CS145 Lecture Notes #13
SQL 3 Recursion

| ntroduction

Example schema: Par ent Chi | d(parent, chil d)
Example data:

"Homer’, 'Bart’');
"Homer’, 'Lisa');
"Marge', 'Bart’);
"Marge’, 'Lisa');
" Abe’, ' Homer’);
"Ape’, ' Abe');

AN AN AN AN S

Example query: find al of Bart’'s ancestors
~ “Ancestor” has arecursive definition:

SQL 2 does not support recursive queries.
e Need to write PL/SQL or embedded SQL
SQL 3 supports recursive queries:
o W TH statement
— First, define Ancest or Descendent (ancest or, descendent)
— Then, find Bart’s ancestors

W TH
RECURSI VE Ancest or Descendent (ancestor, descendent) AS

(SELECT * FROM Par ent Chi | d)

UNI ON

(SELECT adl. ancestor, ad2.descendent

FROM Ancest or Descendent adl, AncestorDescendent ad2

WHERE adl. descendent = ad2. ancestor)
SELECT ancest or
FROM Ancest or Descendent
WHERE descendent = 'Bart’;

SQL 3 only requires support of linear recursion: each RECURSI VE defini-
tion has at most one reference to arecursively-defined relation
~» Can we make the above query linear?

Jun Yang 1 CS145 Spring 1999

Fixed-Point Semantics

Analogy in Mathematics

If f: 7 — 7isafunction from some type 7 to itself, afixed point of f isa
value = of type T such that f(z) =z
Example: what is the fixed point of f(z) = z/2?
A numerical method to compute fixed point of f:
o Start witha“seed” zy: x «— 9
e Compute f(x)
— If f(x) = « (numericaly), stop; x isafixed point of f
— Otherwise, x — f(z); repeat
Example: compute the fixed point of f(z) = z/2 givenseed 1

Fixed Point of a Recursive Query

Think of aquery ¢ as afunction that takes one table as input and computes
another as output: afixed point of ¢ isatablet such that ¢(t) =t
To compute fixed point of ¢:
e Start with an empty table: ¢t — &
e Evaluate the query ¢ over the current contents of ¢
— If the query result isidentical to ¢, stop; ¢ is afixed point
— Otherwise, t «+ the query result; repeat
Example: compute Ancest or Descendent (using the linear version)

Intuition: why does fixed-point iteration give us the right answer?
e Initially, we know nothing about ancestor-descendent relationships
e In Round 1, we deduce that parents and children are ancestors and
descendents
¢ Ineach subsequent round, we use the facts deduced in previous rounds
to get more ancestor-descendent relationships
e \We stop when no new facts can be proven

Jun Yang 2 CS145 Spring 1999

Operational Semantics of W TH Statement

General syntax:

W TH
RECURSI VE R; AS @1,
RECURSI VE R, AS @,

Q;
~» Notethat Q, Q1, ..., Q, may referto Ry, ..., R,
Operational semantics:
1 Ri«—9,..,.R, — O
2. BEvauate 4, ..., Q, using the current contents of Ry, ..., R,,:
R «— Q1 ..., R «— Q,
3. If R*Y # R; for some:
31 Ry «— R, ... R, «— R™
3.2. Goto 2
4. Compute @ using the current contents of R, ..., R,, and output the
result
Example: find Bart’'s ancestors

Monotonicity & Recursion

Suppose that query (@ is posed over table R (and perhaps other tables):
e () ismonotone with respect to R if adding tuplesto R can never cause
any tuple to be removed from the result of)
¢ () isnot monotone with respect to R if adding tuplesto R might cause
some tuple to be removed from the result of
Example schema: St udent (SI D, nane, age, GPA)
Exampledata: (123, ' Bart’, 10, 3.0), (456, 'Lisa’, 8, 4.0)
Example: students with GPA higher than 3.9

Example: students with the lowest GPA
~» What if weinsert (987, ' Nelson’, 10, 2.0)7?

“Bad mix” of nonmonotonicity and recursion cause problems
Example: reward students with GPA higher than 3.9

— Those not on Dean’s List should get a scholarship

— Those without scholarships should be on Dean’s List

Jun Yang 3 CS145 Spring 1999

W TH
RECURSI VE Schol arshi p(SI D) AS -- QA

RECURS| VE DeanslLi st (SID) AS -

e Q1L isnot monotone with respect to DeansLi st
e (2 isnot monotone with respect to Schol ar shi p
~+ Problem: minimal fixed point is not unique

~+ Problem: fixed-point iteration does not converge

Dependency Graph

e One node for each table
e Adirectedarc R — S if Risdefined intermsof S
e Label the directed arc “—” if the query defining R is not monotone
with respect to S
Requirement for legal SQL 3 recursion: no cycle containinga“—" arc
Legal example: find Bart’s ancestors

Illegal example: reward students with GPA higher than 3.9

A more subtle example:

W TH RECURSI VE P(x) AS
(SELECT * FROM R) UNI ON (SELECT * FROM Q)
RECURSI VE Q(x) AS
SELECT SUM x) FROM P

Jun Yang 4 CS145 Spring 1999

Stratified Recursion

The stratum of a node R is the maximum number of “—" arcs on any path
from R in the dependency graph
Example: find Bart’'s ancestors
— Stratum of Par ent Chi | d:
— Stratum of Ancest or Descendent :
Example: reward students with GPA higher than 3.9
— Stratum of St udent :
— Stratum of Schol ar shi p:
— Stratum of DeansLi st :
Example: find al pairs of persons with no common ancestors
W TH
RECURSI VE Ancest or Descendent (ancestor, descendent) AS
(SELECT * FROM Par ent Chi | d)
UNI ON
(SELECT ad. ancestor, pc.child
FROM Ancest or Descendent ad, ParentChild pc

WHERE ad. descendent = pc. parent),
Per son(person) AS

RECURSI VE NoConmonAncest or (per sonl, person2) AS

SELECT * FROM NoConmobnAncest or ;
— Dependency graph:

— Stratum of Par ent Chi | d:

— Stratum of Ancest or Descendent :
— Stratum of Per son:

— Stratum of NoConmonAncest or :

Jun Yang 5 CS145 Spring 1999

A W TH statement is stratified if every node as afinite stratum
~» Requirement for legal SQL 3 recursion (rephrased): W THis stratified

Operational Semantics of Stratified W TH Statement

e Compute tables lowest-stratum-first

e For each stratum, use fixed-point iteration on all tablesin that stratum
Example: find al pairs of persons with no common ancestors

— Stratum O:

— Stratum 1:

Jun Yang 6 CS145 Spring 1999

