Data Prefetch and
Software Pipelining

Agenda

m Data Prefetch
m Software Pipelining

Stanford University CS243 Winter 2006

Why Data Prefetching

m Increasing Processor — Memory “distance’

m Caches dowork I ... |F ...

m Data set cache-able, accesses local (in
space/time)

m Else ? ...

Stanford University CS243 Winter 2006

Data Prefetching

m Whatis it ?
= Request for a future data need is initiated
m Useful execution continues during access

= Data moves from slow/far memory to fast/near
cache

= Data ready in cache when needed
(load/store)

Stanford University CS243 Winter 2006
4

Data Prefetching

m When can it be used ?

= Future data needs are (somewhat)
predictable

= How Is it implemented ?

= in hardware: history based prediction of future
access

m in software: compiler inserted prefetch
Instructions

Stanford University CS243 Winter 2006

Software Data Prefetching

m Compliler scheduled prefetches

= Moves entire cache lines (not just datum)
m Spatial locality assumed — often the case

m [ypically a non-faulting access
= Compiler free to speculate prefetch address

= Hardware not obligated to obey

= A performance enhancement, no functional
Impact

= Loads/store may be preferentially treated

Stanford University CS243 Winter 2006

Software Data Prefetching

Use

m Mostly in Scientific codes

= Vectorizable loops accessing arrays
deterministically

m Data access pattern is predictable
m Prefetch scheduling easy (far in time, near in code)

= Large working data sets consumed

m Even large caches unable to capture access
locality

m Sometimes in Integer codes
= Loops with pointer de-references

Stanford University CS243 Winter 2006
7

Selective Data Prefetch

doj=1,n —]
doi=1, m A
A(i.j) = B(1,i) + B(1,i+1) |
enddo i
enddo
B 1 | m

= E.g. A(i,]) has spatial
locality, therefore only
one prefetch is required
for every cache line.

Stanford University CS243 Winter 2006

Formal Definitions

m [emporal locality occurs when a given
reference reuses exactly the same data
location

m Spatial locality occurs when a given
reference accesses different data
locations that fall within the same cache
line

m Group locality occurs when different
references access the same cache line

Stanford University CS243 Winter 2006

Prefetch Predicates

m If an access has spatial locality, only the
first access to the same cache line will
INnCUr a miss.

m For temporal locality, only the first
access will incur a cache miss

m If an access has group locality, only the
leading reference incurs cache miss.

m If an access has no locality, it will miss
In every iteration.

Stanford University CS243 Winter 2006 0

Example Code with

Prefetches

doj=1,n —— |
doi=1,m A l

iIf (land(i,7) == 0) 9

prefetch (A(i+k,j))

if (j==1)

prefetch (B(1,i+t)) B | m
enddo 1
enddo

Assumed CLS = 64 bytes and
data size = 8 bytes

k and t are prefetch distance values

Stanford University CS243 Winter 2006 »

Spreading of Prefetches

m If there is more than one reference that
has spatial locality within the same loop
nest, spread these prefetches across
the 8-iteration window

m Reduces the stress on the memory
subsystem by minimizing the number of
outstanding prefetches

Stanford University CS243 Winter 2006

12

Example Code with
Spreading

]

doj=1,n C,D
doi=1,m |
1
it (land(i,7) == 0)
prefetch (C(i+k,j))
|f (|and(| 7) —) Assumed CLS = 64
prefetCh (D(I_l_ <+ ,J)) bYteS and data size =
enddo 8 bytes
enddo k is the prefetch

distance value

Stanford University

CS243 Winter 2006 13

Prefetch Strategy -

Conditional
Example loop Conditional Prefetching

Lie Lie
Load A (I) Load A (I)
Load B (I) Load B (I)
... Cmp PA=(I mod 8 == 0)
I =1+ 1 ' (pA) prefetch
Br L, 1f I<n A(I+X)
Cmp pB=(I mod 8 == 1)
— f(p B) prefetch
Y Code for condition B (1h)
generation T2 1 41

VPrefetches occupy ~© = - ¢

issue slots

Stanford University CS243 Winter 2006

14

Prefetch Strategy - Unroll

Example loop Unrolled
Unr_LcEOp:h e
I %ggdeg%)p‘(ﬂx) prefetch E (I+X)
. load B(I) load A(I+4)
Load A(I) load B(I+4)
Load B (I) prefetch B (I+X)
load A(I+1) .« ..
I= T + 1 load B(I+1) load A (I+5)
Br L, if I<n prefetch C(I+X) Load S(ds5)
load A(I+2) e
%??d B(1+2) load A(I+06)
prefetch D(I+x) 1oad B(I+6)
load A(I+3)
load B(I+3) S~
load A(I+7)
VCode bloat (>8X) Load B (1+7)
: I'=1+8 |
VWRemainder loop Br Unx_Loop, if
n

