
1

Hash-Based Improvements to
A-Priori

Park-Chen-Yu Algorithm

Multistage Algorithm

Approximate Algorithms

2

PCY Algorithm

�Hash-based improvement to A-Priori.

�During Pass 1 of A-priori, most memory is
idle.

�Use that memory to keep counts of buckets
into which pairs of items are hashed.
� Just the count, not the pairs themselves.

�Gives extra condition that candidate pairs
must satisfy on Pass 2.

3

Picture of PCY

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of

candidate

pairs

4

PCY Algorithm --- Before Pass 1

�Organize main memory:

� Space to count each item.

• One (typically) 4-byte integer per item.

� Use the rest of the space for as many
integers, representing buckets, as we can.

5

PCY Algorithm --- Pass 1

FOR (each basket) {

FOR (each item)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

6

PCY Algorithm --- Between
Passes

�Replace the buckets by a bit-vector:
� 1 means the bucket count ≥ the support s

(frequent bucket); 0 means it did not.

�Integers are replaced by bits, so the bit
vector requires little second-pass space.

�Also, decide which items are frequent
and list them for the second pass.

7

PCY Algorithm --- Pass 2

� Count all pairs {i,j } that meet the
conditions:

1. Both i and j are frequent items.

2. The pair {i,j }, hashes to a bucket
number whose bit in the bit vector is 1.

� Notice all these conditions are
necessary for the pair to have a
chance of being frequent.

8

Memory Details

�Hash table requires buckets of 2-4
bytes.

� Number of buckets thus almost 1/4-1/2 of
the number of bytes of main memory.

�On second pass, a table of (item, item,
count) triples is essential.

� Thus, we need to eliminate 2/3 of the
candidate pairs to beat a-priori.

9

Multistage Algorithm

�Key idea: After Pass 1 of PCY, rehash
only those pairs that qualify for Pass 2
of PCY.

�On middle pass, fewer pairs contribute
to buckets, so fewer false drops ---
frequent buckets with no frequent pair.

10

Multistage Picture

First

hash table

Second

hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of

Candidate

pairs

11

Multistage --- Pass 3

� Count only those pairs {i,j } that
satisfy:

1. Both i and j are frequent items.

2. Using the first hash function, the pair
hashes to a bucket whose bit in the first
bit-vector is 1.

3. Using the second hash function, the pair
hashes to a bucket whose bit in the
second bit-vector is 1.

12

Important Points

1. The two hash functions have to be
independent.

2. We need to check both hashes on the
third pass.

� If not, the pair could pass tests (1) and
(3), yet it was never hashed on the
second pass because it was in a low-
count bucket on the first pass.

13

Multihash

�Key idea: use several independent hash
tables on the first pass.

�Risk: halving the number of buckets
doubles the average count. We have to
be sure most buckets will still not reach
count s.

�If so, we can get a benefit like
multistage, but in only 2 passes.

14

Multihash Picture

First hash

table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of

Candidate

pairs

15

Extensions

�Either multistage or multihash can use
more than two hash functions.

�In multistage, there is a point of
diminishing returns, since the bit-vectors
eventually consume all of main memory.

�For multihash, the bit-vectors total exactly
what one PCY bitmap does, but too many
hash functions makes all counts > s.

16

All (Or Most) Frequent Itemsets
In < 2 Passes

�Simple algorithm.

�SON (Savasere, Omiecinski, and Navathe).

�Toivonen.

17

Simple Algorithm --- (1)

�Take a main-memory-sized random
sample of the market baskets.

�Run a-priori or one of its improvements
(for sets of all sizes, not just pairs) in
main memory, so you don’t pay for disk
I/O each time you increase the size of
itemsets.

� Be sure you leave enough space for counts.

18

The Picture

Copy of

sample

baskets

Space

for

counts

19

Simple Algorithm --- (2)

�Use as your support threshold a suitable,
scaled-back number.

� E.g., if your sample is 1/100 of the baskets, use
s /100 as your support threshold instead of s .

�Verify that your guesses are truly frequent
in the entire data set by a second pass.

�But you don’t catch sets frequent in the
whole but not in the sample.

� Smaller threshold, e.g., s /125, helps.

20

SON Algorithm --- (1)

�Repeatedly read small subsets of the
baskets into main memory and perform
the first pass of the simple algorithm on
each subset.

�An itemset becomes a candidate if it is
found to be frequent in any one or
more subsets of the baskets.

21

SON Algorithm --- (2)

�On a second pass, count all the
candidate itemsets and determine
which are frequent in the entire set.

�Key “monotonicity” idea: an itemset
cannot be frequent in the entire set of
baskets unless it is frequent in at least
one subset.

22

Toivonen’s Algorithm --- (1)

�Start as in the simple algorithm, but
lower the threshold slightly for the
sample.

� Example: if the sample is 1% of the
baskets, use s /125 as the support
threshold rather than s /100.

� Goal is to avoid missing any itemset that is
frequent in the full set of baskets.

23

Toivonen’s Algorithm --- (2)

�Add to the itemsets that are frequent in
the sample the negative border of these
itemsets.

�An itemset is in the negative border if it
is not deemed frequent in the sample,
but all its immediate subsets are.

24

Example

�ABCD is in the negative border if and
only if it is not frequent, but all of ABC,
BCD, ACD, and ABD are.

25

Toivonen’s Algorithm --- (3)

�In a second pass, count all candidate
frequent itemsets from the first pass,
and also count the negative border.

�If no itemset from the negative border
turns out to be frequent, then the
candidates found to be frequent in the
whole data are exactly the frequent
itemsets.

26

Toivonen’s Algorithm --- (4)

�What if we find something in the negative
border is actually frequent?

�We must start over again!

�Try to choose the support threshold so the
probability of failure is low, while the
number of itemsets checked on the second
pass fits in main-memory.

