
Data Streams & Continuous QueriesData Streams & Continuous Queries

The Stanford STREAM Project

stanfordstreamdatamanager

stanfordstreamdatamanager 2

Data StreamsData Streams

• Continuous streams of data elements
(may be unbounded, rapid, time-varying)

• Occur in a variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks, RFID tags
– Telecom call records
– Financial applications
– Web logs and click-streams
– Manufacturing processes

•• DSMSDSMS = Data Stream Management System

stanfordstreamdatamanager 3

DBMS versus DSMSDBMS versus DSMS

• Persistent relations

• One-time queries

• Random access

• Access plan
determined by query
processor and
physical DB design

• Transient streams (and
persistent relations)

• Continuous queries

• Sequential access

• Unpredictable data
characteristics and
arrival patterns

stanfordstreamdatamanager 4

DSMS

Scratch Store

The (Simplified) Big PictureThe (Simplified) Big Picture

Input streams

Register
Query

Streamed
Result

Stored
Result

Archive
Stored

Relations

stanfordstreamdatamanager 5

(Simplified) Network Monitoring(Simplified) Network Monitoring

Register
Monitoring

Queries

DSMS

Scratch Store

Network measurements,
Packet traces

Intrusion
Warnings

Online
Performance

Metrics

Archive
Lookup
Tables

stanfordstreamdatamanager 6

The STREAM SystemThe STREAM System

• Data streams and stored relations

• SQL-based language for registering
continuous queries

• Variety of query execution strategies

• Textual, graphical, and application interfaces

• Relational, centralized

stanfordstreamdatamanager 7

Rest of This LectureRest of This Lecture

• Query language

• System issues and overview (brief)

• Live system demonstration

stanfordstreamdatamanager 8

Goals in Language DesignGoals in Language Design

1) Support continuous queries over multiple
streams and updateable relations

2) Exploit existing relational semantics to the
extent possible

3) Easy queries should be easy to write

4) Simple queries should do what you expect

stanfordstreamdatamanager 9

Example Query 1Example Query 1

Two streams, contrived for ease of examples:
Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”

And O.customer = “Joe”

stanfordstreamdatamanager 10

Example Query 2Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each
clerk and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,

Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk

stanfordstreamdatamanager 11

NextNext

• Formal definitions for relations and streams

• Formal conversions between them

• Abstract semantics

• Concrete language: CQL

• Syntactic defaults and shortcuts

• Equivalence-based transformations

stanfordstreamdatamanager 12

Relations and StreamsRelations and Streams

• Assume global, discrete, ordered time domain

• Relation
– Maps time T to set-of-tuples R

• Stream
– Set of (tuple,timestamp) elements

stanfordstreamdatamanager 13

ConversionsConversions

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query language

stanfordstreamdatamanager 14

Conversion DefinitionsConversion Definitions

• Stream-to-relation
– S [W] is a relation — at time T it contains all tuples

in window W applied to stream S up to T
– When W = ∞, contains all tuples in stream S up to T

• Relation-to-stream
– Istream(R) contains all (r,T) where r∈R at time T

but r∉R at time T–1
– Dstream(R) contains all (r,T) where r∈R at time

T–1 but r∉R at time T
– Rstream(R) contains all (r,T) where r∈R at time T

stanfordstreamdatamanager 15

Abstract SemanticsAbstract Semantics

• Take any relational query language

• Can reference streams in place of relations
– But must convert to relations using any window

specification language
(default window = [∞])

• Can convert relations to streams
– For streamed results
– For windows over relations

(note: converts back to relation)

stanfordstreamdatamanager 16

Query Result at Time Query Result at Time TT

• Use all relations at time T

• Use all streams up to T, converted to relations

• Compute relational result

• Convert result to streams if desired

stanfordstreamdatamanager 17

Abstract Semantics Abstract Semantics –– Example 1Example 1

Select F.clerk, Max(O.cost)
From O [∞], F [Rows 1000]
Where O.orderID = F.orderID
Group By F.clerk

• Maximum-cost order fulfilled by each clerk in
last 1000 fulfillments

stanfordstreamdatamanager 18

Abstract Semantics Abstract Semantics –– Example 1Example 1

Select F.clerk, Max(O.cost)
From O [∞], F [Rows 1000]
Where O.orderID = F.orderID
Group By F.clerk

• At time T: entire stream O and last 1000
tuples of F as relations

• Evaluate query, update result relation at T

stanfordstreamdatamanager 19

Abstract Semantics Abstract Semantics –– Example 1Example 1

Select IstreamIstream(F.clerk, Max(O.cost))
From O [∞], F [Rows 1000]
Where O.orderID = F.orderID
Group By F.clerk

• At time T: entire stream O and last 1000
tuples of F as relations

• Evaluate query, update result relation at T

•• Streamed result:Streamed result: New element
(<clerk,max>,T) whenever <clerk,max>
changes from T–1

stanfordstreamdatamanager 20

Abstract Semantics Abstract Semantics –– Example 2Example 2

Relation CurPrice(stock, price)

Select stock, Avg(price)
From Istream(CurPrice) [Range 1 Day]
Group By stock

• Average price over last day for each stock

stanfordstreamdatamanager 21

Abstract Semantics Abstract Semantics –– Example 2Example 2

Relation CurPrice(stock, price)

Select stock, Avg(price)
From Istream(CurPrice) [Range 1 Day]
Group By stock

• Istream provides history of CurPrice

• Window on history, back to relation, group
and aggregate

stanfordstreamdatamanager 22

Concrete Language Concrete Language –– CQLCQL

• Relational query language: SQL

• Window specification language derived from
SQL-99
– Tuple-based windows
– Time-based windows
– Partitioned windows

