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Low-Support, High-Correlation

Finding Rare but Similar Items

Minhashing

Locality-Sensitive Hashing
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The Problem

�Rather than finding high-support item-
pairs in basket data, look for items that 
are highly “correlated.”

� If one appears in a basket, there is a good 
chance that the other does.

� “Yachts and caviar” as itemsets: low 
support, but often appear together.
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Correlation Versus Support

�A-Priori and similar methods are 
useless for low-support, high-correlation 
itemsets.

�When support threshold is low, too 
many itemsets are frequent.

�Memory requirements too high.

�A-Priori does not address correlation.



4

Matrix Representation of 
Item/Basket Data

�Columns = items.

�Rows = baskets.

�Entry (r , c ) = 1 if item c is in basket   
r ; = 0 if not.

�Assume matrix is almost all 0’s.
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In Matrix Form

m c p b j

{m,c,b} 1 1 0 1 0

{m,p,b} 1 0 1 1 0

{m,b} 1 0 0 1 0

{c,j} 0 1 0 0 1

{m,p,j} 1 0 1 0 1

{m,c,b,j} 1 1 0 1 1

{c,b,j} 0 1 0 1 1

{c,b} 0 1 0 1 0
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Applications --- (1)

�Rows = customers; columns = items.

� (r, c ) = 1 if and only if customer r bought 
item c.

�Well correlated columns are items that 
tend to be bought by the same customers.

� Used by on-line vendors to select items to 
“pitch” to individual customers.
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Applications --- (2)

�Rows = (footprints of) shingles; 
columns = documents.

� (r, c ) = 1 iff footprint r is present in 
document c.

� Find similar documents, as in Anand’s
10/10 lecture.



8

Applications --- (3)

�Rows and columns are both Web 
pages.

� (r, c) = 1 iff page r links to page c.

� Correlated columns are pages with many of 
the same in-links.

� These pages may be about the same topic.
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Assumptions --- (1)

1. Number of items allows a small 
amount of main-memory/item. 

� E.g., main memory = 

Number of items * 100

2. Too many items to store anything in 
main-memory for each pair of items.
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Assumptions --- (2)

3.    Too many baskets to store anything in 
main memory for each basket.

4. Data is very sparse: it is rare for an  
item to be in a basket.
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From Correlation to Similarity

�Statistical correlation is too hard to 
compute, and probably meaningless.

�Most entries are 0, so correlation of 
columns is always high.

�Substitute “similarity,” as in shingles-
and-documents study.
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Similarity of Columns

�Think of a column as the set of rows in 
which it has 1.

�The similarity of columns C1 and C2 =           
Sim (C1,C2) = is the ratio of the sizes of 
the intersection and union of C1 and C2.
� Sim (C1,C2) = |C1∩C2|/|C1∪C2| = Jaccard
measure.
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Example

C1 C2
0 1

1 0

1 1 Sim (C1, C2) =

0 0 2/5 = 0.4

1 1

0 1
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Outline of Algorithm

1. Compute “signatures” (“sketches”) of 
columns = small summaries of columns.
� Read from disk to main memory.

2. Examine signatures in main memory to 
find similar signatures.
� Essential: similarity of signatures and 

columns are related.

3. Check that columns with similar 
signatures are really similar (optional).
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Signatures

� Key idea: “hash” each column C to a 
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a 
signature in main memory for each 
column.

2. Sim (C1, C2) is the same as the 
“similarity” of Sig (C1) and Sig (C2).
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An Idea That Doesn’t Work

�Pick 100 rows at random, and let the 
signature of column C be the 100 bits 
of C in those rows.

�Because the matrix is sparse, many 
columns would have 00. . .0 as a 
signature, yet be very dissimilar 
because their 1’s are in different rows.
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Four Types of Rows

�Given columns C1 and C2, rows may be 
classified as:

C1 C2
a 1 1

b 1 0

c 0 1

d 0 0

�Also, a = # rows of type a , etc.

�Note Sim (C1, C2) = a /(a +b +c ).



18

Minhashing

�Imagine the rows permuted randomly.

�Define “hash” function h (C ) = the 
number of the first (in the permuted 
order) row in which column C has 1.

�Use several (100?) independent hash 
functions to create a signature.
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Minhashing Example

Input matrix 

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121
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Surprising Property

�The probability (over all permutations of the 
rows) that h (C1) = h (C2) is the same as 
Sim (C1, C2).

�Both are a /(a +b +c )!

�Why?

� Look down columns C1 and C2 until we see a 1.

� If it’s a type a row, then h (C1) = h (C2).  If a 
type b or c row, then not.



21

Similarity for Signatures

�The similarity of signatures is the 
fraction of the rows in which they 
agree.

� Remember, each row corresponds to a 
permutation or “hash function.”
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Min Hashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:

1-3      2-4    1-2    3-4

Col.-Col.   0.75    0.75   0       0

Sig.-Sig.    0.67    1.00   0       0
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Minhash Signatures

�Pick (say) 100 random permutations of 
the rows.

�Think of Sig (C) as a column vector.

�Let Sig (C)[i] = row number of the first 
row with 1 in column C, for i th
permutation.
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Implementation --- (1)

�Number of rows = 1 billion.

�Hard to pick a random permutation from 
1…billion.

�Representing a random permutation requires 
billion entries.

