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Static Single Assignment

m Each variable has only one reaching
definition.

= \When two definitions merge, a ® function
IS introduced to with a new definition of the
variable.

m First consider SSA for alias free variables.

Stanford University CS243 Winter 2006



Example: CFG

= d=
=a+5\ /

l =a+5

=

Multiple reaching definitions

= a+5
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Example: SSA Form

a,= i

I
| = a,+5
=a,+5 Single reaching definition
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®D Functions

s A © operand represents the reaching
definition from the corresponding
predecessor.

m [he ordering of ® operands are important
for knowing from which path the definition
IS coming from.
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SSA Conditions

1. If two nonnull paths X -*Zand Y —»* Z
converge at node Z, and nodes X and Y
contains (V =..), then V = @(V, .., V) has
been inserted at Z.

2. Each mention of V has been replaced by
a mention of V.

3. V and the corresponding V; have the
same value.

Stanford University CS243 Winter 2006



Overview

s SSA Representation

m SSA Construction
m Step 1: Place @ statements
m Step 2: Rename all variables

m Converting out of SSA
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®d Placement

d

Stanford University

~N. S
a=®d(a,a)
l
\/
a = d(a,a)
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Renaming

d,=

1 /
aTS \

a;= ®(a,,a,)
a, =

| |

a;+d
a,+5

S a
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SSA Construction (l)

m  Step 1: Place & statements by
computing iterated dominance frontier
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CFG

= A control flow graph G = (V, E)

m Set V contains distinguished nodes
START and END
m every node is reachable from START
= END is reachable from every node in G.
= START has no predecessors
= END has no successors.

m Predecessor, successor, path
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Dominator Relation

m [f X appears on every path from START to
Y, then X dominates Y .

m Domination is both reflexive and transitive.
= idom(Y): immediate dominator of Y

m Dominator Tree
m START is the root

= Any node Y other than START has idom(Y) as
its parent

m Parent, child, ancestor, descendant
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Dominator Tree Example

START

CEFG

Stanford University

END
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Dominator Tree Example

START

CEFG

Stanford University

END
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Dominator Tree Example

START

CEFG

Stanford University

END

START
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Dominator Tree Example

START

CEFG

Stanford University

END

START
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Dominator Tree Example

START

CEFG

Stanford University

/

a

STAR”I{

END

/ N\

END

C d
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Dominance Frontier

m Dominance Frontier DF(X) for node X
= Set of nodes Y
= X dominates a predecessor of Y
= X does not strictly dominate Y
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DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

i DF(c) = ?

CFG END DF(a) = ?

Stanford University
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DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

i DF(c) = {d}

CFG END DF(a) = ?

Stanford University
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DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

L DF(c) = {d}

CFG END DF(a) = {END}

Stanford University
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Computing DF

m DF(X) is the union of the following sets

= DF, .,(X), a set of successor nodes that X
doesn't strictly dominate
m E.g. DFcq(c) = {d}
= DF(Z) for all Z € Children(X)
m DF (Z) ={Y e DF(Z) | idom(Z) doesn't strictly
dominate Y}
mEg. X=a,Z=d,Y =END
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lterated Dominance Frontier

m DF(SET) is the union of DF(X), where X €
SET.

m |[terated dominance frontier DF*(SET) is
the limit of

= DF, = DF(SET) and DF.,, = DF(SET U DF;)
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Computing Joins

m J(SET) of join nodes
= Set of all nodes Z

= [here are two nonnull CFG paths that start at
two distinct nodes in SET and converge at Z.

m lterated join J*(SET) Is the limit of
= J, = J(SET) and J;,, = J(SET U J)
m J7(SET) = DF*(SET)
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Placing @ Functions

m For each variable V

= Add all nodes with assignments to V to
worklist W

= While X in W do

m For each Y in DF(X) do
= If no ® added in Y then
m Place (V=o (V,...,V))atY

m If Y has not been added before, add Y to W.
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Computational Complexity

m Constructing SSA takes
O(A.; * avrgDF), where

= A, total number of
assignments

= avrgDF: weighted average
DF size

m [he computational
complexity is O(n?).

= €.g. nested repeat-until
loops

O | T |« O |« UV

e e
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&P Placement Example

d

Stanford Univer

sity

~N. S
a = ®d(a,a)

1
\/

a = d(a,a)
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SSA Construction (ll)

m  Step 2: Rename all variables in original
program and ® functions, using
dominator tree and rename stack to keep
track of the current names.
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Variable Renaming

m Rename from the START node recursively

m For node X

m For each assignment (V =...)in X
m Rename any use of V with the TOS of rename stack
m Push the new name V, on rename stack

mi=|+1
= Rename all the @ operands through successor edges

= Recursively rename for all child nodes in the
dominator tree

m For each assignment (V= ...)in X
m Pop V. in X from the rename stack
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Renaming Example

d,=

!

a,+5

TOS

ad—

Rename expr

l —

d—

!

a+5

Stanford University

a= (I)(a1!a)

|

at+h5
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Converting Out of SSA

= Mapping all V; to V?
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Overlapping Live Ranges
= Simply mapping all V. to V may not work

a,= b, a,= b, a,= b,
a1ll-5 b1‘+5 b1‘+5
b,= b:= b=
a,+5 a,+5 b +5
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Converting Out of SSA

= Option 1: coloring

= Compute live ranges, and assign a unigue
variable name for each live range

= Similar techniques used in register allocation
to be covered next week.

m Option 2: simply remove all @ functions

= Every optimization in SSA needs to guarantee
not to generate overlapping live ranges
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Handling Arrays

m Difficult to treat A[i] as a variable

m [he entire array can be treated like a
scalar.
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Unnecessary Liveness

m W operator may introduce unnecessary
liveness for A. Introduce HW (HiddenW).
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