Loop Transformations and Locality

Agenda

- Introduction

- Loop Transformations
- Affine Transform Theory

Memory Hierarchy

Cache Locality

- Suppose array A has column-major layout

$\mathrm{A}[1,1]$	$\mathrm{A}[2,1]$	\cdots	$\mathrm{A}[1,2]$	$\mathrm{A}[2,2]$	\cdots	$\mathrm{A}[1,3]$	\cdots

$$
\begin{aligned}
& \text { for } \mathrm{i}=1,100 \\
& \text { for } \mathrm{j}=1,200 \\
& \text { A[i, j] = } A[i, j]+3 \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

- Loop nest has poor spatial cache locality.

Loop Interchange

- Suppose array A has column-major layout

$\mathrm{A}[1,1]$	$\mathrm{A}[2,1]$	\cdots	$\mathrm{A}[1,2]$	$\mathrm{A}[2,2]$	\cdots	$\mathrm{A}[1,3]$	\ldots

$$
\begin{aligned}
& \text { for } \mathbf{i}=1,100 \\
& \text { for } \mathbf{j}=1,200 \\
& A[i, j]=A[i, j]+3 \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

for $\mathrm{j}=1,200$

$$
\text { for } \mathrm{i}=1,100
$$

$$
A[i, j]=A[i, j]+3
$$

end_for
end_for

- New loop nest has better spatial cache locality.

Interchange Loops?

$$
\begin{aligned}
& \text { for } \mathrm{i}=2,100 \\
& \text { for } \mathrm{j}=1,200 \\
& \text { A[i, j] = A[i-1, j+1]+3 } \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

- e.g. dependence from $(3,3)$ to $(4,2)$

Dependence Vectors

- Distance vector $(1,-1)$

$=(4,2)-(3,3)$
- Direction vector (+, -) from the signs of distance vector
- Loop interchange is not legal if there exists dependence (+, -)

Agenda

- Introduction
- Loop Transformations
- Affine Transform Theory

Loop Fusion

$$
\begin{aligned}
& \text { for } i=1,1000 \\
& A[i]=B[i]+3 \\
& \text { end_for } \\
& \text { for } j=1,1000 \\
& C[j]=A[j]+5 \\
& \text { end_for }
\end{aligned}
$$

$$
\text { for } \mathrm{i}=1,1000
$$

$$
\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+3
$$

$$
\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]+5
$$

end_for

- Better reuse between A[i] and A[i]

Loop Distribution

$$
\begin{array}{cl}
& \text { for } i=1,1000 \\
& \text { A[i] =A[i-1] +3 } \\
\text { end_for } \\
\text { for } i=1,1000 & \\
A[i]=A[i-1]+3 & \text { for } i=1,1000 \\
C[i]=B[i]+5 & C[i]=B[i]+5 \\
\text { end_for } & \text { end_for }
\end{array}
$$

- $2^{\text {nd }}$ loop is parallel

Register Blocking

$$
\begin{aligned}
& \text { for } \mathrm{j}=1,2^{*} \mathrm{~m} \\
& \text { for } \mathrm{i}=1,2^{*} \mathrm{n} \\
& \quad A[i, j]=A[i-1, j] \\
& +A[i-1, j-1] \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathrm{j}=1,2^{*} \mathrm{~m}, 2 \\
& \text { for } \mathrm{i}=1,2^{*} n, 2 \\
& A[i, j]=A[i-1, j]+A[i-1, j-1] \\
& A[i, j+1]=A[i-1, j+1]+A[i-1, j] \\
& A[i+1, j]=A[i, j]+A[i, j-1] \\
& A[i+1, j+1]=A[i, j+1]+A[i, j] \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

- Better reuse between $A[i, j]$ and $A[i, j]$

Virtual Register Allocation

for $\mathrm{j}=1$, 2*M, $^{*} 2$

$$
\begin{aligned}
\text { for } i & =1,2 * N, 2 \\
r 1 & =A[i-1, j] \\
r 2 & =r 1+A[i-1, j-1]
\end{aligned}
$$

