
CS109B Notes for Lecture 5/5/95Recursive-Descent Parsing� Write one function A for each SC < A >.Its goal is to consume a pre�x of theavailable input (string of terminals) andreturn a parse tree with root < A > andthe consumed input as yield.It also needs to return the unconsumedinput.� Function A �rst decides which production for< A > to use at the root of the tree.It may only use the next input symbol todecide.� Having decided, A checks for each element ofthe selected production body, in turn.Terminal?: check it is next on the inputand consume it.SC?: Call its function on the same input,then proceed on whatever remaining in-put is returned.Why Recursive-Descent parsing?� A simple-to-implementmethod that works formany realistic languages, provided the gram-mar is manipulated somewhat, as below.Example: Here is a grammar for ML tuples, us-ing terminal a (\atom") for all non-tuple compo-nents. < tuple > ! ( < elList > )< elList > ! < element > , < elList >< elList > ! < element >< element > ! < tuple >< element > ! a1



Left-FactoringFor above example grammar:� < tuple > gives us no choice of production.� For < element >, choose a on input a.Choose < tuple > on any input symbolthat could be �rst in a string of L(<tuple>),namely on ) alone.� But what to choose for < elList >? Bothbodies begin with < element >, so the inputgives no clue.� Trick: left-factor the productions by introduc-ing a new SC < tail > that generates the\tail" of either body, i.e., whatever follows< element > in that production.(1) < tuple > ! ( < elList > )(2) < elList > ! < element > < tail >(3) < tail > ! , < elList >(4) < tail > ! �(5) < element > ! < tuple >(6) < element > ! aRepresenting Parse Trees in MLTo complete our example, we'll write the functionsfor this grammar in ML. Below is a datatype PTfor parse trees.� The �rst component is always a node label.e.g., Leaf(",") is a leaf node labeledcomma.� The constructors besides Leaf represent inte-rior nodes with a label and 1{3 subtrees.datatype PT =Three of string * PT * PT * PT |Two of string * PT * PT |One of string * PT |Leaf of string;2



fun tuple("("::xs) =let val (ys,t) = elList(xs);in case ys ofnil => raise Fail |(")"::zs) =>(zs, Three("tuple", Leaf("("), t, Leaf(")"))) |=> raise Failend| tuple( ) = raise Failand elList(x::xs) =if x="(" orelse x="a" thenlet val (ys,t1) = element(x::xs);val (zs,t2) = tail(ys);in (zs, Two("elList", t1, t2))endelse raise Fail| elList( ) = raise Failand element("a"::xs) = (xs, One("elmnt", Leaf("a")))| element(xs) =let val (ys,t) = tuple(xs);in (ys, One("elmnt", t))endand tail(","::xs) =let val (ys,t) = elList(xs);in (ys, Two("tail", Leaf(","), t))end| tail(xs) = (xs, One("tail", Leaf("epsln")));fun parse(s) =let val (ys,t) = tuple(explode(s));in printT(0,t)end;parse("((a,a),(a,a))");3



We also need the following exception to handlethe case where the input is not in the languageL(<tuple>).exception Fail;� Code on p. 3, discussed in class.� Critical decision: expanding < tail >, clearlyproduction (3) is right on comma input. Pro-duction (4) is right only on symbols that canfollow a \tail." That is only right-paren.Why?Table-Driven ParserInstead of mutually recursive functions, we cansummarize the decisions in a table and write oneprogram that will examine any table and any in-put and try to parse the input according to thetable.Example: For our grammar:a , ( )< tuple > 1< elList > 2 2< tail > 3 4< element > 6 5Parser Architecture1. A stack of SC's and terminals representinggoals that need to be found on the input.Initially, stack consists of one SC, theone that represents the language beingparsed.2. A list of terminals: the remaining input char-acters.Often, it is necessary to follow the in-put by an endmarker character, de-noted ENDM in FCS. Our present exam-ple doesn't happen to need it, becausethe balancing right parenthesis tips theparser o� that the end has been reached.4


