Data Prefetch and
Software Pipelining



Agenda

m Data Prefetch
m Software Pipelining
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Why Data Prefetching

m Increasing Processor — Memory “distance’

m Caches dowork I ... |F ...

m Data set cache-able, accesses local (in
space/time)

m Else ? ...
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Data Prefetching

m Whatis it ?
= Request for a future data need is initiated
m Useful execution continues during access

= Data moves from slow/far memory to fast/near
cache

= Data ready in cache when needed
(load/store)
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Data Prefetching

m When can it be used ?

= Future data needs are (somewhat)
predictable

= How Is it implemented ?

= in hardware: history based prediction of future
access

m in software: compiler inserted prefetch
Instructions
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Software Data Prefetching

m Compliler scheduled prefetches

= Moves entire cache lines (not just datum)
m Spatial locality assumed — often the case

m [ypically a non-faulting access
= Compiler free to speculate prefetch address

= Hardware not obligated to obey

= A performance enhancement, no functional
Impact

= Loads/store may be preferentially treated
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Software Data Prefetching

Use

m Mostly in Scientific codes

= Vectorizable loops accessing arrays
deterministically

m Data access pattern is predictable
m Prefetch scheduling easy (far in time, near in code)

= Large working data sets consumed

m Even large caches unable to capture access
locality

m Sometimes in Integer codes
= Loops with pointer de-references
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Selective Data Prefetch

doj=1,n — ]
doi=1, m A
A(i.j) = B(1,i) + B(1,i+1) |
enddo i
enddo
B 1 | m

= E.g. A(i,]) has spatial
locality, therefore only
one prefetch is required
for every cache line.
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Formal Definitions

m [emporal locality occurs when a given
reference reuses exactly the same data
location

m Spatial locality occurs when a given
reference accesses different data
locations that fall within the same cache
line

m Group locality occurs when different
references access the same cache line
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Prefetch Predicates

m If an access has spatial locality, only the
first access to the same cache line will
INnCUr a miss.

m For temporal locality, only the first
access will incur a cache miss

m If an access has group locality, only the
leading reference incurs cache miss.

m If an access has no locality, it will miss
In every iteration.
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Example Code with

Prefetches

doj=1,n —— |
doi=1,m A l

iIf (land(i,7) == 0) 9

prefetch (A(i+k,j))

if (j==1)

prefetch (B(1,i+t)) B | m
enddo 1
enddo

Assumed CLS = 64 bytes and
data size = 8 bytes

k and t are prefetch distance values
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Spreading of Prefetches

m If there is more than one reference that
has spatial locality within the same loop
nest, spread these prefetches across
the 8-iteration window

m Reduces the stress on the memory
subsystem by minimizing the number of
outstanding prefetches
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Example Code with
Spreading

]

doj=1,n C,D
doi=1,m |
1
it (land(i,7) == 0)
prefetch (C(i+k,j))
|f (|and(| 7) — ) Assumed CLS = 64
prefetCh (D(I_l_ <+ ,J)) bYteS and data size =
enddo 8 bytes
enddo k is the prefetch

distance value
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Prefetch Strategy -

Conditional
Example loop Conditional Prefetching

Lie Lie
Load A (I) Load A (I)
Load B (I) Load B (I)
... Cmp PA=(I mod 8 == 0)
I =1+ 1 ' (pA) prefetch
Br L, 1f I<n A(I+X)
Cmp pB=(I mod 8 == 1)
— f(p B) prefetch
Y Code for condition B (1h)
generation T2 1 41

VPrefetches occupy ~© = - ¢

issue slots
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Prefetch Strategy - Unroll