Stanford University

CS243 Winter 2006 T

Software Data Prefetching
Cost

m Requires memory instruction resources
= A prefetch instruction for each access stream

m Issues every iteration, but needed less
often

= If branched around, inefficient execution
results

= If conditionally executed, more instruction
overhead results

= If loop is unrolled, code bloat results

Stanford University CS243 Winter 2006 5

Software Data Prefetching
Cost

s Redundant prefetches get in the way

= Resources consumed until prefetches
discarded!

= Non redundant need careful scheduling

= Resources overwhelmed when many issued
& Miss

Stanford University CS243 Winter 2006

17

Desirable Characteristics

m Uses minimal instruction resources
= One prefetch instruction for multiple streams

s Minimizes redundant prefetches
= No code bloat, no prefetch branches

m Issues prefetches spaced in time
= Machine resources utilized evenly

m Solution: rotating register prefetch if there
Is HW support.

Stanford University CS243 Winter 2006

18

Rotating Registers
- Register rotation provides an automatic
renaming mechanism.
e Instructions contain a “virtual” register number

32 33 34 3536 37 38 39

Iteration 1 32 -:r34r35r36r37r38r39

Iteration 2 r34r35r36r37r38r39r32

Iteration 3 r34r35r36r37r38r39r32

Stanford University

CS243 Winter 2006 T

Rotating Reg Prefetch
[llustrated

Example loop Rotating Register Prefetching
Orig loop: r33 = address of E (1+X)
%ggg %E%; r34 = address of D(1+X)
Load C(I) r35 = address of C(1+X)
Load D(I) r36 = address of B (1+X)
Load E(I) r37 = address of A (1+X)
T2 1+ 1 MethodlLoop:
Br Orig loop, prefetch [r37]
if I<n — r32 = r37 + INCR
ioéd.A(I)
load B(I)
. . load C(I)
ASingle prefetch inst load D(T)
ANo loop unrolling load E(I)
AAt most 1 miss/iter .

Br MethodlLoop, 1f I<n

Stanford University CS243 Winter 2006

Q |
(e) —T BOWO9N)
) - — iIsde
o

nwl m . yoenxis
e il Dnm — pcew
C W w S i

”ﬂ m nDa —— seon|
LLl = -
P dwuwe
S — 29199¢€)
_ e b
-m - |objeb
c ' lesouw
e |\ S_QQN
m |\ E_;m
=) m— asimdnm
N s3sees8er-°s
e Buiyojajaid ON J9A0 Ules) d2URWLIOLdd

Stanford University

21

CS243 Winter 2006

Agenda

m Data Prefetch
m Software Pipelining

Stanford University CS243 Winter 2006

22

Software Pipelining

m Obtain parallelism by executing iterations
of a loop in an overlapping way.

m \WWe'll focus on simplest case: the
loop, where iterations are independent.

m Goal: Initiate iterations as frequently as
possible.

m Limitation: Use same schedule and delay
for each iteration.

Stanford University CS243 Winter 2006 ’a

Machine Model

m [iming parameters: LD = 2, others = 1
clock.

m Machine can execute one LD or ST and
one arithmetic operation (including branch)
at any one clock.

m |.e., we're back to one ALU resource and one
MEM resource.

Stanford University CS243 Winter 2006 o

Example

for (i=0; i<N; 1i++)
Bl1] = Al1];

= 9 holds 4N; r8 holds 4*i.

L: LD rl, a(r8)

Notice: data dependences
nop

force this schedule. No
ST b(r8), rl parallelism is possible.

ADD r8, r8, #4
BLT r8, r9, L

Stanford University CS243 Winter 2006 ’e

Let’s Run 2 lterations in Parallel

m Focus on operations; worry about
registers later.

LD
nop LD
ST nop

Oops --- violates
ADD ST ALU resource
BLT ADD constraint.

BLT

Stanford University CS243 Winter 2006 26

LD
nop
ST
ADD
nop
BLT

Stanford University

LD
nop
ST
ADD
nop
BLT

LD
nop
ST
ADD
nop
BLT

CS243 Winter 2006

Introduce a NOP

Add a third iteration.
Several resource
conflicts arise.

27

Is It Possible to Have an

Iteration Start at Every Clock?

m Hint: No.
m Why?

