Loop Transformations and Locality

Agenda

Introduction Loop Transformations Affine Transform Theory

Memory Hierarchy

Cache Locality

• Suppose array A has column-major layout

• Loop nest has **poor** spatial cache locality.

Loop Interchange

• Suppose array A has column-major layout

A[1,1]	A[2,1]		A[1,2]	A[2,2]		A[1,3]		
for i =	1, 10	0		for j	for j = 1, 200			
for j = 1, 200				for	for i = 1, 100			
A[i, j] = A[i, j] + 3			+ 3	A	A[i, j] = A[i, j] + 3			
end	_for			en	d_for			
end_f	or			end	_for			

• New loop nest has **better** spatial cache locality.

Stanford University

Interchange Loops?

```
for i = 2, 100
for j = 1, 200
    A[i, j] = A[i-1, j+1]+3
    end_for
end_for
```


1

• e.g. dependence from (3,3) to (4,2)

Dependence Vectors

Distance vector (1,-1) = (4,2)-(3,3)Direction vector (+, -) from the signs of distance vector Loop interchange is not legal if there exists dependence (+, -)

Agenda

Introduction
 Loop Transformations Affine Transform Theory

Loop Fusion

for i = 1, 1000 A[i] = B[i] + 3 end_for

for j = 1, 1000 C[j] = A[j] + 5 end_for for i = 1, 1000 A[i] = B[i] + 3 C[i] = A[i] + 5 end_for

Better reuse between A[i] and A[i]

Loop Distribution

for i = 1, 1000 A[i] = A[i-1] + 3 C[i] = B[i] + 5 end_for for i = 1, 1000 A[i] = A[i-1] + 3 end_for

for i = 1, 1000 C[i] = B[i] + 5 end_for

2nd loop is parallel

Register Blocking

for j = 1, 2*m, 2 for i = 1, 2*n, 2 A[i, j] = A[i-1,j] + A[i-1,j-1]A[i, j+1] = A[i-1,j+1] + A[i-1,j]A[i+1, j] = A[i, j] + A[i, j-1]A[i+1, j+1] = A[i, j+1] + A[i, j]end_for end_for

Better reuse between A[i,j] and A[i,j]

Virtual Register Allocation

```
for j = 1, 2^*M, 2
 for i = 1, 2*N, 2
  r1 = A[i-1,j]
  r2 = r1 + A[i-1,j-1]
  A[i, j] = r2
  r3 = A[i-1,i+1] + r1
  A[i, j+1] = r3
  A[i+1, j] = r^2 + A[i, j-1]
   A[i+1, j+1] = r3 + r2
 end for
end for
Stanford University
```

Memory operations reduced to register load/store 8MN loads to 4MN loads

Scalar Replacement

t1 = A[1] for i = 2, N+1 = t1 + 1 t1 = A[i] = t1 end_for

Eliminate loads and stores for array references

Unroll-and-Jam

for j = 1, 2*M, 2 for i = 1, N A[i, j]=A[i-1,j]+A[i-1,j-1]A[i, j+1]=A[i-1,j+1]+A[i-1,j]end_for end_for

 Expose more opportunity for scalar replacement

Large Arrays

• Suppose arrays A and B have row-major layout

for i = 1, 1000
 for j = 1, 1000
 A[i, j] = A[i, j] + B[j, i]
 end_for
 end_for

B has poor cache locality.Loop interchange will not help.

Loop Blocking

```
for v = 1, 1000, 20
 for u = 1, 1000, 20
  for j = v, v+19
   for i = u, u+19
     A[i, j] = A[i, j] + B[j, i]
    end for
  end for
 end for
end for
```

 Access to small blocks of the arrays has good cache locality.

Loop Unrolling for ILP

for i = 1, 10 a[i] = b[i]; *p = ... end_for

 Large scheduling regions. Fewer dynamic branches
 Increased code size

Agenda

Introduction
 Loop Transformations
 Affine Transform Theory

Objective

Unify a large class of program transformations.

