
Wei Li 1
Stanford University

CS243 Winter 2006

Loop Transformations Loop Transformations
and Locality and Locality

2CS243 Winter 2006
Stanford University

AgendaAgenda
IntroductionIntroduction
Loop TransformationsLoop Transformations
Affine Transform TheoryAffine Transform Theory

3CS243 Winter 2006
Stanford University

Memory HierarchyMemory Hierarchy

CPU

C

C

Memory

Cache

4CS243 Winter 2006
Stanford University

Cache LocalityCache Locality

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j] + 3

end_for
end_for

• Suppose array A has column-major layout

……A[1,3]A[1,3]……A[2,2]A[2,2]A[1,2]A[1,2]……A[2,1]A[2,1]A[1,1]A[1,1]

• Loop nest has poor spatial cache locality.

5CS243 Winter 2006
Stanford University

Loop InterchangeLoop Interchange

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j] + 3

end_for
end_for

• Suppose array A has column-major layout

……A[1,3]A[1,3]……A[2,2]A[2,2]A[1,2]A[1,2]……A[2,1]A[2,1]A[1,1]A[1,1]

• New loop nest has better spatial cache locality.

for j = 1, 200
for i = 1, 100

A[i, j] = A[i, j] + 3
end_for

end_for

6CS243 Winter 2006
Stanford University

Interchange Loops?Interchange Loops?

for i = 2, 100
for j = 1, 200
A[i, j] = A[i-1, j+1]+3

end_for
end_for

• e.g. dependence from (3,3) to (4,2)

i

j

7CS243 Winter 2006
Stanford University

Dependence VectorsDependence Vectors

i

j

Distance vector (1,Distance vector (1,--1) 1)
= (4,2)= (4,2)--(3,3)(3,3)
Direction vector (+, Direction vector (+, --))
from the signs of from the signs of
distance vectordistance vector
Loop interchange is Loop interchange is
not legal if there exists not legal if there exists
dependence (+, dependence (+, --))

8CS243 Winter 2006
Stanford University

AgendaAgenda
IntroductionIntroduction
Loop TransformationsLoop Transformations
Affine Transform TheoryAffine Transform Theory

9CS243 Winter 2006
Stanford University

Loop FusionLoop Fusion

for i = 1, 1000
A[i] = B[i] + 3

end_for

for j = 1, 1000
C[j] = A[j] + 5

end_for

for i = 1, 1000
A[i] = B[i] + 3
C[i] = A[i] + 5

end_for

Better reuse between Better reuse between A[iA[i] and] and A[iA[i]]

10CS243 Winter 2006
Stanford University

Loop DistributionLoop Distribution
for i = 1, 1000
A[i] = A[i-1] + 3

end_for

for i = 1, 1000
C[i] = B[i] + 5

end_for

for i = 1, 1000
A[i] = A[i-1] + 3
C[i] = B[i] + 5

end_for

22ndnd loop is parallelloop is parallel

11CS243 Winter 2006
Stanford University

Register BlockingRegister Blocking

for j = 1, 2*m
for i = 1, 2*n
A[i, j] = A[i-1, j]

+ A[i-1, j-1]
end_for

end_for

for j = 1, 2*m, 2
for i = 1, 2*n, 2
A[i, j] = A[i-1,j] + A[i-1,j-1]
A[i, j+1] = A[i-1,j+1] + A[i-1,j]
A[i+1, j] = A[i, j] + A[i, j-1]
A[i+1, j+1] = A[i, j+1] + A[i, j]

end_for
end_for

Better reuse between Better reuse between A[i,jA[i,j] and] and A[i,jA[i,j]]

12CS243 Winter 2006
Stanford University

Virtual Register AllocationVirtual Register Allocation
for j = 1, 2*M, 2
for i = 1, 2*N, 2
r1 = A[i-1,j]
r2 = r1 + A[i-1,j-1]
A[i, j] = r2
r3 = A[i-1,j+1] + r1
A[i, j+1] = r3
A[i+1, j] = r2 + A[i, j-1]
A[i+1, j+1] = r3 + r2

end_for
end_for

Memory
operations
reduced to
register
load/store
8MN loads to
4MN loads

13CS243 Winter 2006
Stanford University

Scalar ReplacementScalar Replacement

for i = 2, N+1
= A[i-1]+1

A[i] =
end_for

t1 = A[1]
for i = 2, N+1

= t1 + 1
t1 =
A[i] = t1

end_for

Eliminate loads and stores for array
references

14CS243 Winter 2006
Stanford University

UnrollUnroll--andand--JamJam

for j = 1, 2*M
for i = 1, N
A[i, j] = A[i-1, j]

+ A[i-1, j-1]
end_for

end_for

for j = 1, 2*M, 2
for i = 1, N
A[i, j]=A[i-1,j]+A[i-1,j-1]

A[i, j+1]=A[i-1,j+1]+A[i-1,j]
end_for
end_for

Expose more opportunity for scalar
replacement

15CS243 Winter 2006
Stanford University

Large ArraysLarge Arrays

for i = 1, 1000
for j = 1, 1000
A[i, j] = A[i, j] + B[j, i]

end_for
end_for

• Suppose arrays A and B have row-major layout

B has poor cache locality.
Loop interchange will not help.

