
Wei Li 1
Stanford University

CS243 Winter 2006

SSA SSA

2CS243 Winter 2006
Stanford University

OverviewOverview

SSA RepresentationSSA Representation
SSA ConstructionSSA Construction
Converting out of SSAConverting out of SSA

3CS243 Winter 2006
Stanford University

Static Single AssignmentStatic Single Assignment
Each variable has only one reaching Each variable has only one reaching
definition.definition.
When two definitions merge, a When two definitions merge, a ФФ function function
is introduced to with a new definition of the is introduced to with a new definition of the
variable.variable.
First consider SSA for alias free variables.First consider SSA for alias free variables.

4CS243 Winter 2006
Stanford University

Example: CFGExample: CFG

a =

= a+5

a =

= a+5

a =

= a+5

Multiple reaching definitions

5CS243 Winter 2006
Stanford University

Example: SSA FormExample: SSA Form

a1=

= a1+5

a2=

= a2+5

a3=

a4= Ф(a1,a3)

= a4+5

Single reaching definition

6CS243 Winter 2006
Stanford University

ФФ FunctionsFunctions
A A ФФ operand represents the reaching operand represents the reaching
definition from the corresponding definition from the corresponding
predecessor. predecessor.
The ordering of The ordering of ФФ operands are important operands are important
for knowing from which path the definition for knowing from which path the definition
is coming from.is coming from.

7CS243 Winter 2006
Stanford University

SSA ConditionsSSA Conditions

1.1. If two If two nonnullnonnull paths X paths X →→++ Z and Y Z and Y →→++ Z Z
converge at node Z, and nodes X and Y converge at node Z, and nodes X and Y
contains (V =..), then V = contains (V =..), then V = ФФ(V, .., V) has (V, .., V) has
been inserted at Z.been inserted at Z.

2.2. Each mention of V has been replaced by Each mention of V has been replaced by
a mention of Va mention of Vii

3.3. V and the corresponding VV and the corresponding Vii have the have the
same value.same value.

8CS243 Winter 2006
Stanford University

OverviewOverview

SSA RepresentationSSA Representation
SSA ConstructionSSA Construction

Step 1: Place Step 1: Place ФФ statementsstatements
Step 2: Rename all variablesStep 2: Rename all variables

Converting out of SSAConverting out of SSA

9CS243 Winter 2006
Stanford University

ФФ PlacementPlacement

a = …

a = Ф(a ,a)

a = Ф(a ,a)

Place
minimal

number of
ФФ

functions

10CS243 Winter 2006
Stanford University

RenamingRenaming

a1=

a1+5

a4 =

a4+5

a2=

a3= Ф(a1,a2)

a3+5

11CS243 Winter 2006
Stanford University

SSA Construction (I)SSA Construction (I)

Step 1: Place Step 1: Place ФФ statements by statements by
computing iterated dominance frontiercomputing iterated dominance frontier

12CS243 Winter 2006
Stanford University

CFGCFG

A control flow graph G = (V, E)A control flow graph G = (V, E)
Set V contains distinguished nodes Set V contains distinguished nodes
START and ENDSTART and END

every node is reachable from STARTevery node is reachable from START
END is reachable from every node in G. END is reachable from every node in G.
START has no predecessorsSTART has no predecessors
END has no successors.END has no successors.