• Simple “X% Sample” construct

stanfordstreamdatamanager 23

CQL (contCQL (cont’’d)d)

• Syntactic shortcuts and defaults
– So easy queries are easy to write and simple

queries do what you expect

• Equivalences
– Basis for query-rewrite optimizations
– Includes all relational equivalences, plus new

stream-based ones

• Examples: already seen some, more
coming up

stanfordstreamdatamanager 24

Shortcuts and DefaultsShortcuts and Defaults

• Prevalent stream-relation conversions can
make some queries cumbersome
– Easy queries should be easy to write

• Two defaults:
–– Omitted window:Omitted window: Default [∞]

–– Omitted relationOmitted relation--toto--stream operator:stream operator:
Default Istream operator on:

• Monotonic outermost queries
• Monotonic subqueries with windows

stanfordstreamdatamanager 25

The Simplest CQL QueryThe Simplest CQL Query

Select ∗ From Strm

• Had better return Strm (It does)
– Default [∞] window for Strm
– Default Istream for result

stanfordstreamdatamanager 26

Simple Join QuerySimple Join Query

Select ∗ From Strm, Rel Where Strm.A = Rel.B

• Default [∞] window on Strm, but often want
Now window for stream-relation joins

Select Istream(O.orderID, A.City)
From Orders O, AddressRel A
Where O.custID = A.custID

stanfordstreamdatamanager 27

Simple Join QuerySimple Join Query

Select ∗ From Strm, Rel Where Strm.A = Rel.B

• Default [∞] window on Strm, but often want
Now window for stream-relation joins

Select Istream(O.orderID, A.City)
From Orders O [[∞∞]], AddressRel A
Where O.custID = A.custID

stanfordstreamdatamanager 28

Simple Join QuerySimple Join Query

Select ∗ From Strm, Rel Where Strm.A = Rel.B

• Default [∞] window on Strm, but often want
Now window for stream-relation joins

Select Istream(O.orderID, A.City)
From Orders O [[NowNow]], AddressRel A
Where O.custID = A.custID

• We decided against a separate default

stanfordstreamdatamanager 29

Equivalences and TransformationsEquivalences and Transformations

• All relational equivalences apply to all
relational constructs directly
– Queries are highly relational

• Two new transformations
–– Window reductionWindow reduction
–– FilterFilter--window window commutativitycommutativity

stanfordstreamdatamanager 30

Window ReductionWindow Reduction

Select Istream(L) From S [∞] Where C

is equivalent to

Select Rstream(L) from S [Now] Where C

•• Question for classQuestion for class
Why Rstream and not Istream in second query?

• Answer: Consider stream <5>, <5>, <5>, <5>, …

stanfordstreamdatamanager 31

Window Reduction (contWindow Reduction (cont’’d)d)

Select Istream(L) From S [∞] Where C

is equivalent to

Select Rstream(L) from S [Now] Where C

• First query form is very common due to
defaults

• In a naïve implementation second form is
much more efficient

stanfordstreamdatamanager 32

FilterFilter--Window Window CommutativityCommutativity

•• Another question for classAnother question for class
When is

Select L From S [window] Where C

equivalent to

Select L From (Select L From S Where C) [window]

• Is this transformation always advantageous?

stanfordstreamdatamanager 33

ConstraintConstraint--Based TransformationsBased Transformations

• Recall first example query (simplified)
Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID

• If orders always fulfilled within one week
Select Sum(O.cost)
From Orders O [Range 8 Days][Range 8 Days],

Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID

• Useful constraints: keyskeys, stream referential stream referential
integrityintegrity, clusteringclustering, orderingordering

stanfordstreamdatamanager 34

STREAM SystemSTREAM System

• First challenge: basic functionality from
scratch

• Next steps – cope with :
–– Stream ratesStream rates that may be high,variablevariable, bursty
–– Stream dataStream data that may be unpredictable, variableunpredictable, variable
–– Continuous query loadsContinuous query loads that may be high, variablevariable

Overload

Changing conditionsChanging conditions

stanfordstreamdatamanager 35

System FeaturesSystem Features

• Aggressive sharingsharing of state and computation
among registered queries

• Careful resource allocation and useresource allocation and use

• Continuous selfself--monitoringmonitoring and reoptimizationreoptimization

• Graceful approximationapproximation as necessary

stanfordstreamdatamanager 36

Query ExecutionQuery Execution

• When a continuous query is registered,
generate a query planquery plan
– New plan merged with existing plans
– Users can also create & manipulate plans directly

• Plans composed of three main components:
–– OperatorsOperators
–– QueuesQueues (input and inter-operator)
–– State State (windows, operators requiring history)

• Global schedulerscheduler for plan execution

stanfordstreamdatamanager 37

Simple Query PlanSimple Query Plan

Q1 Q2

State4⋈State3σ

Stream1 Stream2

Stream3

State1 State2⋈

SchedulerScheduler

stanfordstreamdatamanager 38

System StatusSystem Status

• System is “complete”
– 30,000 lines of C++ and Java
– Multiple Ph.D. theses, undergrad and MS projects

• Source is available and system is being used

• Can also use system over internet

stanfordstreamdatamanager 39

Stream System Benchmark: Stream System Benchmark: ““Linear RoadLinear Road””

100 segments of 1 mile each

Main Input Stream: Car Locations (CarLocStr)

Linear City
10 Expressways

Reports every
30 seconds

Reports every
30 seconds

car_id speed exp_way lane x_pos
1000 55 5 3 (Right) 12762
1035 30 1 0 (Ramp) 4539
… … … … …

stanfordstreamdatamanager 40

STREAM System DemoSTREAM System Demo

• Incoming data streams

• Continuous queries executing over streams

• Query plan visualizer

• System monitoring via “introspection” queries

• Benchmark execution

