
CS145 Lecture Notes #13

SQL3 Recursion

Introduction

Example schema: ParentChild(parent, child)

Example data:

(’Homer’, ’Bart’);

(’Homer’, ’Lisa’);
(’Marge’, ’Bart’);

(’Marge’, ’Lisa’);
(’Abe’, ’Homer’);

(’Ape’, ’Abe’);

Example query: find all of Bart’s ancestors
“Ancestor” has a recursive definition:

SQL2 does not support recursive queries:
Need to write PL/SQL or embedded SQL

SQL3 supports recursive queries:
WITH statement
First, define AncestorDescendent(ancestor, descendent)

Then, find Bart’s ancestors

WITH

RECURSIVE AncestorDescendent(ancestor, descendent) AS
(SELECT * FROM ParentChild)

UNION
(SELECT ad1.ancestor, ad2.descendent

FROM AncestorDescendent ad1, AncestorDescendent ad2

WHERE ad1.descendent = ad2.ancestor)
SELECT ancestor

FROM AncestorDescendent
WHERE descendent = ’Bart’;

SQL3 only requires support of linear recursion: each RECURSIVE defini-
tion has at most one reference to a recursively-defined relation

Can we make the above query linear?

Jun Yang 1 CS145 Spring 1999



Fixed-Point Semantics

Analogy in Mathematics

If is a function from some type to itself, a fixed point of is a
value of type such that
Example: what is the fixed point of ?
A numerical method to compute fixed point of :

Start with a “seed” :
Compute

If (numerically), stop; is a fixed point of
Otherwise, ; repeat

Example: compute the fixed point of given seed 1

Fixed Point of a Recursive Query

Think of a query as a function that takes one table as input and computes
another as output: a fixed point of is a table such that
To compute fixed point of :

Start with an empty table:
Evaluate the query over the current contents of

If the query result is identical to , stop; is a fixed point
Otherwise, the query result; repeat

Example: compute AncestorDescendent (using the linear version)

Intuition: why does fixed-point iteration give us the right answer?
Initially, we know nothing about ancestor-descendent relationships
In Round 1, we deduce that parents and children are ancestors and
descendents
In each subsequent round, we use the facts deduced in previous rounds
to get more ancestor-descendent relationships
We stop when no new facts can be proven

Jun Yang 2 CS145 Spring 1999



Operational Semantics of WITH Statement

General syntax:

WITH

RECURSIVE AS , ...
RECURSIVE AS

;

Note that may refer to
Operational semantics:

1.
2. Evaluate using the current contents of :

3. If for some :
3.1.
3.2. Go to 2.

4. Compute using the current contents of , and output the
result

Example: find Bart’s ancestors

Monotonicity & Recursion

Suppose that query is posed over table (and perhaps other tables):
is monotone with respect to if adding tuples to can never cause

any tuple to be removed from the result of
is not monotone with respect to if adding tuples to might cause

some tuple to be removed from the result of
Example schema: Student(SID, name, age, GPA)

Example data: (123, ’Bart’, 10, 3.0), (456, ’Lisa’, 8, 4.0)

Example: students with GPA higher than 3.9

Example: students with the lowest GPA
What if we insert (987, ’Nelson’, 10, 2.0)?

“Bad mix” of nonmonotonicity and recursion cause problems
Example: reward students with GPA higher than 3.9

Those not on Dean’s List should get a scholarship
Those without scholarships should be on Dean’s List

Jun Yang 3 CS145 Spring 1999



WITH

RECURSIVE Scholarship(SID) AS -- Q1

RECURSIVE DeansList(SID) AS -- Q2

...

Q1 is not monotone with respect to DeansList
Q2 is not monotone with respect to Scholarship

Problem: minimal fixed point is not unique

Problem: fixed-point iteration does not converge

Dependency Graph

One node for each table
A directed arc if is defined in terms of
Label the directed arc “ ” if the query defining is not monotone
with respect to

Requirement for legal SQL3 recursion: no cycle containing a “ ” arc
Legal example: find Bart’s ancestors

Illegal example: reward students with GPA higher than 3.9

A more subtle example:

WITH RECURSIVE P(x) AS

(SELECT * FROM R) UNION (SELECT * FROM Q),
RECURSIVE Q(x) AS

SELECT SUM(x) FROM P
...

Jun Yang 4 CS145 Spring 1999



Stratified Recursion

The stratum of a node is the maximum number of “ ” arcs on any path
from in the dependency graph
Example: find Bart’s ancestors

Stratum of ParentChild:
Stratum of AncestorDescendent:

Example: reward students with GPA higher than 3.9
Stratum of Student:
Stratum of Scholarship:
Stratum of DeansList:

Example: find all pairs of persons with no common ancestors

WITH
RECURSIVE AncestorDescendent(ancestor, descendent) AS

(SELECT * FROM ParentChild)

UNION
(SELECT ad.ancestor, pc.child

FROM AncestorDescendent ad, ParentChild pc
WHERE ad.descendent = pc.parent),

Person(person) AS

RECURSIVE NoCommonAncestor(person1, person2) AS

SELECT * FROM NoCommonAncestor;

Dependency graph:

Stratum of ParentChild:
Stratum of AncestorDescendent:
Stratum of Person:
Stratum of NoCommonAncestor:

Jun Yang 5 CS145 Spring 1999



A WITH statement is stratified if every node as a finite stratum
Requirement for legal SQL3 recursion (rephrased): WITH is stratified

Operational Semantics of Stratified WITH Statement

Compute tables lowest-stratum-first
For each stratum, use fixed-point iteration on all tables in that stratum

Example: find all pairs of persons with no common ancestors
Stratum 0:
Stratum 1:

Jun Yang 6 CS145 Spring 1999


