
Wei Li 1
Stanford University

CS243 Winter 2006

Data Data PrefetchPrefetch and and
Software Pipelining Software Pipelining

2CS243 Winter 2006
Stanford University

AgendaAgenda
Data Data PrefetchPrefetch
Software PipeliningSoftware Pipelining

3CS243 Winter 2006
Stanford University

Why Data PrefetchingWhy Data Prefetching

Increasing Processor Increasing Processor –– Memory Memory ““distancedistance””
Caches do work !!! Caches do work !!! …… IF IF ……

Data set cacheData set cache--able, accesses local (in able, accesses local (in
space/time)space/time)

Else ? Else ? ……

4CS243 Winter 2006
Stanford University

Data PrefetchingData Prefetching

What is it ?What is it ?
Request for a future data need is initiatedRequest for a future data need is initiated
Useful execution continues during accessUseful execution continues during access
Data moves from slow/far memory to fast/near Data moves from slow/far memory to fast/near
cachecache
Data ready in cache when needed Data ready in cache when needed
(load/store)(load/store)

5CS243 Winter 2006
Stanford University

Data PrefetchingData Prefetching

When can it be used ?When can it be used ?
Future data needs are (somewhat) Future data needs are (somewhat)
predictablepredictable

How is it implemented ?How is it implemented ?
in hardware: history based prediction of future in hardware: history based prediction of future
accessaccess
in in software: compiler inserted prefetch software: compiler inserted prefetch
instructionsinstructions

6CS243 Winter 2006
Stanford University

Software Data PrefetchingSoftware Data Prefetching

Compiler scheduled prefetchesCompiler scheduled prefetches
Moves entire cache lines (not just datum)Moves entire cache lines (not just datum)

Spatial locality assumed Spatial locality assumed –– often the caseoften the case
Typically a nonTypically a non--faulting accessfaulting access

Compiler free to speculate prefetch addressCompiler free to speculate prefetch address
Hardware not obligated to obeyHardware not obligated to obey

A performance enhancement, no functional A performance enhancement, no functional
impactimpact
Loads/store may be preferentially treatedLoads/store may be preferentially treated

7CS243 Winter 2006
Stanford University

Software Data Prefetching Software Data Prefetching
UseUse

Mostly in Scientific codesMostly in Scientific codes
VectorizableVectorizable loops accessing arrays loops accessing arrays
deterministicallydeterministically

Data access pattern is predictableData access pattern is predictable
Prefetch scheduling easy (far in time, near in code)Prefetch scheduling easy (far in time, near in code)

Large working data sets consumedLarge working data sets consumed
Even large caches unable to capture access Even large caches unable to capture access
localitylocality

Sometimes in Integer codesSometimes in Integer codes
Loops with pointer deLoops with pointer de--referencesreferences

8CS243 Winter 2006
Stanford University

Selective Data Selective Data PrefetchPrefetch
do j = 1, ndo j = 1, n
do i = 1, mdo i = 1, m

A(i,j) = B(1,i) + B(1,i+1)A(i,j) = B(1,i) + B(1,i+1)
enddoenddo

enddoenddo

E.g. E.g. A(i,jA(i,j) has spatial) has spatial
locality, therefore only locality, therefore only
one one prefetchprefetch is required is required
for every cache line.for every cache line.

A
j

i

B 1
1 m

9CS243 Winter 2006
Stanford University

Formal DefinitionsFormal Definitions

Temporal localityTemporal locality occurs when a given occurs when a given
reference reuses exactly the same data reference reuses exactly the same data
locationlocation
Spatial localitySpatial locality occurs when a given occurs when a given
reference accesses different data reference accesses different data
locations that fall within the same cache locations that fall within the same cache
lineline
Group localityGroup locality occurs when different occurs when different
references access the same cache linereferences access the same cache line

10CS243 Winter 2006
Stanford University

PrefetchPrefetch PredicatesPredicates
If an access has spatial locality, only the If an access has spatial locality, only the
first access to the same cache line will first access to the same cache line will
incur a miss.incur a miss.
For temporal locality, only the first For temporal locality, only the first
access will incur a cache missaccess will incur a cache miss
If an access has group locality, only the If an access has group locality, only the
leading reference incurs cache miss.leading reference incurs cache miss.
If an access has no locality, it will miss If an access has no locality, it will miss
in every iteration.in every iteration.

