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PCY Algorithm

�Hash-based improvement to A-Priori.

�During Pass 1 of A-priori, most memory is 
idle.

�Use that memory to keep counts of buckets 
into which pairs of items are hashed.
� Just the count, not the pairs themselves.

�Gives extra condition that candidate pairs 
must satisfy on Pass 2.
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PCY Algorithm --- Before Pass 1

�Organize main memory:

� Space to count each item.

• One (typically) 4-byte integer per item.

� Use the rest of the space for as many 
integers, representing buckets, as we can.
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PCY Algorithm --- Pass 1

FOR (each basket) {

FOR (each item)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that 

bucket

}

}



6

PCY Algorithm --- Between 
Passes

�Replace the buckets by a bit-vector:
� 1 means the bucket count ≥ the support s

(frequent bucket); 0 means it did not.

�Integers are replaced by bits, so the bit 
vector requires little second-pass space.

�Also, decide which items are frequent 
and list them for the second pass.
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PCY Algorithm --- Pass 2

� Count all pairs {i,j } that meet the 
conditions:

1. Both i and j are frequent items.

2. The pair {i,j }, hashes to a bucket 
number whose bit in the bit vector is 1.

� Notice all these conditions are 
necessary for the pair to have a 
chance of being frequent.
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Memory Details

�Hash table requires buckets of 2-4 
bytes.

� Number of buckets thus almost 1/4-1/2 of 
the number of bytes of main memory.

�On second pass, a table of (item, item, 
count) triples is essential.

� Thus, we need to eliminate 2/3 of the 
candidate pairs to beat a-priori.
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Multistage Algorithm

�Key idea: After Pass 1 of PCY, rehash 
only those pairs that qualify for Pass 2 
of PCY.

�On middle pass, fewer pairs contribute 
to buckets, so fewer false drops ---
frequent buckets with no frequent pair.
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Multistage --- Pass 3

� Count only those pairs {i,j } that 
satisfy:

1. Both i and j are frequent items.

2. Using the first hash function, the pair 
hashes to a bucket whose bit in the first 
bit-vector is 1.

3. Using the second hash function, the pair 
hashes to a bucket whose bit in the 
second bit-vector is 1.
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Important Points

1. The two hash functions have to be 
independent.

2. We need to check both hashes on the 
third pass.

� If not, the pair could pass tests (1) and 
(3), yet it was never hashed on the 
second pass because it was in a low-
count bucket on the first pass.
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Multihash

�Key idea: use several independent hash 
tables on the first pass.

�Risk: halving the number of buckets 
doubles the average count.  We have to 
be sure most buckets will still not reach 
count s.

�If so, we can get a benefit like 
multistage, but in only 2 passes.
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Extensions

�Either multistage or multihash can use 
more than two hash functions.

�In multistage, there is a point of 
diminishing returns, since the bit-vectors 
eventually consume all of main memory.

�For multihash, the bit-vectors total exactly 
what one PCY bitmap does, but too many 
hash functions makes all counts > s.
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All (Or Most) Frequent Itemsets 
In < 2 Passes

�Simple algorithm.

�SON (Savasere, Omiecinski, and Navathe).

�Toivonen.
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Simple Algorithm --- (1)

�Take a main-memory-sized random 
sample of the market baskets.

�Run a-priori or one of its improvements 
(for sets of all sizes, not just pairs) in 
main memory, so you don’t pay for disk 
I/O each time you increase the size of 
itemsets.

� Be sure you leave enough space for counts.
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Simple Algorithm --- (2)

�Use as your support threshold a suitable, 
scaled-back number.

� E.g., if your sample is 1/100 of the baskets, use  
s /100 as your support threshold instead of s .

�Verify that your guesses are truly frequent 
in the entire data set by a second pass.

�But you don’t catch sets frequent in the 
whole but not in the sample.

� Smaller threshold, e.g., s /125, helps.
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SON Algorithm --- (1)

�Repeatedly read small subsets of the 
baskets into main memory and perform 
the first pass of the simple algorithm on 
each subset.

�An itemset becomes a candidate if it is 
found to be frequent in any one or 
more subsets of the baskets.
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SON Algorithm --- (2)

�On a second pass, count all the 
candidate itemsets and determine 
which are frequent in the entire set.

�Key “monotonicity” idea: an itemset 
cannot be frequent in the entire set of 
baskets unless it is frequent in at least 
one subset.
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Toivonen’s Algorithm --- (1)

�Start as in the simple algorithm, but 
lower the threshold slightly for the 
sample.

� Example: if the sample is 1% of the 
baskets, use s /125 as the support 
threshold rather than s /100.

� Goal is to avoid missing any itemset that is 
frequent in the full set of baskets.
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Toivonen’s Algorithm --- (2)

�Add to the itemsets that are frequent in 
the sample the negative border of these 
itemsets.

�An itemset is in the negative border if it 
is not deemed frequent in the sample, 
but all its immediate subsets are.
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Example

�ABCD is in the negative border if and 
only if it is not frequent, but all of ABC,
BCD, ACD, and ABD are.
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Toivonen’s Algorithm --- (3)

�In a second pass, count all candidate 
frequent itemsets from the first pass, 
and also count the negative border.

�If no itemset from the negative border 
turns out to be frequent, then the 
candidates found to be frequent in the 
whole data are exactly the frequent 
itemsets.
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Toivonen’s Algorithm --- (4)

�What if we find something in the negative 
border is actually frequent?

�We must start over again!

�Try to choose the support threshold so the 
probability of failure is low, while the 
number of itemsets checked on the second 
pass fits in main-memory.