- Memory operations reduced to

$$
A[i, j]=r 2
$$ register

$$
r 3=A[i-1, j+1]+r 1
$$ load/store

$$
A[i, j+1]=r 3
$$

$$
A[i+1, j]=r 2+A[i, j-1]
$$

- 8MN loads to

$$
A[i+1, j+1]=r 3+r 2
$$ 4MN loads

Scalar Replacement

$$
\begin{aligned}
& \text { for } \mathrm{i}=2, \mathrm{~N}+1 \\
&=A[i-1]+1 \\
& \text { A[i] }= \\
& \text { end_for }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t} 1=\mathrm{A}[1] \\
& \text { for } \mathrm{i}=2, \mathrm{~N}+1 \\
& =\mathrm{t} 1+1 \\
& \mathrm{t} 1= \\
& \text { A[i] }=\mathrm{t} 1 \\
& \text { end_for }
\end{aligned}
$$

- Eliminate loads and stores for array references

Unroll-and-Jam

$$
\begin{aligned}
& \text { for } \mathrm{j}=1,2^{*} \mathrm{M} \\
& \text { for } \mathrm{i}=1, \mathrm{~N} \\
& \quad A[i, j]=A[i-1, j] \\
& +\quad A[i-1, j-1] \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathrm{j}=1,2^{*} \mathrm{M}, 2 \\
& \text { for } \mathrm{i}=1, \mathrm{~N} \\
& A[i, j]=A[i-1, j]+A[i-1, j-1] \\
& \text { A[i, j+1]=A[i-1,j+1]+A[i-1,j]} \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

- Expose more opportunity for scalar replacement

Large Arrays

- Suppose arrays A and B have row-major layout

$$
\begin{aligned}
& \text { for } i=1,1000 \\
& \text { for } j=1,1000 \\
& A[i, j]=A[i, j]+B[j, i] \\
& \text { end_for } \\
& \text { end_for }
\end{aligned}
$$

- B has poor cache locality. - Loop interchange will not help.

Loop Blocking

for $v=1,1000,20$

$$
\text { for } u=1,1000,20
$$

$$
\text { for } \mathrm{j}=\mathrm{v}, \mathrm{v}+19
$$

$$
\text { for } \mathrm{i}=\mathrm{u}, \mathrm{u}+19
$$

$$
A[i, j]=A[i, j]+B[j, i]
$$ end for

end_for end_for end_for

Loop Unrolling for ILP

$$
\begin{aligned}
& \text { for } \mathrm{i}=1,10 \\
& \mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{i}] ; \\
& \text { *p = ... } \\
& \text { end_for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for I = 1, 10, } 2 \\
& \text { a[i] = b[i]; } \\
& { }^{*} p=\ldots \\
& a[i+1]=b[i+1] ; \\
& { }^{*} p=\ldots \\
& \text { end_for }
\end{aligned}
$$

- Large scheduling regions. Fewer dynamic branches
- Increased code size

Agenda

- Introduction
- Loop Transformations
- Affine Transform Theory

Objective

- Unify a large class of program transformations.
- Example:

$$
\begin{aligned}
& \text { float Z[100]; } \\
& \text { for } i=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Iteration Space

- A d-deep loop nest has d index variables, and is modeled by a d-dimensional space. The space of iterations is bounded by the lower and upper bounds of the loop indices.
- Iteration space i = 0,1, ...9

$$
\begin{aligned}
& \text { for } \mathrm{i}=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Matrix Formulation

- The iterations in a d-deep loop nest can be represented mathematically as

- Z is the set of integers
- B is a $\mathrm{d} x \mathrm{~d}$ integer matrix
- b is an integer vector of length d , and
- 0 is a vector of d 0 's.

Example

$$
\begin{array}{r}
\text { for } i=0,5 \\
\text { for } j=i, 7 \\
Z[j, i]=0 ;
\end{array}
$$

$\left.\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right] j \begin{array}{c}i \\ 0 \\ 7\end{array}\right]+\left[\begin{array}{l}0 \\ 5 \\ 0 \\ 0\end{array}\right]$

- E.g. the $3^{\text {rd }}$ row $-i+j \geq 0$ is from the lower bound $\mathrm{j} \geq \mathrm{i}$ for loop j .

Symbolic Constants

$$
\begin{aligned}
\text { for } \mathrm{i} & =0, \mathrm{n} \\
Z[i] & =0 ;
\end{aligned}
$$

- E.g. the $1^{\text {st }}$ row $-i+n \geq 0$ is from the upper bound $\mathrm{i} \leq \mathrm{n}$.

Data Space

- An n-dimensional array is modeled by an n-dimensional space. The space is bounded by the array bounds.
- Data space a = 0,1, .. 99

$$
\begin{aligned}
& \text { float Z[100] } \\
& \text { for } i=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Processor Space

- Initially assume unbounded number of virtual processors (vp1, vp2, ...) organized in a multi-dimensional space.
- (iteration 1, vp1), (iteration 2, vp2),...
- After parallelization, map to physical processors (p1, p2).
- (vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),...

