
1

Data-Flow Frameworks

Lattice-Theoretic Formulation

Meet-Over-Paths Solution

Monotonicity/Distributivity

2

Data-Flow Analysis Frameworks

� Generalizes and unifies each of the DFA
examples from previous lecture.

� Important components:
1. Direction D: forward or backward.

2. Domain V (possible values for IN, OUT).
3. Meet operator ∧ (effect of path

confluence).

4. Transfer functions F (effect of passing
through a basic block).

3

Gary Kildall

�This theory was the thesis at U. Wash.
of Gary Kildall.

�Gary is better known for CP/M, the first
real PC operating system.

�There is an interesting story.
� Google query: kildall cpm

� www.freeenterpriseland.com/BOOK
/KILDALL.html

4

Semilattices

� V and ∧ form a semilattice if for all x,

y, and z in V:
1. x ∧ x = x (idempotence).

2. x ∧ y = y ∧ x (commutativity).

3. x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity).

4. Top element � such that for all x, �∧ x

= x.

5. Bottom element (optional) ⊥ such that
for all x, ⊥ ∧ x = ⊥.

5

Example: Semilattice

� V = power set of some set.

�∧ = union.

�Union is idempotent, commutative, and

associative.

�What are the top and bottom
elements?

6

Partial Order for a Semilattice

� Say x ≤ y iff x ∧ y = x.

� Also, x < y iff x ≤ y and x ≠ y.

� ≤ is really a partial order:

1. x ≤ y and y ≤ z imply x ≤ z (proof in

text).

2. x ≤ y and y ≤ x iff x = y. Proof: x ∧ y =
x and y ∧ x = y. Thus, x = x ∧ y =
y ∧ x = y.

7

Axioms for Transfer Functions

1. F includes the identity function.

� Why needed? Constructions often
require introduction of an empty block.

2. F is closed under composition.

� Why needed?

• The concatenation of two blocks is a block.

• Transfer function for a block can be
constructed from individual statements.

8

Good News!

�The problems from the last lecture fit
the model.

� RD’s: Forward, meet = union, transfer
functions based on Gen and Kill.

� AE’s: Forward, meet = intersection,
transfer functions based on Gen and Kill.

� LV’s: Backward, meet = union, transfer
functions based on Use and Def.

9

Example: Reaching Definitions

�Direction D = forward.

�Domain V = set of all sets of definitions
in the flow graph.

� ∧ = union.

�Functions F = all “gen-kill” functions of
the form f(x) = (x - K) ∪ G, where K

and G are sets of definitions (members
of V).

10

Example: Satisfies Axioms

�Union on a power set forms a
semilattice (idempotent, commutative,
associative).

�Identity function: let K = G = ∅.

�Composition: A little algebra.

11

Example: Partial Order

�For RD’s, S ≤ T means S ∪ T = S.

�Equivalently S ⊇ T.

� Seems “backward,” but that’s what the
definitions give you.

�Intuition: ≤ measures “ignorance.”

� The more definitions we know about, the
less ignorance we have.

� � = “total ignorance.”

12

DFA Frameworks

�(D, V, ∧, F).

�A flow graph, with an associated
function fB in F for each block B.

�A boundary value vENTRY or vEXIT if D =
forward or backward, respectively.

13

Iterative Algorithm (Forward)

OUT[entry] = vENTRY;

for (other blocks B) OUT[B] = �;

while (changes to any OUT)

for (each block B) {

IN(B) = ∧ predecessors P of B OUT(P);

OUT(B) = fB(IN(B));

}

14

Iterative Algorithm (Backward)

� Same thing --- just:

1. Swap IN and OUT everywhere.

2. Replace entry by exit.

15

What Does the Iterative
Algorithm Do?

�MFP (maximal fixedpoint) = result of
iterative algorithm.

�MOP = meet over all paths from entry
to a given point, of the transfer function
along that path applied to vENTRY.

�IDEAL = ideal solution = meet over all
executable paths from entry to a point.

16

Transfer Function of a Path

f1 f2 fn-1

B

. . .

fn-1(. . .f2(f1(vENTRY)). . .)

17

Maximum Fixedpoint

�Fixedpoint = solution to the equations
used in iteration:

IN(B) = ∧ predecessors P of B OUT(P);

OUT(B) = fB(IN(B));

�Maximum = any other solution is ≤

the result of the iterative algorithm
(MFP).

18

MOP and IDEAL

�All solutions are really meets of the
result of starting with vENTRY and
following some set of paths to the point
in question.

�If we don’t include at least the IDEAL
paths, we have an error.

�But try not to include too many more.

� Less “ignorance,” but we “know too much.”

19

MOP Versus IDEAL --- (1)

�At each block B, MOP[B] ≤ IDEAL[B].

� I.e., the meet over many paths is ≤ the

meet over a subset.

� Example: x ∧ y ∧ z ≤ x ∧ y because
x ∧ y ∧ z ∧ x ∧ y = x ∧ y ∧ z.

�Intuition: Anything not ≤ IDEAL is not

safe, because there is some executable
path whose effect is not accounted for.

20

MOP Versus IDEAL --- (2)

�Conversely: any solution that is ≤

IDEAL accounts for all executable paths
(and maybe more paths), and is
therefore conservative (safe), even if
not accurate.

21

MFP Versus MOP --- (1)

� Is MFP ≤ MOP?

� If so, then since MOP ≤ IDEAL, we have
MFP ≤ IDEAL, and therefore MFP is safe.

� Yes, but … requires two assumptions
about the framework:

1. “Monotonicity.”

2. Finite height (no infinite chains
. . . < x2 < x1 < x).

22

MFP Versus MOP --- (2)

�Intuition: If we computed the MOP
directly, we would compose functions
along all paths, then take a big meet.

�But the MFP (iterative algorithm)
alternates compositions and meets
arbitrarily.

23

Monotonicity

�A framework is monotone if the
functions respect ≤. That is:

�If x ≤ y, then f(x) ≤ f(y).

�Equivalently: f(x ∧ y) ≤ f(x) ∧ f(y).

�Intuition: it is conservative to take a
meet before completing the
composition of functions.

24

Good News!

�The frameworks we’ve studied so far
are all monotone.

� Easy proof for functions in Gen-Kill form.

�And they have finite height.

� Only a finite number of defs, variables, etc.
in any program.

25

Two Paths to B That Meet Early

ENTRY B

Since f(x ∧ y) ≤ f(x) ∧ f(y), it is as if

we added nonexistent paths.

f

OUT = x

OUT = y

IN = x∧y

OUT = f(x∧y)

In MFP, Values x and y
get combined too soon.

f(x)

f(y)

MOP considers paths
independently and
and combines at

the last possible
moment.

OUT = f(x) ∧ f(y)

26

Distributive Frameworks

�Strictly stronger than monotonicity is
the distributivity condition:

f(x ∧ y) = f(x) ∧ f(y)

27

Even More Good News!

�All the Gen-Kill frameworks are
distributive.

�If a framework is distributive, then
combining paths early doesn’t hurt.

�MOP = MFP.

� That is, the iterative algorithm computes a
solution that takes into account all and
only the physical paths.