11CS243 Winter 2006
Stanford University

Example Code with Example Code with
PrefetchesPrefetches

do j = 1, ndo j = 1, n
do i = 1, mdo i = 1, m

A(i,j) = B(1,i) + B(1,i+1)A(i,j) = B(1,i) + B(1,i+1)
if (iand(i,7) == 0)if (iand(i,7) == 0)
prefetchprefetch (A(i+k,j))(A(i+k,j))

if (j == 1)if (j == 1)
prefetchprefetch (B(1,i+t))(B(1,i+t))

enddoenddo
enddoenddo

A
j

i

B 1
1 m

Assumed CLS = 64 bytes and
data size = 8 bytes

k and t are prefetch distance values

12CS243 Winter 2006
Stanford University

Spreading of Spreading of PrefetchesPrefetches
If there is more than one reference that If there is more than one reference that
has spatial locality within the same loop has spatial locality within the same loop
nest, spread these nest, spread these prefetchesprefetches across across
the 8the 8--iteration windowiteration window
Reduces the stress on the memory Reduces the stress on the memory
subsystem by minimizing the number of subsystem by minimizing the number of
outstanding outstanding prefetchesprefetches

13CS243 Winter 2006
Stanford University

Example Code with Example Code with
SpreadingSpreading

do j = 1, ndo j = 1, n
do i = 1, mdo i = 1, m

C(i,j) = D(iC(i,j) = D(i--1,j) + D(i+1,j)1,j) + D(i+1,j)
if (iand(i,7) == 0)if (iand(i,7) == 0)

prefetchprefetch (C(i+k,j))(C(i+k,j))
if (iand(i,7) == 1)if (iand(i,7) == 1)
prefetchprefetch (D(i+k+1,j))(D(i+k+1,j))

enddoenddo
enddoenddo

C, D
j

i

Assumed CLS = 64
bytes and data size =
8 bytes

k is the prefetch
distance value

14CS243 Winter 2006
Stanford University

Prefetch Strategy Prefetch Strategy --
ConditionalConditional

Example loopExample loop

L:
Load A(I)
Load B(I)
...
I = I + 1
Br L, if I<n

Conditional PrefetchingConditional Prefetching

L:
Load A(I)
Load B(I)
Cmp pA=(I mod 8 == 0)
if(pA) prefetch
A(I+X)
Cmp pB=(I mod 8 == 1)
If(pB) prefetch
B(I+X)
...
I = I + 1
Br L, if I<n

Code for condition
generation
Prefetches occupy
issue slots

15CS243 Winter 2006
Stanford University

Prefetch Strategy Prefetch Strategy -- UnrollUnroll
Example loopExample loop

L:
Load A(I)
Load B(I)
...
I = I + 1
Br L, if I<n

UnrolledUnrolled
Unr_Loop:

prefetch A(I+X)
load A(I)
load B(I)
...
prefetch B(I+X)
load A(I+1)
load B(I+1)
...
prefetch C(I+X)
load A(I+2)
load B(I+2)
...
prefetch D(I+X)
load A(I+3)
load B(I+3)

...
prefetch E(I+X)
load A(I+4)
load B(I+4)

...
load A(I+5)
load B(I+5)

...
load A(I+6)
load B(I+6)

...
load A(I+7)
load B(I+7)
...
I = I + 8
Br Unr_Loop, if
I<n

Code bloat (>8X)
Remainder loop

16CS243 Winter 2006
Stanford University

Software Data Prefetching Software Data Prefetching
CostCost

Requires memory instruction resourcesRequires memory instruction resources
A prefetch instruction for each access streamA prefetch instruction for each access stream

Issues every iteration, but needed less Issues every iteration, but needed less
oftenoften

If branched around, inefficient execution If branched around, inefficient execution
resultsresults
If conditionally executed, more instruction If conditionally executed, more instruction
overhead resultsoverhead results
If loop is unrolled, code bloat resultsIf loop is unrolled, code bloat results

17CS243 Winter 2006
Stanford University

Software Data Prefetching Software Data Prefetching
CostCost

Redundant prefetches get in the wayRedundant prefetches get in the way
Resources consumed until prefetches Resources consumed until prefetches
discarded!discarded!