Predecessor, successor, pathPredecessor, successor, path

13CS243 Winter 2006
Stanford University

Dominator RelationDominator Relation
If X appears on every path from START to If X appears on every path from START to
Y, then X Y, then X dominatesdominates Y.Y.
Domination is both reflexive and transitive.Domination is both reflexive and transitive.
idom(Yidom(Y): immediate dominator of Y): immediate dominator of Y
Dominator TreeDominator Tree

START is the rootSTART is the root
Any node Y other than START has Any node Y other than START has idom(Yidom(Y) as) as
its parentits parent
Parent, child, ancestor, descendantParent, child, ancestor, descendant

14CS243 Winter 2006
Stanford University

Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

CFG DT

15CS243 Winter 2006
Stanford University

Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

CFG DT

16CS243 Winter 2006
Stanford University

Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

b c

CFG DT

17CS243 Winter 2006
Stanford University

Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

db c

CFG DT

18CS243 Winter 2006
Stanford University

Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

d

END

b c

CFG DT

19CS243 Winter 2006
Stanford University

Dominance FrontierDominance Frontier

Dominance Frontier DF(X) for node XDominance Frontier DF(X) for node X
Set of nodes Y Set of nodes Y
X dominates a predecessor of YX dominates a predecessor of Y
X does not strictly dominate YX does not strictly dominate Y

20CS243 Winter 2006
Stanford University

DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = ?

DF(a) = ?

21CS243 Winter 2006
Stanford University

DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = {d}

DF(a) = ?

22CS243 Winter 2006
Stanford University

DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = {d}

DF(a) = {END}

23CS243 Winter 2006
Stanford University

Computing DFComputing DF

DF(X) is the union of the following setsDF(X) is the union of the following sets
DFDFlocallocal(X), a set of successor nodes that X (X), a set of successor nodes that X
doesndoesn’’t strictly dominatet strictly dominate

E.g. E.g. DFDFlocallocal(c(c) = {d}) = {d}

DFDFupup(Z) for all Z (Z) for all Z єє Children(XChildren(X))
DFDFupup(Z(Z) = {Y) = {Y єє DF(Z) | DF(Z) | idom(Zidom(Z) doesn) doesn’’t strictly t strictly
dominate Y}dominate Y}
E.g. X = a, Z = d, Y = ENDE.g. X = a, Z = d, Y = END

24CS243 Winter 2006
Stanford University

Iterated Dominance FrontierIterated Dominance Frontier

DF(SET) is the union of DF(X), where X DF(SET) is the union of DF(X), where X єє
SET.SET.
Iterated dominance frontier DFIterated dominance frontier DF++(SET) is (SET) is
the limit ofthe limit of

DFDF11 = DF(SET) and DF= DF(SET) and DFi+1i+1 = DF(SET U DF= DF(SET U DFii))

25CS243 Winter 2006
Stanford University

Computing JoinsComputing Joins

J(SET) of join nodesJ(SET) of join nodes
Set of all nodes ZSet of all nodes Z
There are two There are two nonnullnonnull CFG paths that start at CFG paths that start at
two distinct nodes in SET and converge at Z.two distinct nodes in SET and converge at Z.

Iterated join JIterated join J++(SET) is the limit of (SET) is the limit of
JJ11 = J(SET) and J= J(SET) and Ji+1i+1 = J(SET U = J(SET U JJii))

JJ++(SET) = DF(SET) = DF++(SET) (SET)

26CS243 Winter 2006
Stanford University

Placing Placing Ф FunctionsFunctions

For each variable VFor each variable V
Add all nodes with assignments to V to Add all nodes with assignments to V to
worklistworklist WW
While X in WWhile X in W dodo

For each Y in DF(X) doFor each Y in DF(X) do
If no If no ФФ added in Y thenadded in Y then

Place (V = Place (V = ФФ (V,(V,……,V)) at Y,V)) at Y
If Y has not been added before, add Y to W.If Y has not been added before, add Y to W.

