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Cache LocalityCache Locality

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j]  + 3

end_for
end_for

• Suppose array A has column-major layout

……A[1,3]A[1,3]……A[2,2]A[2,2]A[1,2]A[1,2]……A[2,1]A[2,1]A[1,1]A[1,1]

• Loop nest has poor spatial cache locality.
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Loop InterchangeLoop Interchange

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j]  + 3

end_for
end_for

• Suppose array A has column-major layout

……A[1,3]A[1,3]……A[2,2]A[2,2]A[1,2]A[1,2]……A[2,1]A[2,1]A[1,1]A[1,1]

• New loop nest has better spatial cache locality.

for j = 1, 200
for i = 1, 100 

A[i, j] = A[i, j]  + 3
end_for

end_for
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Interchange Loops?Interchange Loops?

for i = 2, 100
for j = 1, 200
A[i, j] = A[i-1, j+1]+3

end_for
end_for

• e.g. dependence from (3,3) to (4,2)

i

j
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Dependence VectorsDependence Vectors

i

j

Distance vector (1,Distance vector (1,--1) 1) 
= (4,2)= (4,2)--(3,3)(3,3)
Direction vector (+, Direction vector (+, --) ) 
from the signs of from the signs of 
distance vectordistance vector
Loop interchange is Loop interchange is 
not legal if there exists not legal if there exists 
dependence (+, dependence (+, --))
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Loop FusionLoop Fusion

for i = 1, 1000
A[i] = B[i]  + 3

end_for

for j = 1, 1000
C[j] = A[j]  + 5

end_for

for i = 1, 1000
A[i] = B[i]  + 3
C[i] = A[i]  + 5

end_for

Better reuse between Better reuse between A[iA[i] and ] and A[iA[i]]
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Loop DistributionLoop Distribution
for i = 1, 1000
A[i] = A[i-1]  + 3

end_for

for i = 1, 1000
C[i] = B[i]  + 5

end_for

for i = 1, 1000
A[i] = A[i-1]  + 3
C[i] = B[i]  + 5

end_for

22ndnd loop is parallelloop is parallel
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Register BlockingRegister Blocking

for j = 1, 2*m
for i = 1, 2*n
A[i, j] = A[i-1, j]  

+  A[i-1, j-1]
end_for

end_for

for j = 1, 2*m, 2
for i = 1, 2*n, 2
A[i, j] = A[i-1,j] + A[i-1,j-1] 
A[i, j+1] = A[i-1,j+1] + A[i-1,j]
A[i+1, j] = A[i, j] + A[i, j-1]
A[i+1, j+1] = A[i, j+1] + A[i, j]

end_for
end_for

Better reuse between Better reuse between A[i,jA[i,j] and ] and A[i,jA[i,j]]
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Virtual Register AllocationVirtual Register Allocation
for j = 1, 2*M, 2
for i = 1, 2*N, 2
r1 = A[i-1,j] 
r2 = r1 + A[i-1,j-1] 
A[i, j] = r2
r3 = A[i-1,j+1] + r1
A[i, j+1] = r3
A[i+1, j] = r2 + A[i, j-1]
A[i+1, j+1] = r3 + r2

end_for
end_for

Memory 
operations 
reduced to 
register 
load/store
8MN loads to 
4MN loads
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Scalar ReplacementScalar Replacement

for i = 2, N+1
= A[i-1]+1

A[i] =
end_for

t1 = A[1]
for i = 2, N+1

= t1 + 1
t1 = 
A[i] = t1

end_for

Eliminate loads and stores for array 
references
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UnrollUnroll--andand--JamJam

for j = 1, 2*M
for i = 1, N
A[i, j] = A[i-1, j]  

+  A[i-1, j-1]
end_for

end_for

for j = 1, 2*M, 2
for i = 1, N
A[i, j]=A[i-1,j]+A[i-1,j-1]

A[i, j+1]=A[i-1,j+1]+A[i-1,j]
end_for
end_for

Expose more opportunity for scalar 
replacement
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Large ArraysLarge Arrays

for i = 1, 1000
for j = 1, 1000
A[i, j] = A[i, j]  +  B[j, i]

end_for
end_for

• Suppose arrays A and B have row-major layout

B has poor cache locality.
Loop interchange will not help.
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Loop BlockingLoop Blocking

for v = 1, 1000, 20
for u = 1, 1000, 20
for j = v, v+19
for i = u, u+19
A[i, j] = A[i, j]  +  B[j, i]

end_for
end_for

end_for
end_for

Access to 
small 
blocks of 
the arrays 
has good 
cache 
locality.
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Loop Unrolling for ILPLoop Unrolling for ILP

for i = 1, 10
a[i] = b[i];
*p = ...   

end_for

for I = 1, 10, 2
a[i] = b[i];
*p = …
a[i+1] = b[i+1];
*p = …

end_for

Large scheduling regions. Fewer 
dynamic branches
Increased code size
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ObjectiveObjective

Unify a large class of program Unify a large class of program 
transformations.transformations.
Example:Example:

float Z[100];
for i = 0, 9
Z[i+10] = Z[i];

end_for
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Iteration SpaceIteration Space

A dA d--deep loop nest has d index variables, deep loop nest has d index variables, 
and is modeled by a dand is modeled by a d--dimensional space. dimensional space. 
The space of iterations is bounded by the The space of iterations is bounded by the 
lower and upper bounds of the loop lower and upper bounds of the loop 
indices.indices.
Iteration space i = 0,1, Iteration space i = 0,1, ……9 9 

for i = 0, 9
Z[i+10] = Z[i];

end_for
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Matrix FormulationMatrix Formulation

The iterations in a dThe iterations in a d--deep loop nest can be deep loop nest can be 
represented mathematically asrepresented mathematically as

Z is the set of integersZ is the set of integers
B is a d B is a d xx d integer matrixd integer matrix
b is an integer vector of length d, andb is an integer vector of length d, and
0 is a vector of d 00 is a vector of d 0’’s.s.