Example loop Unrolled
Unr_LcEOp:h e
I %ggdeg%)p‘(ﬂx) prefetch E (I+X)
. load B(I) load A(I+4)
Load A(I) load B(I+4)
Load B (I) prefetch B (I+X)
load A(I+1) .« ..
I= T + 1 load B(I+1) load A (I+5)
Br L, if I<n  prefetch C(I+X) Load S(ds5)
load A(I+2) e
%??d B(1+2) load A(I+06)
prefetch D(I+x) 1oad B(I+6)
load A(I+3)
load B(I+3) S~
load A(I+7)
VCode bloat (>8X) Load B (1+7)
: I'=1+8 |
VWRemainder loop Br Unx_Loop, if
n
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Software Data Prefetching
Cost

m Requires memory instruction resources
= A prefetch instruction for each access stream

m Issues every iteration, but needed less
often

= If branched around, inefficient execution
results

= If conditionally executed, more instruction
overhead results

= If loop is unrolled, code bloat results
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Software Data Prefetching
Cost

s Redundant prefetches get in the way

= Resources consumed until prefetches
discarded!

= Non redundant need careful scheduling

= Resources overwhelmed when many issued
& Miss

Stanford University CS243 Winter 2006
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Desirable Characteristics

m Uses minimal instruction resources
= One prefetch instruction for multiple streams

s Minimizes redundant prefetches
= No code bloat, no prefetch branches

m Issues prefetches spaced in time
= Machine resources utilized evenly

m Solution: rotating register prefetch if there
Is HW support.

Stanford University CS243 Winter 2006
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Rotating Registers
- Register rotation provides an automatic
renaming mechanism.
e Instructions contain a “virtual” register number

32 33 34 3536 37 38 39

Iteration 1 32 -:r34r35r36r37r38r39

Iteration 2 r34r35r36r37r38r39r32

Iteration 3 r34r35r36r37r38r39r32

Stanford University
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Rotating Reg Prefetch
[llustrated

Example loop Rotating Register Prefetching
Orig loop: r33 = address of E (1+X)
%ggg %E%; r34 = address of D(1+X)
Load C(I) r35 = address of C(1+X)
Load D(I) r36 = address of B (1+X)
Load E(I) r37 = address of A (1+X)
T2 1+ 1 MethodlLoop:
Br Orig loop, prefetch [r37]
if I<n — r32 = r37 + INCR
ioéd.A(I)
load B(I)
. . load C(I)
ASingle prefetch inst load D(T)
ANo loop unrolling load E(I)
AAt most 1 miss/iter .

Br MethodlLoop, 1f I<n
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Agenda

m Data Prefetch
m Software Pipelining
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Software Pipelining

m Obtain parallelism by executing iterations
of a loop in an overlapping way.

m \WWe'll focus on simplest case: the
loop, where iterations are independent.

m Goal: Initiate iterations as frequently as
possible.

m Limitation: Use same schedule and delay
for each iteration.
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Machine Model

m [iming parameters: LD = 2, others = 1
clock.

m Machine can execute one LD or ST and
one arithmetic operation (including branch)
at any one clock.

m |.e., we're back to one ALU resource and one
MEM resource.
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Example

for (i=0; i<N; 1i++)
Bl1] = Al1];

= 9 holds 4N; r8 holds 4*i.

L: LD rl, a(r8)

Notice: data dependences
nop

force this schedule. No
ST b(r8), rl parallelism is possible.

ADD r8, r8, #4
BLT r8, r9, L
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Let’s Run 2 lterations in Parallel

m Focus on operations; worry about
registers later.

LD
nop LD
ST nop

Oops --- violates
ADD ST ALU resource
BLT ADD constraint.

BLT
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LD
nop
ST
ADD
nop
BLT

Stanford University

LD
nop
ST
ADD
nop
BLT

LD
nop
ST
ADD
nop
BLT

CS243 Winter 2006

Introduce a NOP

Add a third iteration.
Several resource
conflicts arise.
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Is It Possible to Have an

Iteration Start at Every Clock?

m Hint: No.
m Why?

= An iteration injects 2 MEM and 2 ALU
resource requirements.