16CS243 Winter 2006
Stanford University

Loop BlockingLoop Blocking

for v = 1, 1000, 20
for u = 1, 1000, 20
for j = v, v+19
for i = u, u+19
A[i, j] = A[i, j] + B[j, i]

end_for
end_for

end_for
end_for

Access to
small
blocks of
the arrays
has good
cache
locality.

17CS243 Winter 2006
Stanford University

Loop Unrolling for ILPLoop Unrolling for ILP

for i = 1, 10
a[i] = b[i];
*p = ...

end_for

for I = 1, 10, 2
a[i] = b[i];
*p = …
a[i+1] = b[i+1];
*p = …

end_for

Large scheduling regions. Fewer
dynamic branches
Increased code size

18CS243 Winter 2006
Stanford University

AgendaAgenda
IntroductionIntroduction
Loop TransformationsLoop Transformations
Affine Transform TheoryAffine Transform Theory

19CS243 Winter 2006
Stanford University

ObjectiveObjective

Unify a large class of program Unify a large class of program
transformations.transformations.
Example:Example:

float Z[100];
for i = 0, 9
Z[i+10] = Z[i];

end_for

20CS243 Winter 2006
Stanford University

Iteration SpaceIteration Space

A dA d--deep loop nest has d index variables, deep loop nest has d index variables,
and is modeled by a dand is modeled by a d--dimensional space. dimensional space.
The space of iterations is bounded by the The space of iterations is bounded by the
lower and upper bounds of the loop lower and upper bounds of the loop
indices.indices.
Iteration space i = 0,1, Iteration space i = 0,1, ……9 9

for i = 0, 9
Z[i+10] = Z[i];

end_for

21CS243 Winter 2006
Stanford University

Matrix FormulationMatrix Formulation

The iterations in a dThe iterations in a d--deep loop nest can be deep loop nest can be
represented mathematically asrepresented mathematically as

Z is the set of integersZ is the set of integers
B is a d B is a d xx d integer matrixd integer matrix
b is an integer vector of length d, andb is an integer vector of length d, and
0 is a vector of d 00 is a vector of d 0’’s.s.

}0|{ ≥+∈ biBdZi
vv

22CS243 Winter 2006
Stanford University

ExampleExample

for i = 0, 5
for j = i, 7
Z[j,i] = 0;

E.g. the 3rd row –i+j ≥ 0 is from the
lower bound j ≥ i for loop j.







































































































































≥+

−
−
−

0
0
0
0

7
0
5
0

10
11
01
01

j
i

23CS243 Winter 2006
Stanford University

Symbolic ConstantsSymbolic Constants

for i = 0, n
Z[i] = 0;

E.g. the 1st row –i+n ≥ 0 is from the
upper bound i ≤ n.





























































≥−∈
0
0

01
11|{
n
iZi

24CS243 Winter 2006
Stanford University

Data SpaceData Space

An nAn n--dimensional array is modeled by an dimensional array is modeled by an
nn--dimensional space. The space is dimensional space. The space is
bounded by the array bounds.bounded by the array bounds.
Data space a = 0,1, Data space a = 0,1, ……99 99

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for

25CS243 Winter 2006
Stanford University

Processor SpaceProcessor Space

Initially assume unbounded number of Initially assume unbounded number of
virtual processors (vp1, vp2, virtual processors (vp1, vp2, ……) organized) organized
in a multiin a multi--dimensional space. dimensional space.

(iteration 1, vp1), (iteration 2, vp2),(iteration 1, vp1), (iteration 2, vp2),……
After parallelization, map to physical After parallelization, map to physical
processors (p1, p2).processors (p1, p2).

(vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),(vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),……

26CS243 Winter 2006
Stanford University

Affine Array Index FunctionAffine Array Index Function

Each array access in the code specifies a Each array access in the code specifies a
mapping from an iteration in the iteration mapping from an iteration in the iteration
space to an array element in the data space to an array element in the data
spacespace
Both i+10 and i are affine.Both i+10 and i are affine.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for

27CS243 Winter 2006
Stanford University

Array Affine AccessArray Affine Access

The bounds of the loop are expressed as The bounds of the loop are expressed as
affine expressions of the surrounding loop affine expressions of the surrounding loop
variables and symbolic constants, andvariables and symbolic constants, and
The index for each dimension of the array The index for each dimension of the array
is also an affine expression of surrounding is also an affine expression of surrounding
loop variables and symbolic constantsloop variables and symbolic constants

28CS243 Winter 2006
Stanford University

Matrix FormulationMatrix Formulation

Array access maps a vector i within the Array access maps a vector i within the
bounds to array element location bounds to array element location Fi+fFi+f..

E.g. access X[iE.g. access X[i--1] in loop nest 1] in loop nest i,ji,j

}0|{ ≥+∈ biBdZi
vv

101 −


































j
i

29CS243 Winter 2006
Stanford University

Affine PartitioningAffine Partitioning

An affine function to assign iterations in an An affine function to assign iterations in an
iteration space to processors in the iteration space to processors in the
processor space.processor space.
E.g. iteration i to processor 10E.g. iteration i to processor 10--i.i.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for

30CS243 Winter 2006
Stanford University

Data Access RegionData Access Region

An affine function to assign iterations in an An affine function to assign iterations in an
iteration space to processors in the iteration space to processors in the
processor space.processor space.
Region for Z[i+10] is {a | 10 Region for Z[i+10] is {a | 10 ≤≤ a a ≤≤ 20}.20}.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for

31CS243 Winter 2006
Stanford University

Data DependencesData Dependences

Solution to linear constraints as shown in Solution to linear constraints as shown in
the last lecture.the last lecture.

There exist There exist iirr, , iiww, such that, such that
0 0 ≤≤ iirr,, iiww ≤≤ 9, 9,
iiww + 10 = + 10 = iirr

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for

32CS243 Winter 2006
Stanford University

Affine TransformAffine Transform

i

j

u

v

b
j
iB

v
u

+=








































33CS243 Winter 2006
Stanford University

Locality OptimizationLocality Optimization

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j] + 3

end_for
end_for

for u = 1, 200
for v = 1, 100

A[v,u] = A[v,u]+ 3
end_for

end_for





























































=
j
i

v
u

01
10

34CS243 Winter 2006
Stanford University

Old Iteration SpaceOld Iteration Space





























































=
j
i

v
u

01
10







































































































































≥
−

−

+

−

−

0
0
0
0

200
1

100
1

10
10
01
01

j
i

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j] + 3

end_for
end_for



























































































































































≥
−

−

+
−

−

−

0
0
0
0

200
1

100
1

1

01
10

10
10
01
01

v
u

35CS243 Winter 2006
Stanford University

New Iteration SpaceNew Iteration Space







































































































































≥
−

−

+

−

−

0
0
0
0

200
1

100
1

01
01
10

10

v
u



























































































































































≥
−

−

+
−

−

−

0
0
0
0

200
1

100
1

1

01
10

10
10
01
01

v
u

for u = 1, 200
for v = 1, 100

A[v,u] = A[v,u]+ 3
end_for

end_for

36CS243 Winter 2006
Stanford University

Old Array AccessesOld Array Accesses





























































=
j
i

v
u

01
10

]10,01[




































































j
i

j
iA

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j] + 3

end_for
end_for

]
1

01
1010,

1

01
1001[













































































































−−

v
u

v
uA

37CS243 Winter 2006
Stanford University

New Array AccessesNew Array Accesses

]
1

01
1010,

1

01
1001[













































































































−−

v
u

v
uA

for u = 1, 200
for v = 1, 100

A[v,u] = A[v,u]+ 3
end_for

end_for

]01,10[




































































v
u

v
uA

38CS243 Winter 2006
Stanford University

Interchange Loops?Interchange Loops?

for i = 2, 1000
for j = 1, 1000
A[i, j] = A[i-1, j+1]+3

end_for
end_for

• e.g. dependence vector dold = (1,-1)

i

j

39CS243 Winter 2006
Stanford University

Interchange Loops?Interchange Loops?





























































=
j
i

v
u

01
10















































































 −=
−

==
1
1

1
1

01
10

01
10

oldnew dd

A transformation is legal, if the new A transformation is legal, if the new
dependence is lexicographically positive, dependence is lexicographically positive,
i.e. the leading noni.e. the leading non--zero in the zero in the
dependence vector is positive.dependence vector is positive.

40CS243 Winter 2006
Stanford University

SummarySummary
Locality OptimizationsLocality Optimizations
Loop TransformationsLoop Transformations
Affine Transform TheoryAffine Transform Theory