�Accessing rows in permuted order is tough!

� The number of passes would be prohibitive.
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Implementation --- (2)

1. Pick (say) 100 hash functions.

2. For each column c and each hash function hi , 
keep a “slot” M (i, c ) for that minhash value.

3. for each row r, and for each column c with 1 
in row r, and for each hash function hi do

if hi (r ) is a smaller value than M (i, c ) then

M (i, c ) := hi (r ).

� Needs only one pass through the data.
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Example

Row C1 C2

1 1 0

2 0 1

3 1 1

4 1 0

5 0 1

h(x) = x mod 5

g(x) = 2x+1 mod 5

h(1) = 1 1 -

g(1) = 3 3 -

h(2) = 2 1 2

g(2) = 0 3 0

h(3) = 3 1 2

g(3) = 2 2 0

h(4) = 4 1 2

g(4) = 4 2 0

h(5) = 0 1 0

g(5) = 1 2 0
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Comparison with “Shingling”

�The shingling paper proposed using 
one hash function and taking the first 
100 (say) values.

�Almost the same, but:

� Faster --- saves on hash-computation.

� Admits some correlation among rows of 
the signatures.
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Candidate Generation

�Pick a similarity threshold s, a fraction 
< 1.

�A pair of columns c and d is a 
candidate pair if their signatures agree 
in at least fraction s of the rows.

� I.e., M (i, c ) = M (i, d )  for at least 
fraction s values of i.
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The Problem with Checking 
Candidates

�While the signatures of all columns may 
fit in main memory, comparing the 
signatures of all pairs of columns is 
quadratic in the number of columns.

�Example: 106 columns implies 5*1011

comparisons.

�At 1 microsecond/comparison: 6 days.
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Solutions

1. DCM method (Anand’s 10/10 slides) 
relies on external sorting, so several 
passes over the data are needed.

2. Locality-Sensitive Hashing (LSH) is a 
method that can be carried out in 
main memory, but admits some false 
negatives.
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Locality-Sensitive Hashing

�Unrelated to “minhashing.”

�Operates on signatures.

�Big idea: hash columns of signature 
matrix M several times.

�Arrange that similar columns are more 
likely to hash to the same bucket.

�Candidate pairs are those that hash at 
least once to the same bucket.
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Partition into Bands

�Divide matrix M into b bands of r rows.

�For each band, hash its portion of each 
column to k buckets.

�Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band.

�Tune b and r to catch most similar pairs, 
few nonsimilar pairs.
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Simplifying Assumption

�There are enough buckets that columns 
are unlikely to hash to the same bucket 
unless they are identical in a particular 
band.

�Hereafter, we assume that “same 
bucket” means “identical.”
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Matrix M

r rows b bands

Buckets
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Example

�Suppose 100,000 columns.

�Signatures of 100 integers.

�Therefore, signatures take 40Mb.

�But 5,000,000,000 pairs of signatures 
can take a while to compare.

�Choose 20 bands of 5 integers/band.
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Suppose C1, C2 are 80% Similar

�Probability C1, C2 identical in one 
particular band: (0.8)5 = 0.328.

�Probability C1, C2 are not similar in any 
of the 20 bands: (1-0.328)20 = .00035 .

� i.e., we miss about 1/3000th of the 80%-
similar column pairs.
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Suppose C1, C2 Only 40% Similar

�Probability C1, C2 identical in any one 
particular band: (0.4)5 = 0.01 .

�Probability C1, C2 identical in ≥ 1 of 20 
bands: ≤ 20 * 0.01 = 0.2 .

�Small probability C1, C2 not identical in 
a band, but hash to the same bucket.

�But false positives much lower for 
similarities << 40%. 
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LSH --- Graphically

� Example Target: All pairs with Sim > 60%.

�Suppose we use only one hash function:

s 1.0
Sim

Prob.

1.0

s 1.0
Sim

Prob.

1.0

0.0

Ideal

LSH (partition into bands) gives us:

Sim0.0

Prob.

1.0

s
1.0

brs )1(1 −−
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LSH Summary

�Tune to get almost all pairs with similar 
signatures, but eliminate most pairs 
that do not have similar signatures.

�Check in main memory that candidate 
pairs really do have similar signatures.

�Then, in another pass through data, 
check that the remaining candidate 
pairs really are similar columns .
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New Topic: Hamming LSH

�An alternative to minhash + LSH.

�Takes advantage of the fact that if 
columns are not sparse, random rows 
serve as a good signature.

�Trick: create data matrices of 
exponentially decreasing sizes, 
increasing densities.
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Amplification of 1’s

�Hamming LSH constructs a series of 
matrices, each with half as many rows, by 
OR-ing together pairs of rows.

�Candidate pairs from each matrix have 
(say) between 20% - 80% 1’s and are 
similar in selected 100 rows.
� 20%-80% OK for similarity thresholds ≥ 0.5.  

Otherwise, two “similar” columns could fail to 
both be in range for at least one matrix.
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Example

0

0

1

1

0

0

1

0

0

1

0

1

1

1

1
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Using Hamming LSH

�Construct the sequence of matrices.

� If there are R rows, then log2R matrices.

� Total work = twice that of reading the 
original matrix.

�Use standard LSH to identify similar 
columns in each matrix, but restricted 
to columns of “medium” density.