= If injected every clock, the machine cannot
possibly satisfy all requests.

m Minimum delay = 2.
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A Schedule With Delay

LD 2
nop Initialization
nop LD
ST nop
ADD nop LD
BLT ST nop
ADD nop LD
BLT ST nop
ADD nop
BLT ST
ADD

Stanford University
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Identical iterations
of the loop

Coda
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Assigning Registers

m \We don’t need an infinite number of
registers.

m \We can reuse registers for iterations that
do not overlap in time.

= But we can't just use the same old
registers for every iteration.
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Assigning Registers --- (2)

m [he inner loop may have to involve more
than one copy of the smallest repeating
pattern.

= Enough so that registers may be reused at
each iteration of the expanded inner loop.

m Our example: 3 iterations coexist, so we
need 3 sets of registers and 3 copies of
the pattern.
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Example: Assigning
Registers

m Our original loop used registers:
= r9 to hold a constant 4N.
= 8 to count iterations and index the arrays.
= r1 to copy a[i] into bJi].

m [he expanded loop needs:
= r9 holds 12N.
m 6, r/, r8 to count iterations and index.
mr1, r2, r3 to copy certain array elements.
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The Loop Body

Each register handles every

To break the loop early third element of the arrays.

Iteration / Iteration 7/ + 1 Iteration /7 + 2

ADD r8,r8,#12 | nop LD r3,a(ro)
BGE r8,r9,L’ ST Db(r7),r2 nop
LD rl,a(r8) ADD r7,r7,#12| nop

nop BGE r7,xr9,L"’ ST Db(ro),r3

nop LD r2,a(r7) ADD r6,r6, #12

ST Db(r8),rl nop BLT ro,r9, L
Iteration 7+ 3 Iteration 7/ + 4

L' and L"” are places for appropriate codas.
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Cyclic Data-Dependence Graphs

= \We assumed that data at an iteration
depends only on data computed at the
same Iteration.
= Not even true for our example.
m '8 computed from its previous iteration.
m But it doesn’t matter in this example.
m Fixup: edge labels have two components:
(iteration change, delay).
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Example: Cyclic D-D Graph

(A)

<1,1> :
(A) must wait at

least one clock
after the (C) from
the previous

(C) must wait at iteration.
least one clock

after the (B) from

<0,1> the same iteration.

(B)

©

(D)

Stanford University CS243 Winter 2006
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Matrix of Delays

m Let T be the delay between the start
times of one Iiteration and the next.

m Replace edge label <i,j> by delay |-IT.

s Compute, for each pair of nodes n and
m the total delay along the longest
acyclic path from n to m.

m Gives upper and lower bounds relating
the times to schedule n and m.
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Example: Delay Matrix

A B C D A B C D

A 2 A & 3 |4

v \\/
B B (5.
1 en 1 |2
ClaT 1 CliT1|3T 1
D D
Edges Acyclic Transitive Closure

Note: Implies T > 4 (because only S(B) = S(A)+2

one register used for loop-counting).
If T=4, then A (LD) must be 2 clocks
before B (ST). If T=5, A can be 2-3  5(B)-2 = 5(A) = 5(B)+2-T
clocks before B.

Stanford University

S(A) > S(B)+2-T
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Iterative Modulo Scheduling

s Compute the lower bounds (MI/l) on the
delay between the start times of one
iteration and the next (initiation interval,
aka Il)

= due to resources

= due to recurrences
m [ry to find a schedule for Il = M|

m If no schedule can be found, try a larger
1.
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Summary

m References for compiler data prefetch:

= Todd Mowry, Monica Lam, Anoop Gupta, “Design and
evaluation of a compiler algorithm for prefetching”, in
ASPLOS’92,

http://citeseer.ist.psu.edu/mowry92design.html.

= Gautam Doshi, Rakesh Krishnaiyer, Kalyan
Muthukumar, “Optimizing Software Data Prefetches
with Rotating Registers”, in PACT'01,
http://citeseer.ist.psu.edu/670603.html.
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