Mining Data Streams

The Stream Model
Sliding Windows
Counting 1's

Data Management Versus
Stream Management

€ 1n a DBMS, input is under the control of
the programmer.

* SQL INSERT commands or bulk loaders.

€ Stream Management is important when
the input rate is controlled externally.

. : Google queries.

The Stream Model

@ Input tuples enter at a rapid rate, at
one or more input ports.

® The system cannot store the entire
stream accessibly.

€ How do you make critical calculations
about the stream using a limited
amount of (secondary) memory?

...1,52,7,0,9, 3 —»
aIrIVItIYIthg’

...0,0,10,1,1,0 —»

<« time

Streams Entering

Ad-Hoc
Queries

|

Processor

Standing
Queries Output

e
Limited
Working
Storage

N~

N

Archival
Storage

N

Applications — (1)

& Mining query streams.

* Google wants to know what queries are
more frequent today than yesterday.

Mining click streams.

* Yahoo wants to know which of its pages
are getting an unusual number of hits in
the past hour.

Applications — (2)

@ Sensors of all kinds need monitoring,
especially when there are many sensors
of the same type, feeding into a central
controller.

® Telephone call records are summarized
into customer bills.

Applications — (3)

@ IP packets can be monitored at a
switch.

* Gather information for optimal routing.
+ Detect denial-of-service attacks.

Sliding Windows

@ A useful model of stream processing is
that queries are about a window of
length /V—the NV most recent elements
received.

@ Interesting case: N is so large it cannot
be stored in memory, or even on disk.

+ Or, there are so many streams that windows
for all cannot be stored.

gwertyuio

gwertyuio

gwertyuio

gwertyuio

<+«— Past

pasdf

ghjklzxcvbnm

plasdf

ghjklzxcvbnm

pasdf

ghjklzxcvbnm

pas/df

ghjklzxcvbnm

Future —

Counting Bits — (1)

¢ : given a stream of 0's and 1's,
be prepared to answer queries of the

form “how many 1's in the last & bits?”
where k£ < W.

¢ : store the most recent
N bits.

+ When new bit comes in, discard the NV +1st
bit.

10

Counting Bits — (2)

€®You can't get an exact answer without
storing the entire window.

& Real Problem: what if we cannot afford
to store NV bits?

+ E.g., we are processing 1 billion streams

and V =1

But we're ha
answer.

DI

D

lion

Dy with an approximate

11

Something That Doesn't
(Quite) Work

€ Summarize exponentially increasing
regions of the stream, looking
backward.

@ Drop small regions if they begin at the
same point as a larger region.

12

We can construct the count of
the last V bits, except we're
Not sure how many of the last
6 are included.

Example

10

1

1

o

010011100010100100010110110111001010110011010

<

N

13

>

What's Good?

@ Stores only O(log?/V) bits.
* O(log V) counts of log,/V bits each.

€ Easy update as more bits enter.
@ Error in count no greater than the

number of 1’s in the “unknown” area.

14

What's Not So Good?

® As long as the 1’s are fairly evenly
distributed, the error due to the
unknown region is small — no more than
50%.

& But it could be that all the 1's are in the
unknown area at the end.

@ In that case, the error is unbounded.

15

FIXup

@ Instead of summarizing fixed-length
blocks, summarize blocks with specific
numbers of 1’s.

+ Let the block sizes (number of 1’s)
increase exponentially.

® When there are few 1’'s in the window,
block sizes stay small, so errors are
small.

16

DGIM* Method

@ Store O(log?/V) bits per stream.
® Gives approximate answer, never off by

more than 50%.

* Error factor can be reducec
> 0, with more complicatec

to any fraction
algorithm and

proportionally more stored

*Datar, Gionis, Indyk, and Motwani

DItS.

17

Timestamps

® Each bit in the stream has a fimestamp,
starting 1, 2, ...

@ Record timestamps modulo V (the
window size), so we can represent any
timestamp in O(log,/V) bits.

18

Buckets

® A bucket in the DGIM method is a
record consisting of:
1. The timestamp of its end [O(log V) bits].
2. The number of 1’s between its beginning
and end [O(log log /) bits].
¢ : number of 1’s
must be a power of 2.
+ That explains the log log A in (2).

19

Representing a Stream by Buckets

Either one or two buckets with the
same power-of-2 number of 1’s.

Buckets do not overlap in timestamps.

® Buckets are sorted by size.
+ Earlier buckets are not smaller than later
buckets.
@ Buckets disappear when their end-time
is > N time units in the past.

20

Bucketized Stream

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 size 2 sizel

beyond Ivindow. /\ /\ \

100101011000101 1010101010101011010101010101110‘1010101 110101000 10110

< N >

21

Updating Buckets — (1)

®\When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to
/N time units before the current time.

@ If the current bit is 0, no other changes
are needed.

22

Updating Buckets — (2)

& If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.
€ End timestamp = current time.

2. If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4.

4. And so on ...

23

Example

1001010110001011010101010101011010101010101110h0101011101010001011

0010101100010110101010101010110101010101011101010101110101

hooL01 100101

0010101100010110101010101010110101010101011101010101110101

h001L0110010fL

0101100010110101010101010110101010101011101010101110101

D00

101100110

11

0101100010110101010101010110101010101011101010101110101

D00

10110010

11

0101100010110101010101010110101010101011101010101110101

D00

10110010

11

24

ol

ol

Querying

® To estimate the number of 1’s in the
most recent NV bits:

1. Sum the sizes of all buckets but the last.
2. Add half the size of the last bucket.

€ Remember: we don’t know how many
1's of the last bucket are still within
the window.

25

Error Bound

@ Suppose the last bucket has size 2%

€ Then by assuming 2%-1 of its 1’s are still
within the window, we make an error of
at most 241,

@ Since there is at least one bucket of
each of the sizes less than 2% the true
sum is no less than 24-1.

@ Thus, error at most 50%.

26

Extensions (For Thinking)

€ Can we use the same trick to answer
queries "How many 1's in the last £ ?”
where k< NV?

¥ Can we handle the case where the
stream is not bits, but integers, and we
want the sum of the last & ?

27

