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Data-Flow Frameworks

Lattice-Theoretic Formulation

Meet-Over-Paths Solution

Monotonicity/Distributivity
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Data-Flow Analysis Frameworks

� Generalizes and unifies each of the DFA 
examples from previous lecture.

� Important components:
1. Direction D: forward or backward.

2. Domain V (possible values for IN, OUT).
3. Meet operator ∧ (effect of path 

confluence).

4. Transfer functions F (effect of passing 
through a basic block).
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Gary Kildall

�This theory was the thesis at U. Wash. 
of Gary Kildall.

�Gary is better known for CP/M, the first 
real PC operating system.

�There is an interesting story.
� Google query: kildall cpm

� www.freeenterpriseland.com/BOOK 
/KILDALL.html
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Semilattices

� V and ∧ form a semilattice if for all x, 

y, and z in V:
1. x ∧ x = x (idempotence ).

2. x ∧ y = y ∧ x (commutativity ).

3. x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity ).

4. Top element � such that for all x, �∧ x 

= x.

5. Bottom element (optional) ⊥ such that 
for all x, ⊥ ∧ x = ⊥.
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Example: Semilattice

� V = power set of some set.

�∧ = union.

�Union is idempotent, commutative, and 

associative.

�What are the top and bottom 
elements?
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Partial Order for a Semilattice

� Say x ≤ y iff x ∧ y = x.

� Also, x < y iff x ≤ y and x ≠ y.

� ≤ is really a partial order:

1. x ≤ y and y ≤ z imply x ≤ z (proof in 

text).

2. x ≤ y and y ≤ x iff x = y.  Proof: x ∧ y = 
x and y ∧ x = y.  Thus, x = x ∧ y = 
y ∧ x = y.



7

Axioms for Transfer Functions

1. F includes the identity function.

� Why needed?  Constructions often 
require introduction of an empty block.

2. F is closed under composition.

� Why needed?

• The concatenation of two blocks is a block.

• Transfer function for a block can be 
constructed from individual statements.
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Good News!

�The problems from the last lecture fit 
the model.

� RD’s: Forward, meet = union, transfer 
functions based on Gen and Kill.

� AE’s: Forward, meet = intersection, 
transfer functions based on Gen and Kill.

� LV’s: Backward, meet = union, transfer 
functions based on Use and Def.
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Example: Reaching Definitions

�Direction D = forward.

�Domain V = set of all sets of definitions 
in the flow graph.

� ∧ = union.

�Functions F = all “gen-kill” functions of 
the form f(x) = (x - K) ∪ G, where K 

and G are sets of definitions (members 
of V). 
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Example: Satisfies Axioms

�Union on a power set forms a 
semilattice (idempotent, commutative, 
associative).

�Identity function: let K = G = ∅.

�Composition: A little algebra.
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Example: Partial Order

�For RD’s, S ≤ T means S ∪ T = S.

�Equivalently S ⊇ T.

� Seems “backward,” but that’s what the 
definitions give you.

�Intuition: ≤ measures “ignorance.”

� The more definitions we know about, the 
less ignorance we have.

� � = “total ignorance.”
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DFA Frameworks

�(D, V, ∧, F).

�A flow graph, with an associated 
function fB in F for each block B.

�A boundary value vENTRY or vEXIT if D = 
forward or backward, respectively. 
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Iterative Algorithm (Forward)

OUT[entry] = vENTRY;

for (other blocks B) OUT[B] = �;

while (changes to any OUT)

for (each block B) {

IN(B) = ∧ predecessors P of B OUT(P);

OUT(B) = fB(IN(B));

}
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Iterative Algorithm (Backward)

� Same thing --- just:

1. Swap IN and OUT everywhere.

2. Replace entry by exit.
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What Does the Iterative 
Algorithm Do?

�MFP (maximal fixedpoint ) = result of 
iterative algorithm.

�MOP = meet over all paths from entry 
to a given point, of the transfer function 
along that path applied to vENTRY.

�IDEAL = ideal solution = meet over all 
executable paths from entry to a point.
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Transfer Function of a Path

f1 f2 fn-1

B

. . .

fn-1( . . .f2(f1(vENTRY)). . .)



17

Maximum Fixedpoint

�Fixedpoint = solution to the equations 
used in iteration:

IN(B) = ∧ predecessors P of B OUT(P);

OUT(B) = fB(IN(B));

�Maximum = any other solution is ≤

the result of the iterative algorithm 
(MFP).
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MOP and IDEAL

�All solutions are really meets of the 
result of starting with vENTRY and 
following some set of paths to the point 
in question.

�If we don’t include at least the IDEAL 
paths, we have an error.

�But try not to include too many more.

� Less “ignorance,” but we “know too much.”
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MOP Versus IDEAL --- (1)

�At each block B, MOP[B] ≤ IDEAL[B].

� I.e., the meet over many paths is ≤ the 

meet over a subset.

� Example: x ∧ y ∧ z ≤ x ∧ y because        
x ∧ y ∧ z ∧ x ∧ y = x ∧ y ∧ z.

�Intuition: Anything not ≤ IDEAL is not 

safe, because there is some executable 
path whose effect is not accounted for.
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MOP Versus IDEAL --- (2)

�Conversely: any solution that is ≤

IDEAL accounts for all executable paths 
(and maybe more paths), and is 
therefore conservative (safe), even if 
not accurate.
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MFP Versus MOP --- (1)

� Is MFP ≤ MOP?

� If so, then since MOP ≤ IDEAL, we have 
MFP ≤ IDEAL, and therefore MFP is safe.

� Yes, but … requires two assumptions 
about the framework:

1. “Monotonicity.”

2. Finite height (no infinite chains 
. . . < x2 < x1 < x).
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MFP Versus MOP --- (2)

�Intuition: If we computed the MOP 
directly, we would compose functions 
along all paths, then take a big meet.

�But the MFP (iterative algorithm) 
alternates compositions and meets 
arbitrarily.
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Monotonicity

�A framework is monotone if the 
functions respect ≤.  That is:

�If x ≤ y, then f(x) ≤ f(y).

�Equivalently: f(x ∧ y) ≤ f(x) ∧ f(y).

�Intuition: it is conservative to take a 
meet before completing the 
composition of functions.
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Good News!

�The frameworks we’ve studied so far 
are all monotone.

� Easy proof for functions in Gen-Kill form.

�And they have finite height.

� Only a finite number of defs, variables, etc. 
in any program.
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Two Paths to B That Meet Early

ENTRY B

Since f(x ∧ y) ≤ f(x) ∧ f(y), it is as if

we added nonexistent paths.

f

OUT = x

OUT = y

IN = x∧y

OUT = f(x∧y)

In MFP, Values x and y
get combined too soon.

f(x)

f(y)

MOP considers paths
independently and
and combines at

the last possible
moment.

OUT = f(x) ∧ f(y)
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Distributive Frameworks

�Strictly stronger than monotonicity is 
the distributivity condition:

f(x ∧ y) = f(x) ∧ f(y)
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Even More Good News!

�All the Gen-Kill frameworks are 
distributive.

�If a framework is distributive, then 
combining paths early doesn’t hurt.

�MOP = MFP.

� That is, the iterative algorithm computes a 
solution that takes into account all and 
only the physical paths.