Affine Array Index Function

- Each array access in the code specifies a mapping from an iteration in the iteration space to an array element in the data space
- Both i+10 and i are affine.

$$
\begin{aligned}
& \text { float Z[100] } \\
& \text { for } \mathrm{i}=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Array Affine Access

- The bounds of the loop are expressed as affine expressions of the surrounding loop variables and symbolic constants, and
- The index for each dimension of the array is also an affine expression of surrounding loop variables and symbolic constants

Matrix Formulation

- Array access maps a vector i within the bounds to array element location Fi+f.

$$
\{\vec{i} \in Z d \mid B \vec{i}+b \geq 0\}
$$

- E.g. access X[i-1] in loop nest i,j

Affine Partitioning

- An affine function to assign iterations in an iteration space to processors in the processor space.
- E.g. iteration i to processor 10-i.

$$
\begin{aligned}
& \text { float Z[100] } \\
& \text { for } \mathrm{i}=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Data Access Region

- An affine function to assign iterations in an iteration space to processors in the processor space.
- Region for $Z[i+10]$ is $\{a \mid 10 \leq a \leq 20\}$.

$$
\begin{aligned}
& \text { float Z[100] } \\
& \text { for } i=0,9 \\
& Z[i+10]=Z[i] ; \\
& \text { end_for }
\end{aligned}
$$

Data Dependences

- Solution to linear constraints as shown in the last lecture.
- There exist i_{r}, i_{w}, such that
$\square 0 \leq \mathrm{i}_{\mathrm{r}}, \mathrm{i}_{\mathrm{w}} \leq 9$,
- $\mathrm{i}_{\mathrm{w}}+10=\mathrm{i}_{\mathrm{r}}$

$$
\begin{aligned}
& \text { float Z[100] } \\
& \text { for } \mathrm{i}=0,9 \\
& \text { Z[i+10] = Z[i]; } \\
& \text { end_for }
\end{aligned}
$$

Affine Transform

Locality Optimization

for $\mathrm{i}=1,100$
for $\mathrm{j}=1,200$
$A[i, j]=A[i, j]+3$
end_for
end_for
for $\mathbf{u}=1,200$
for $v=1,100$ $\mathrm{A}[\mathrm{v}, \mathrm{u}]=\mathrm{A}[\mathrm{v}, \mathrm{u}]+3$ end_for end_for

Old Iteration Space

for $\mathrm{i}=1,100$ for $\mathrm{j}=1,200$ $A[i, j]=A[i, j]+3$ end_for end_for
$\left.\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}i\end{array}\right]+\left[\begin{array}{c}-1 \\ j 00 \\ -1 \\ 200\end{array}\right] \geq \begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}-1 \\ {[u} \\ v\end{array}\right]+\left[\begin{array}{c}-1 \\ 100 \\ -1 \\ 200\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

New Iteration Space

$$
\left.\left.\left[\begin{array}{cc}
0 & 1 \\
0 & -1 \\
1 & 0 \\
-1 & 0
\end{array}\right] u\right]^{2}\left[\begin{array}{c}
-1 \\
100 \\
-1 \\
200
\end{array}\right] \geq \begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

for $v=1,100$ $\mathrm{A}[\mathrm{v}, \mathrm{u}]=\mathrm{A}[\mathrm{v}, \mathrm{u}]+3$ end_for end_for
for $u=1,200$

Old Array Accesses

for $\mathrm{i}=1,100$ for $\mathrm{j}=1,200$ $A[i, j]=A[i, j]+3$ end_for

end_for

New Array Accesses

for $u=1,200$

for $\mathbf{v}=1,100$

$$
\mathrm{A}[\mathrm{v}, \mathrm{u}]=\mathrm{A}[\mathrm{v}, \mathrm{u}]+3
$$ end_for end for

Interchange Loops?

for $\mathrm{i}=2,1000$ for $\mathrm{j}=1,1000$ $A[i, j]=A[i-1, j+1]+3$ end_for end_for

- e.g. dependence vector $\mathrm{d}_{\text {old }}=(1,-1)$

Interchange Loops?

$\left.\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] j\right]$
$d_{\text {new }}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] d_{\text {old }}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

- A transformation is legal, if the new dependence is lexicographically positive, i.e. the leading non-zero in the dependence vector is positive.

Summary

- Locality Optimizations
- Loop Transformations
- Affine Transform Theory

