Hash-Based Improvements to A-Priori

Park-Chen-Yu Algorithm
Multistage Algorithm
Approximate Algorithms

PCY Algorithm

-Hash-based improvement to A-Priori.
During Pass 1 of A-priori, most memory is idle.
\checkmark Use that memory to keep counts of buckets into which pairs of items are hashed.

- Just the count, not the pairs themselves.

Gives extra condition that candidate pairs must satisfy on Pass 2.

Picture of PCY

PCY Algorithm --- Before Pass 1

Organize main memory:

- Space to count each item.
- One (typically) 4-byte integer per item.
- Use the rest of the space for as many integers, representing buckets, as we can.

PCY Algorithm --- Pass 1

FOR (each basket) \{

FOR (each item)

add 1 to item's count;
FOR (each pair of items) \{
hash the pair to a bucket;
add 1 to the count for that bucket
\}

PCY Algorithm --- Between Passes

- Replace the buckets by a bit-vector:
- 1 means the bucket count \geq the support s (frequent bucket); 0 means it did not.
\rightarrow Integers are replaced by bits, so the bit vector requires little second-pass space.
Also, decide which items are frequent and list them for the second pass.

PCY Algorithm --- Pass 2

- Count all pairs $\{i, j\}$ that meet the conditions:

1. Both i and j are frequent items.
2. The pair $\{i, j\}$, hashes to a bucket number whose bit in the bit vector is 1.
Notice all these conditions are necessary for the pair to have a chance of being frequent.

Memory Details

Hash table requires buckets of 2-4 bytes.

- Number of buckets thus almost 1/4-1/2 of the number of bytes of main memory.
\diamond On second pass, a table of (item, item, count) triples is essential.
- Thus, we need to eliminate $2 / 3$ of the candidate pairs to beat a-priori.

Multistage Algorithm

\checkmark Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY.

- On middle pass, fewer pairs contribute to buckets, so fewer false drops --frequent buckets with no frequent pair.

Multistage Picture

Item counts	Freq. items	Freq. items First hash table Bitmap 1
Second hash table	Bitmap 2 Counts of Candidate pairs	

Multistage --- Pass 3

Count only those pairs $\{i, j\}$ that

 satisfy:1. Both i and j are frequent items.
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1 .
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1 .

Important Points

1. The two hash functions have to be independent.
2. We need to check both hashes on the third pass.

- If not, the pair could pass tests (1) and (3), yet it was never hashed on the second pass because it was in a lowcount bucket on the first pass.

Multihash

\checkmark Key idea: use several independent hash tables on the first pass.
\checkmark Risk: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach count s.
\rightarrow If so, we can get a benefit like multistage, but in only 2 passes.

Multihash Picture

Item counts	
Freq. items First hash table	Bitmap 1
Second hash table	Bitmap 2

Extensions

- Either multistage or multihash can use more than two hash functions.
\checkmark In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.
-For multihash, the bit-vectors total exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.

All (Or Most) Frequent Itemsets

In ≤ 2 Passes

\checkmark Simple algorithm.
SON (Savasere, Omiecinski, and Navathe).
-Toivonen.

Simple Algorithm --- (1)

-Take a main-memory-sized random sample of the market baskets.

- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don't pay for disk I/O each time you increase the size of itemsets.
- Be sure you leave enough space for counts.

The Picture

Copy of sample baskets
Space for counts

Simple Algorithm --- (2)

-Use as your support threshold a suitable, scaled-back number.

- E.g., if your sample is $1 / 100$ of the baskets, use $s / 100$ as your support threshold instead of s.
- Verify that your guesses are truly frequent in the entire data set by a second pass.
-But you don't catch sets frequent in the whole but not in the sample.
- Smaller threshold, e.g., $s / 125$, helps.

SON Algorithm --- (1)

Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset.
An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.

SON Algorithm --- (2)

\checkmark On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
< Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

Toivonen's Algorithm --- (1)

Start as in the simple algorithm, but lower the threshold slightly for the sample.

- Example: if the sample is 1% of the baskets, use $s / 125$ as the support threshold rather than $s / 100$.
- Goal is to avoid missing any itemset that is frequent in the full set of baskets.

Toivonen's Algorithm --- (2)

- Add to the itemsets that are frequent in the sample the negative border of these itemsets.
\Rightarrow An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are.

Example

$\triangle A B C D$ is in the negative border if and only if it is not frequent, but all of $A B C$, $B C D, A C D$, and $A B D$ are.

Toivonen's Algorithm --- (3)

- In a second pass, count all candidate frequent itemsets from the first pass, and also count the negative border.
\rightarrow If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets.

Toivonen’s Algorithm --- (4)

What if we find something in the negative border is actually frequent?
-We must start over again!

- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.

