that we are at page i at a certain time.

If we follow a link from *i* at random, the probability distribution for the page we are then at is given by the vector *M*v.

Random Walks --- (2)

Starting from any vector v, the limit M(M(...M(Mv)...)) is the distribution of page visits during a random walk.
 Intuition: pages are important in proportion to how often a random walker would visit them.
 The math: limiting distribution = principal eigenvector of M = PageRank.

Example: The Web in 1839

Simulating a Random Walk

- Start with the vector v = [1,1,...,1] representing the idea that each Web page is given one unit of *importance*.
- Repeatedly apply the matrix *M* to v, allowing the importance to flow like a random walk.
- Limit exists, but about 50 iterations is sufficient to estimate final distribution.

Example

Equations $\mathbf{v} = M\mathbf{v}$: y = y/2 + a/2 a = y/2 + m m = a/2

y115/49/86/5a =13/2111/8 \ldots 6/5m11/23/41/23/5

Solving The Equations

- Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
- Add in the fact that y + a + m = 3 to solve.

In Web-sized examples, we cannot solve by Gaussian elimination; we need to use *relaxation* (= iterative solution).

Real-World Problems

Some pages are "dead ends" (have no links out).

Such a page causes importance to leak out.

 Other (groups of) pages are *spider traps* (all out-links are within the group).

Eventually spider traps absorb all importance.

Microsoft Becomes Dead End

Example

Equations v = Mv:
 y = y/2 + a/2
 a = y/2
 m = a/2

у	1	1	3/4	5/8	0
a =	1	1/2	1/2	3/8	 0
m	1	1/2	1/4	1/4	0

Example

• Equations $\mathbf{v} = M\mathbf{v}$: y = y/2 + a/2 a = y/2m = a/2 + m

у	1	I	3/4	3/8		U
a =	1	1/2	1/2	3/8	• • •	0
m	1	3/2	7/4	2		3

Google Solution to Traps, Etc.

"Tax" each page a fixed percentage at each interation.

Add the same constant to all pages.
 Models a random walk with a fixed probability of going to a random place next.

Example: Previous with 20% Tax

Equations $\mathbf{v} = 0.8(M\mathbf{v}) + 0.2$: y = 0.8(y/2 + a/2) + 0.2 a = 0.8(y/2) + 0.2 m = 0.8(a/2 + m) + 0.2

У	1	1.00	0.84	0.776		7/11
a =	1	0.60	0.60	0.536	• • •	5/11
m	1	1.40	1.56	1.688		21/11

General Case

 In this example, because there are no dead-ends, the total importance remains at 3.

 In examples with dead-ends, some importance leaks out, but total remains finite.

Solving the Equations

 Because there are constant terms, we can expect to solve small examples by Gaussian elimination.

 Web-sized examples still need to be solved by relaxation.

Speeding Convergence

- Newton-like prediction of where components of the principal eigenvector are heading.
- Take advantage of locality in the Web.
- Each technique can reduce the number of iterations by 50%.
 - Important --- PageRank takes time!

Predicting Component Values

Three consecutive values for the importance of a page suggests where the limit might be.

0.7

Guess for the next round

0.55

Exploiting Substructure

Pages from particular domains, hosts, or paths, like stanford.edu Or www-db.stanford.edu/~ullman tend to have higher density of links.
 Initialize PageRank using ranks within your local cluster, then ranking the clusters themselves.

Strategy

Compute local PageRanks (in parallel?). Use local weights to establish intercluster weights on edges. Compute PageRank on graph of clusters. Initial rank of a page is the product of its local rank and the rank of its cluster. "Clusters" are appropriately sized regions with common domain or lower-level detail.

Hubs and Authorities

Mutually recursive definition: A hub links to many authorities; An *authority* is linked to by many hubs. Authorities turn out to be places where information can be found. Example: course home pages. Hubs tell where the authorities are. Example: CSD course-listing page.

Transition Matrix A

- H&A uses a matrix A [i, j] = 1 if page i links to page j, 0 if not.
- A^T, the transpose of A, is similar to the PageRank matrix M, but A^T has 1's where M has fractions.

Using Matrix A for H&A

 Powers of A and A^T diverge in size of elements, so we need scale factors.

- Let h and a be vectors measuring the "hubbiness" and authority of each page.
- Equations: $\mathbf{h} = \lambda A \mathbf{a}$; $\mathbf{a} = \mu A^T \mathbf{h}$.
 - Hubbiness = scaled sum of authorities of linked pages.
 - Authority = scaled sum of hubbiness of predecessor pages.

Consequences of Basic Equations

- From $\mathbf{h} = \lambda A \mathbf{a}$; $\mathbf{a} = \mu A^T \mathbf{h}$ we can derive:
 - $\mathbf{h} = \lambda \mu A A^T \mathbf{h}$

a = λµA^TA **a**

Compute h and a by iteration, assuming initially each page has one unit of hubbiness and one unit of authority.

• Pick an appropriate value of $\lambda\mu$.

Example

$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	A ^T =	$\begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}$	1	AA ^T	$ \begin{array}{c} 3 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end{array} $)	$A^{T}A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$
a(yahoo) a(amazon) a(m'soft)	= = =	1 1 1	5 4 5	24 18 24	114 84 114	••••	$1+\sqrt{3}$ 2 $1+\sqrt{3}$
h(yahoo) h(amazon) h(m'soft)	= = =	1 1 1	6 4 2	28 20 8	132 96 36	••••	1.000 0.735 0.268 ₃₀

Solving the Equations

- Solution of even small examples is tricky, because the value of λµ is one of the unknowns.
 - Each equation like y = λμ(3y+2a+m) lets us solve for λμ in terms of y, a, m; equate each expression for λμ.

Details for **h** --- (1)

 $y = \lambda \mu (3y + 2a + m)$ $a = \lambda \mu (2y + 2a)$ $m = \lambda \mu (y + m)$ • Solve for $\lambda \mu$: $\lambda \mu = y / (3y + 2a + m) = a / (2y + 2a) = m / (y + m)$

Details for **h** --- (2)

Assume y = 1. $\lambda \mu = 1/(3 + 2a + m) = a/(2 + 2a) = m/(1+m)$

Cross-multiply second and third:
a + am = 2m + 2am or a = 2m/(1-m)
Cross multiply first and third:

 $1+m = 3m + 2am + m^2$ or $a = (1-2m - m^2)/2m$

Details for **h** --- (3)

Equate formulas for a: a = 2m/(1-m) = (1-2m-m²)/2m
Cross-multiply: 1 - 2m - m² - m + 2m² + m³ = 4m²
Solve for m: m = .268
Solve for a: a = 2m/(1-m) = .735

Solving H&A in Practice

- Iterate as for PageRank; don't try to solve equations.
- But keep the scale of values within bounds.
 - Example: scale to keep the largest component of the vector at 1.

H&A Versus PageRank

 If you talk to someone from IBM, they will tell you "IBM invented PageRank."

- What they mean is that H&A was invented by Jon Kleinberg when he was at IBM.
- But these are not the same.
- H&A has been used, e.g., to analyze important research papers.