Non redundant need careful schedulingNon redundant need careful scheduling
Resources overwhelmed when many issued Resources overwhelmed when many issued
& miss& miss

18CS243 Winter 2006
Stanford University

Desirable CharacteristicsDesirable Characteristics

Uses minimal instruction resourcesUses minimal instruction resources
One prefetch instruction for multiple streamsOne prefetch instruction for multiple streams

Minimizes redundant prefetchesMinimizes redundant prefetches
No code bloat, no prefetch branchesNo code bloat, no prefetch branches

Issues prefetches spaced in timeIssues prefetches spaced in time
Machine resources utilized evenlyMachine resources utilized evenly

Solution: rotating register Solution: rotating register prefetchprefetch if there if there
is HW support.is HW support.

19CS243 Winter 2006
Stanford University

Rotating RegistersRotating Registers
• Register rotation provides an automatic
renaming mechanism.
• Instructions contain a “virtual” register number

Iteration 1 r32r33r34r35r36r37r38r39

r33r34r35r36r37r38r39r32

r34r35r36r37r38r39r32r33

Iteration 2

Iteration 3

32 33 34 35 36 37 38 39

20CS243 Winter 2006
Stanford University

Rotating Rotating RegReg Prefetch Prefetch
IllustratedIllustrated

Example loopExample loop
Orig_loop:

Load A(I)
Load B(I)
Load C(I)
Load D(I)
Load E(I)
...
I = I + 1
Br Orig_loop,
if I<n

Rotating Register Rotating Register PrefetchingPrefetching

r33 = address of E(1+X)
r34 = address of D(1+X)
r35 = address of C(1+X)
r36 = address of B(1+X)
r37 = address of A(1+X)
Method1Loop:
prefetch [r37]
r32 = r37 + INCR
. . .
load A(I)
load B(I)
load C(I)
load D(I)
load E(I)
. . .
I = I + 1
Br Method1Loop, if I<n

Single prefetch inst
No loop unrolling
At most 1 miss/iter

21CS243 Winter 2006
Stanford University

Measurements Measurements –– SPECfp2000SPECfp2000

-20

0

20

40

60

80

100

120

140

160

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

Fm
a3

d

si
xt

ra
ck

ap
si

G
eo

m
ea

Pe
rfo

rm
an

ce
 G

ai
n

ov
er

 N
o

pr
ef

et
ch

in
g

#REF!

#REF!

Data Prefetch

22CS243 Winter 2006
Stanford University

AgendaAgenda
Data Data PrefetchPrefetch
Software PipeliningSoftware Pipelining

23CS243 Winter 2006
Stanford University

Software PipeliningSoftware Pipelining

Obtain parallelism by executing iterations Obtain parallelism by executing iterations
of a loop in an overlapping way.of a loop in an overlapping way.
WeWe’’ll focus on simplest case: the ll focus on simplest case: the dodo--allall
loop, where iterations are independent.loop, where iterations are independent.
GoalGoal: Initiate iterations as frequently as : Initiate iterations as frequently as
possible.possible.
LimitationLimitation: Use same schedule and delay : Use same schedule and delay
for each iteration.for each iteration.

24CS243 Winter 2006
Stanford University

Machine ModelMachine Model

Timing parameters: LD = 2, others = 1 Timing parameters: LD = 2, others = 1
clock.clock.
Machine can execute one LD or ST and Machine can execute one LD or ST and
one arithmetic operation (including branch) one arithmetic operation (including branch)
at any one clock.at any one clock.

I.e., weI.e., we’’re back to one ALU resource and one re back to one ALU resource and one
MEM resource.MEM resource.