}0|{ ≥+∈ biBdZi
vv
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ExampleExample

for i = 0, 5
for j = i, 7
Z[j,i] = 0;

E.g. the 3rd row –i+j ≥ 0 is from the 
lower bound j ≥ i for loop j. 
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Symbolic ConstantsSymbolic Constants

for i = 0, n
Z[i] = 0;

E.g. the 1st row –i+n ≥ 0 is from the 
upper bound i ≤ n. 
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Data SpaceData Space

An nAn n--dimensional array is modeled by an dimensional array is modeled by an 
nn--dimensional space. The space is dimensional space. The space is 
bounded by the array bounds.bounded by the array bounds.
Data space a = 0,1, Data space a = 0,1, ……99 99 

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for
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Processor SpaceProcessor Space

Initially assume unbounded number of Initially assume unbounded number of 
virtual processors (vp1, vp2, virtual processors (vp1, vp2, ……) organized ) organized 
in a multiin a multi--dimensional space. dimensional space. 

(iteration 1, vp1), (iteration 2, vp2),(iteration 1, vp1), (iteration 2, vp2),……
After parallelization, map to physical After parallelization, map to physical 
processors (p1, p2).processors (p1, p2).

(vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),(vp1, p1), (vp2, p2), (vp3, p1), (vp4, p2),……
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Affine Array Index FunctionAffine Array Index Function

Each array access in the code specifies a Each array access in the code specifies a 
mapping from an iteration in the iteration mapping from an iteration in the iteration 
space to an array element in the data space to an array element in the data 
spacespace
Both i+10 and i are affine.Both i+10 and i are affine.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for
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Array Affine AccessArray Affine Access

The bounds of the loop are expressed as The bounds of the loop are expressed as 
affine expressions of the surrounding loop affine expressions of the surrounding loop 
variables and symbolic constants, andvariables and symbolic constants, and
The index for each dimension of the array The index for each dimension of the array 
is also an affine expression of surrounding is also an affine expression of surrounding 
loop variables and symbolic constantsloop variables and symbolic constants
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Matrix FormulationMatrix Formulation

Array access maps a vector i within the Array access maps a vector i within the 
bounds to array element location bounds to array element location Fi+fFi+f..

E.g. access X[iE.g. access X[i--1] in loop nest 1] in loop nest i,ji,j

}0|{ ≥+∈ biBdZi
vv
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Affine PartitioningAffine Partitioning

An affine function to assign iterations in an An affine function to assign iterations in an 
iteration space to processors in the iteration space to processors in the 
processor space.processor space.
E.g. iteration i to processor 10E.g. iteration i to processor 10--i.i.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for
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Data Access RegionData Access Region

An affine function to assign iterations in an An affine function to assign iterations in an 
iteration space to processors in the iteration space to processors in the 
processor space.processor space.
Region for Z[i+10] is {a | 10 Region for Z[i+10] is {a | 10 ≤≤ a a ≤≤ 20}.20}.

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for
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Data DependencesData Dependences

Solution to linear constraints as shown in Solution to linear constraints as shown in 
the last lecture.the last lecture.

There exist There exist iirr, , iiww, such that, such that
0 0 ≤≤ iirr,, iiww ≤≤ 9, 9, 
iiww + 10 = + 10 = iirr

float Z[100]
for i = 0, 9
Z[i+10] = Z[i];

end_for



32CS243 Winter 2006
Stanford University

Affine TransformAffine Transform
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Locality OptimizationLocality Optimization

for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j]  + 3

end_for
end_for

for u = 1, 200
for v = 1, 100 

A[v,u] = A[v,u]+ 3
end_for

end_for
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Old Iteration SpaceOld Iteration Space
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for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j]  + 3

end_for
end_for
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New Iteration SpaceNew Iteration Space
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for u = 1, 200
for v = 1, 100 

A[v,u] = A[v,u]+ 3
end_for

end_for
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Old Array AccessesOld Array Accesses
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for i = 1, 100
for j = 1, 200
A[i, j] = A[i, j]  + 3

end_for
end_for
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New Array AccessesNew Array Accesses
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for u = 1, 200
for v = 1, 100 

A[v,u] = A[v,u]+ 3
end_for

end_for

]01,10[




































































v
u

v
uA



38CS243 Winter 2006
Stanford University

Interchange Loops?Interchange Loops?

for i = 2, 1000
for j = 1, 1000
A[i, j] = A[i-1, j+1]+3

end_for
end_for

• e.g. dependence vector dold = (1,-1)

i

j
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Interchange Loops?Interchange Loops?
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oldnew dd

A transformation is legal, if the new A transformation is legal, if the new 
dependence is lexicographically positive, dependence is lexicographically positive, 
i.e. the leading noni.e. the leading non--zero in the zero in the 
dependence vector is positive.dependence vector is positive.
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SummarySummary
Locality OptimizationsLocality Optimizations
Loop TransformationsLoop Transformations
Affine Transform TheoryAffine Transform Theory