Example:

Iteration Space

A d-deep loop nest has d index variables, and is modeled by a d-dimensional space. The space of iterations is bounded by the lower and upper bounds of the loop indices.

Iteration space i = 0,1, ...9

Matrix Formulation

The iterations in a d-deep loop nest can be represented mathematically as

$$\{\vec{i} \in Z^d | B\vec{i} + b \ge 0\}$$

Z is the set of integers
B is a d x d integer matrix
b is an integer vector of length d, and
0 is a vector of d 0's.

Example

E.g. the 3rd row –i+j ≥ 0 is from the lower bound j ≥ i for loop j.

Symbolic Constants

$$\begin{cases} i \in \mathbb{Z} \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} \begin{bmatrix} n \\ n \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

E.g. the 1st row –i+n ≥ 0 is from the upper bound i ≤ n.

Data Space

- An n-dimensional array is modeled by an n-dimensional space. The space is bounded by the array bounds.
- Data space a = 0,1, ...99

Processor Space

Initially assume unbounded number of virtual processors (vp1, vp2, ...) organized in a multi-dimensional space. (iteration 1, vp1), (iteration 2, vp2),... After parallelization, map to physical processors (p1, p2). (vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),...

Affine Array Index Function

Each array access in the code specifies a mapping from an iteration in the iteration space to an array element in the data space

Both i+10 and i are affine.

Array Affine Access

The bounds of the loop are expressed as affine expressions of the surrounding loop variables and symbolic constants, and

The index for each dimension of the array is also an affine expression of surrounding loop variables and symbolic constants

Matrix Formulation

Array access maps a vector i within the bounds to array element location Fi+f.

$$\{\vec{i} \in Z^d | B\vec{i} + b \ge 0\}$$

E.g. access X[i-1] in loop nest i,j

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} - 1$$

Stanford University

Affine Partitioning

An affine function to assign iterations in an iteration space to processors in the processor space.

E.g. iteration i to processor 10-i.

Data Access Region

An affine function to assign iterations in an iteration space to processors in the processor space.

■ Region for Z[i+10] is $\{a \mid 10 \le a \le 20\}$.

Data Dependences

 Solution to linear constraints as shown in the last lecture.

There exist i_r, i_w, such that

$$\bullet \ 0 \leq i_r, \ i_w \leq 9,$$

Affine Transform

u

Stanford University

Locality Optimization

```
for i = 1, 100
  for j = 1, 200
      A[i, j] = A[i, j] + 3
    end_for
end_for
```

for u = 1, 200
for v = 1, 100
 A[v,u] = A[v,u]+ 3
 end_for
end_for

Stanford University

Old Iteration Space

for i = 1, 100
for j = 1, 200
 A[i, j] = A[i, j] + 3
 end_for
end_for

() -1 0 0 $ig|\mathcal{U}ig|$ 100 $\mathbf{0}$ V ()

Stanford University

New Iteration Space

$$\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} u \\ 100 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 100 \\ -1 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 \\ 0 \\ 200 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

for u = 1, 200
for v = 1, 100
 A[v,u] = A[v,u]+ 3
 end_for
end_for

Old Array Accesses

```
for i = 1, 100
for j = 1, 200
    A[i, j] = A[i, j] + 3
    end_for
end_for
```


$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} A \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ v \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ v \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\$$

Stanford University

New Array Accesses

$$A[\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ u \\ v \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ u \\ v \end{bmatrix}]$$

for u = 1, 200
for v = 1, 100
 A[v,u] = A[v,u]+ 3
 end_for
end_for

Stanford University

Interchange Loops?

```
for i = 2, 1000
for j = 1, 1000
A[i, j] = A[i-1, j+1]+3
end_for
end_for
```


1

• e.g. dependence vector $d_{old} = (1,-1)$

A transformation is legal, if the new dependence is lexicographically positive, i.e. the leading non-zero in the dependence vector is positive.

Stanford University

Summary

Locality Optimizations
 Loop Transformations
 Affine Transform Theory