25CS243 Winter 2006
Stanford University

ExampleExample
for (i=0; i<N; i++)for (i=0; i<N; i++)

B[i] = A[i];B[i] = A[i];
r9 holds 4N; r8 holds 4*i.r9 holds 4N; r8 holds 4*i.

L:L: LD r1, a(r8)LD r1, a(r8)

nopnop

ST b(r8), r1ST b(r8), r1

ADD r8, r8, #4ADD r8, r8, #4

BLT r8, r9, LBLT r8, r9, L

Notice: data dependences
force this schedule. No
parallelism is possible.

26CS243 Winter 2006
Stanford University

LetLet’’s Run 2 Iterations in Parallels Run 2 Iterations in Parallel

Focus on operations; worry about Focus on operations; worry about
registers later.registers later.
LDLD

nopnop LDLD

STST nopnop

ADDADD STST

BLTBLT ADDADD

BLTBLT

Oops --- violates
ALU resource
constraint.

27CS243 Winter 2006
Stanford University

Introduce a NOPIntroduce a NOP

LD
nop LD
ST nop
ADD ST
nop ADD
BLT nop

BLT

LD
nop
ST
ADD
nop
BLT

Add a third iteration.
Several resource
conflicts arise.

28CS243 Winter 2006
Stanford University

Is It Possible to Have an Is It Possible to Have an
Iteration Start at Every Clock?Iteration Start at Every Clock?

HintHint: No.: No.
Why?Why?
An iteration injects 2 MEM and 2 ALU An iteration injects 2 MEM and 2 ALU
resource requirements.resource requirements.

If injected every clock, the machine cannot If injected every clock, the machine cannot
possibly satisfy all requests.possibly satisfy all requests.

Minimum delay = 2.Minimum delay = 2.

29CS243 Winter 2006
Stanford University

A Schedule With Delay A Schedule With Delay
22LD

nop
nop
ST
ADD
BLT

LD
nop
nop
ST
ADD
BLT

LD
nop
nop
ST
ADD
BLT

LD
nop
nop
ST
ADD
BLT

Initialization

Coda

Identical iterations
of the loop

30CS243 Winter 2006
Stanford University

Assigning RegistersAssigning Registers

We donWe don’’t need an infinite number of t need an infinite number of
registers.registers.
We can reuse registers for iterations that We can reuse registers for iterations that
do not overlap in time.do not overlap in time.
But we canBut we can’’t just use the same old t just use the same old
registers for every iteration.registers for every iteration.

31CS243 Winter 2006
Stanford University

Assigning Registers Assigning Registers ------ (2)(2)

The inner loop may have to involve more The inner loop may have to involve more
than one copy of the smallest repeating than one copy of the smallest repeating
pattern.pattern.

Enough so that registers may be reused at Enough so that registers may be reused at
each iteration of the expanded inner loop.each iteration of the expanded inner loop.

Our example: 3 iterations coexist, so we Our example: 3 iterations coexist, so we
need 3 sets of registers and 3 copies of need 3 sets of registers and 3 copies of
the pattern.the pattern.

32CS243 Winter 2006
Stanford University

ExampleExample: Assigning : Assigning
RegistersRegisters

Our original loop used registers:Our original loop used registers:
r9 to hold a constant 4N.r9 to hold a constant 4N.
r8 to count iterations and index the arrays.r8 to count iterations and index the arrays.
r1 to copy a[i] into b[i].r1 to copy a[i] into b[i].

The expanded loop needs:The expanded loop needs:
r9 holds 12N.r9 holds 12N.
r6, r7, r8 to count iterations and index.r6, r7, r8 to count iterations and index.
r1, r2, r3 to copy certain array elements.r1, r2, r3 to copy certain array elements.

