Data-Flow Frameworks

Lattice-Theoretic Formulation Meet-Over-Paths Solution Monotonicity/Distributivity

Data-Flow Analysis Frameworks

- Generalizes and unifies each of the DFA examples from previous lecture.
- Important components:
 - 1. Direction D: forward or backward.
 - 2. Domain V (possible values for IN, OUT).
 - *3. Meet operator* ∧ (effect of path confluence).
 - *4. Transfer functions* F (effect of passing through a basic block).

Gary Kildall

- This theory was the thesis at U. Wash. of Gary Kildall.
- Gary is better known for CP/M, the first real PC operating system.
- There is an interesting story.
 - Google query: kildall cpm
 - www.freeenterpriseland.com/BOOK /KILDALL.html

Semilattices

- V and
 form a semilattice if for all x,
 y, and z in V:
 - 1. $x \wedge x = x$ (*idempotence*).
 - 2. $x \land y = y \land x$ (*commutativity*).
 - 3. $x \land (y \land z) = (x \land y) \land z$ (*associativity*).
 - 4. Top element \top such that for all $x, \top \land x = x$.
 - 5. Bottom element (optional) \perp such that for all x, $\perp \land x = \perp$.

Example: Semilattice

- V = power set of some set.
- $\diamond \land =$ union.
- Union is idempotent, commutative, and associative.
- What are the top and bottom elements?

Partial Order for a Semilattice

• Say $x \leq y$ iff $x \wedge y = x$. Also, x < y iff $x \leq y$ and $x \neq y$. \diamond \leq is really a partial order: 1. $x \le y$ and $y \le z$ imply $x \le z$ (proof in text). 2. $x \le y$ and $y \le x$ iff x = y. Proof: $x \land y =$ x and y \wedge x = y. Thus, x = x \wedge y = $\mathbf{y} \wedge \mathbf{x} = \mathbf{y}$.

Axioms for Transfer Functions

- **1**. F includes the identity function.
 - Why needed? Constructions often require introduction of an empty block.
- 2. F is closed under composition.
 - Why needed?
 - The concatenation of two blocks is a block.
 - Transfer function for a block can be constructed from individual statements.

Good News!

The problems from the last lecture fit the model.

- RD's: Forward, meet = union, transfer functions based on Gen and Kill.
- AE's: Forward, meet = intersection, transfer functions based on Gen and Kill.
- LV's: Backward, meet = union, transfer functions based on Use and Def.

Example: Reaching Definitions

- Direction D = forward.
 Domain V = set of all sets of definitions in the flow graph.
- \diamond \wedge = union.
- ◆ Functions F = all "gen-kill" functions of the form f(x) = (x - K) ∪ G, where K and G are sets of definitions (members of V).

Example: Satisfies Axioms

◆ Union on a power set forms a semilattice (idempotent, commutative, associative).
◆ Identity function: let K = G = Ø.
◆ Composition: A little algebra.

Example: Partial Order

- For RD's, S ≤ T means S ∪ T = S.
 Equivalently S ⊇ T.
 - Seems "backward," but that's what the definitions give you.
- ◆Intuition: ≤ measures "ignorance."
 - The more definitions we know about, the less ignorance we have.

DFA Frameworks

◆(D, V, ∧, F).

A flow graph, with an associated function f_B in F for each block B.

A boundary value v_{ENTRY} or v_{EXIT} if D = forward or backward, respectively.

Iterative Algorithm (Forward)

OUT[entry] = v_{ENTRY} ; for (other blocks B) OUT[B] = T; while (changes to any OUT) for (each block B) { IN(B) = \wedge predecessors P of B OUT(P); OUT(B) = f_B(IN(B));

Iterative Algorithm (Backward)

Same thing --- just:
1. Swap IN and OUT everywhere.
2. Replace entry by exit.

What Does the Iterative Algorithm Do?

- MFP (*maximal fixedpoint*) = result of iterative algorithm.
- MOP = meet over all paths from entry to a given point, of the transfer function along that path applied to v_{ENTRY} .
- IDEAL = ideal solution = meet over all executable paths from entry to a point.

Transfer Function of a Path

Maximum Fixedpoint

Fixedpoint = solution to the equations used in iteration: IN(B) = ∧ predecessors P of B OUT(P); OUT(B) = f_B(IN(B));
 Maximum = any other solution is ≤ the result of the iterative algorithm (MFP).

MOP and IDEAL

- All solutions are really meets of the result of starting with v_{ENTRY} and following some set of paths to the point in question.
- If we don't include at least the IDEAL paths, we have an error.
- But try not to include too many more.
 - Less "ignorance," but we "know too much."

MOP Versus IDEAL --- (1)

- At each block B, MOP[B] \leq IDEAL[B].
 - I.e., the meet over many paths is ≤ the meet over a subset.
 - Example: $x \land y \land z \le x \land y$ because $x \land y \land z \land x \land y = x \land y \land z$.

 Intuition: Anything not < IDEAL is not safe, because there is some executable path whose effect is not accounted for.

MOP Versus IDEAL --- (2)

 Conversely: any solution that is
 IDEAL accounts for all executable paths (and maybe more paths), and is therefore conservative (safe), even if not accurate.

MFP Versus MOP --- (1)

• Is MFP \leq MOP?

- If so, then since MOP ≤ IDEAL, we have MFP ≤ IDEAL, and therefore MFP is safe.
- Yes, but ... requires two assumptions about the framework:
 - 1. "Monotonicity."
 - 2. Finite height (no infinite chains $\ldots < x_2 < x_1 < x$).

MFP Versus MOP --- (2)

Intuition: If we computed the MOP directly, we would compose functions along all paths, then take a big meet.
 But the MFP (iterative algorithm) alternates compositions and meets arbitrarily.

Monotonicity

A framework is *monotone* if the functions respect ≤. That is:
If x ≤ y, then f(x) ≤ f(y).
Equivalently: f(x ∧ y) ≤ f(x) ∧ f(y).
Intuition: it is conservative to take a meet before completing the composition of functions.

Good News!

The frameworks we've studied so far are all monotone.

- Easy proof for functions in Gen-Kill form.
- And they have finite height.
 - Only a finite number of defs, variables, etc. in any program.

Two Paths to B That Meet Early

In MFP, Values x and y get combined too soon.

Since $f(x \land y) \leq f(x) \land f(y)$, it is as if we added nonexistent paths. ²⁵

Distributive Frameworks

 Strictly stronger than monotonicity is the *distributivity* condition:

 $f(x \land y) = f(x) \land f(y)$

Even More Good News!

- All the Gen-Kill frameworks are distributive.
- If a framework is distributive, then combining paths early doesn't hurt.
 - MOP = MFP.
 - That is, the iterative algorithm computes a solution that takes into account all and only the physical paths.