= An iteration injects 2 MEM and 2 ALU
resource requirements.

= If injected every clock, the machine cannot
possibly satisfy all requests.

m Minimum delay = 2.

Stanford University CS243 Winter 2006 28

A Schedule With Delay

LD 2
nop Initialization
nop LD
ST nop
ADD nop LD
BLT ST nop
ADD nop LD
BLT ST nop
ADD nop
BLT ST
ADD

Stanford University

CS243 Winter ZOB L T

Identical iterations
of the loop

Coda

29

Assigning Registers

m \We don’t need an infinite number of
registers.

m \We can reuse registers for iterations that
do not overlap in time.

= But we can't just use the same old
registers for every iteration.

Stanford University CS243 Winter 2006 20

Assigning Registers --- (2)

m [he inner loop may have to involve more
than one copy of the smallest repeating
pattern.

= Enough so that registers may be reused at
each iteration of the expanded inner loop.

m Our example: 3 iterations coexist, so we
need 3 sets of registers and 3 copies of
the pattern.

Stanford University CS243 Winter 2006 ar

Example: Assigning
Registers

m Our original loop used registers:
= r9 to hold a constant 4N.
= 8 to count iterations and index the arrays.
= r1 to copy a[i] into bJi].

m [he expanded loop needs:
= r9 holds 12N.
m 6, r/, r8 to count iterations and index.
mr1, r2, r3 to copy certain array elements.

Stanford University CS243 Winter 2006 2

The Loop Body

Each register handles every

To break the loop early third element of the arrays.

Iteration / Iteration 7/ + 1 Iteration /7 + 2

ADD r8,r8,#12 | nop LD r3,a(ro)
BGE r8,r9,L’ ST Db(r7),r2 nop
LD rl,a(r8) ADD r7,r7,#12| nop

nop BGE r7,xr9,L"’ ST Db(ro),r3

nop LD r2,a(r7) ADD r6,r6, #12

ST Db(r8),rl nop BLT ro,r9, L
Iteration 7+ 3 Iteration 7/ + 4

L' and L"” are places for appropriate codas.

Stanford University 0S243 Winter 2006 2

Cyclic Data-Dependence Graphs

= \We assumed that data at an iteration
depends only on data computed at the
same Iteration.
= Not even true for our example.
m '8 computed from its previous iteration.
m But it doesn’t matter in this example.
m Fixup: edge labels have two components:
(iteration change, delay).

Stanford University CS243 Winter 2006 o

Example: Cyclic D-D Graph

(A)

<1,1> :
(A) must wait at

least one clock
after the (C) from
the previous

(C) must wait at iteration.
least one clock

after the (B) from

<0,1> the same iteration.

(B)

©

(D)

Stanford University CS243 Winter 2006
35

Matrix of Delays

m Let T be the delay between the start
times of one Iiteration and the next.

m Replace edge label <i,j> by delay |-IT.

s Compute, for each pair of nodes n and
m the total delay along the longest
acyclic path from n to m.

m Gives upper and lower bounds relating
the times to schedule n and m.

Stanford University CS243 Winter 2006 26

Example: Delay Matrix

A B C D A B C D

A 2 A & 3 |4

v \\/
B B (5.
1 en 1 |2
ClaT 1 CliT1|3T 1
D D
Edges Acyclic Transitive Closure

Note: Implies T > 4 (because only S(B) = S(A)+2

one register used for loop-counting).
If T=4, then A (LD) must be 2 clocks
before B (ST). If T=5, A can be 2-3 5(B)-2 = 5(A) = 5(B)+2-T
clocks before B.

Stanford University

S(A) > S(B)+2-T

CS243 Winter 2006 37

Iterative Modulo Scheduling

s Compute the lower bounds (MI/l) on the
delay between the start times of one
iteration and the next (initiation interval,
aka Il)

= due to resources

= due to recurrences
m [ry to find a schedule for Il = M|

m If no schedule can be found, try a larger
1.

Stanford University CS243 Winter 2006 28

Summary

m References for compiler data prefetch:

= Todd Mowry, Monica Lam, Anoop Gupta, “Design and
evaluation of a compiler algorithm for prefetching”, in
ASPLOS’92,

http://citeseer.ist.psu.edu/mowry92design.html.

= Gautam Doshi, Rakesh Krishnaiyer, Kalyan
Muthukumar, “Optimizing Software Data Prefetches
with Rotating Registers”, in PACT'01,
http://citeseer.ist.psu.edu/670603.html.

Stanford University

CS243 Winter 2006 39