33CS243 Winter 2006
Stanford University

The Loop BodyThe Loop Body

L: ADD r8,r8,#12 nop LD r3,a(r6)
BGE r8,r9,L’ ST b(r7),r2 nop
LD r1,a(r8) ADD r7,r7,#12 nop
nop BGE r7,r9,L’’ ST b(r6),r3
nop LD r2,a(r7) ADD r6,r6,#12
ST b(r8),r1 nop BLT r6,r9,L

Iteration i

Iteration i + 4

Iteration i + 1

Iteration i + 3

Iteration i + 2

To break the loop early
Each register handles every
third element of the arrays.

L’ and L’’ are places for appropriate codas.

34CS243 Winter 2006
Stanford University

Cyclic DataCyclic Data--Dependence GraphsDependence Graphs
We assumed that data at an iteration We assumed that data at an iteration
depends only on data computed at the depends only on data computed at the
same iteration.same iteration.

Not even true for our example.Not even true for our example.
r8 computed from its previous iteration.r8 computed from its previous iteration.
But it doesnBut it doesn’’t matter in this example.t matter in this example.

FixupFixup: edge labels have two components: : edge labels have two components:
(iteration change, delay).(iteration change, delay).

35CS243 Winter 2006
Stanford University

ExampleExample: Cyclic D: Cyclic D--D GraphD Graph

LD r1,a(r8)

ST b(r8),r1

ADD r8,r8,#4

BLT r8,r9,L

<0,2>
<1,1>

<0,1>

<0,1>

(A)

(B)

(C)

(D)

(C) must wait at
least one clock
after the (B) from
the same iteration.

(A) must wait at
least one clock
after the (C) from
the previous
iteration.

36CS243 Winter 2006
Stanford University

Matrix of DelaysMatrix of Delays

Let T be the delay between the start Let T be the delay between the start
times of one iteration and the next.times of one iteration and the next.
Replace edge label <i,j> by delay Replace edge label <i,j> by delay jj--iTiT..
Compute, for each pair of nodes Compute, for each pair of nodes nn and and
mm the total delay along the longest the total delay along the longest
acyclic path from acyclic path from nn to to mm..
Gives upper and lower bounds relating Gives upper and lower bounds relating
the times to schedule the times to schedule nn and and mm..

37CS243 Winter 2006
Stanford University

ExampleExample: Delay Matrix: Delay Matrix

A

A

B

C

D

B C D

2

1-T

1

1

A

A

B

C

D

B C D

2

1-T

1

1

3

2-T 2

3-T

4

Edges Acyclic Transitive Closure

S(B) ≥ S(A)+2

S(A) ≥ S(B)+2-T

S(B)-2 ≥ S(A) ≥ S(B)+2-T

Note: Implies T ≥ 4 (because only
one register used for loop-counting).
If T=4, then A (LD) must be 2 clocks
before B (ST). If T=5, A can be 2-3
clocks before B.

38CS243 Winter 2006
Stanford University

Iterative Modulo SchedulingIterative Modulo Scheduling

Compute the lower bounds (Compute the lower bounds (MIIMII) on the) on the
delay between the start times of one delay between the start times of one
iteration and the next (iteration and the next (initiation interval, initiation interval,
akaaka IIII))

due to resourcesdue to resources
due to recurrencesdue to recurrences

Try to find a schedule for II = MIITry to find a schedule for II = MII
If no schedule can be found, try a larger If no schedule can be found, try a larger
II.II.

39CS243 Winter 2006
Stanford University

SummarySummary

References for compiler data References for compiler data prefetchprefetch: :
Todd Todd MowryMowry, Monica Lam, , Monica Lam, AnoopAnoop Gupta, Gupta, ““Design and Design and
evaluation of a compiler algorithm for evaluation of a compiler algorithm for prefetchingprefetching””, in , in
ASPLOSASPLOS’’92, 92,
http://citeseer.ist.psu.edu/mowry92design.html.http://citeseer.ist.psu.edu/mowry92design.html.
Gautam Doshi, Rakesh Krishnaiyer, Kalyan
Muthukumar, ““Optimizing Software Data Optimizing Software Data PrefetchesPrefetches
with Rotating Registerswith Rotating Registers””, in , in PACT’01,
http://citeseer.ist.psu.edu/670603.html.http://citeseer.ist.psu.edu/670603.html.