27CS243 Winter 2006
Stanford University

Computational ComplexityComputational Complexity
Constructing SSA takes Constructing SSA takes
OO(A(Atottot * * avrgDFavrgDF), where), where

AAtottot: total number of : total number of
assignmentsassignments
avrgDFavrgDF: weighted average : weighted average
DF sizeDF size

The computational The computational
complexity is O(ncomplexity is O(n22).).

e.g. nested repeate.g. nested repeat--until until
loops loops

S

a

b

c

E

d

28CS243 Winter 2006
Stanford University

Ф Placement ExamplePlacement Example

a = …

a = Ф(a ,a)

a = Ф(a ,a)

Place Ф at
Iterative

Dominance
Frontiers

29CS243 Winter 2006
Stanford University

SSA Construction (II)SSA Construction (II)

Step 2: Rename all variables in original Step 2: Rename all variables in original
program and program and ФФ functions, using functions, using
dominator tree and rename stack to keep dominator tree and rename stack to keep
track of the current names.track of the current names.

30CS243 Winter 2006
Stanford University

Variable RenamingVariable Renaming
Rename from the START node recursivelyRename from the START node recursively
For node XFor node X

For each assignment (V = For each assignment (V = ……) in X) in X
Rename any use of V with the TOS of rename stackRename any use of V with the TOS of rename stack
Push the new name VPush the new name Vii on rename stackon rename stack
i = i + 1i = i + 1

Rename all the Rename all the ФФ operands through successor edgesoperands through successor edges
Recursively rename for all child nodes in the Recursively rename for all child nodes in the
dominator tree dominator tree
For each assignment (V = For each assignment (V = ……) in X) in X

Pop VPop Vii in X from the rename stackin X from the rename stack

31CS243 Winter 2006
Stanford University

Renaming ExampleRenaming Example

a1=

a1+5

a =

a+5

a=

a= Ф(a1,a)

a+5

TOS

Rename expr

32CS243 Winter 2006
Stanford University

OverviewOverview

SSA RepresentationSSA Representation
SSA ConstructionSSA Construction
Converting out of SSAConverting out of SSA

33CS243 Winter 2006
Stanford University

Converting Out of SSAConverting Out of SSA

Mapping all VMapping all Vii to V?to V?

34CS243 Winter 2006
Stanford University

Overlapping Live RangesOverlapping Live Ranges
Simply mapping all VSimply mapping all Vii to V may not workto V may not work

a1= b1

a1+5

b2=

a1+5

a1= b1

b1+5

b2=

b1+5

a1= b1

b1+5

b2=

a1+5

35CS243 Winter 2006
Stanford University

Converting Out of SSAConverting Out of SSA

Option 1: coloringOption 1: coloring
Compute live ranges, and assign a unique Compute live ranges, and assign a unique
variable name for each live range variable name for each live range
Similar techniques used in register allocation Similar techniques used in register allocation
to be covered next week.to be covered next week.

Option 2: simply remove all Option 2: simply remove all ФФ functionsfunctions
Every optimization in SSA needs to guarantee Every optimization in SSA needs to guarantee
not to generate overlapping live ranges not to generate overlapping live ranges

36CS243 Winter 2006
Stanford University

ReferenceReference

““Efficient Computing Static Single Efficient Computing Static Single
Assignment Form and the Control Assignment Form and the Control
Dependence GraphDependence Graph””, R. , R. CytronCytron, J. , J.
FerranteFerrante, B. Rosen, M. , B. Rosen, M. WegmanWegman, and F. , and F.
K. K. ZadeckZadeck, Transactions on , Transactions on
Programming Languages and Systems Programming Languages and Systems
(TOPLAS), Oct 1991. (TOPLAS), Oct 1991.
http://citeseer.ist.psu.edu/cytron91efficihttp://citeseer.ist.psu.edu/cytron91effici
ently.htmlently.html

37CS243 Winter 2006
Stanford University

BackupBackup

38CS243 Winter 2006
Stanford University

Handling ArraysHandling Arrays
Difficult to treat Difficult to treat A[iA[i] as a variable] as a variable

The entire array can be treated like a The entire array can be treated like a
scalar.scalar.

= A[i]
A[j] = V

= A[k]

= R(A,i)
A = W(A,j,V)

= R(A,k)

= R(A8,i7)
A9 = W(A8,j6,V5)

= R(A9,k4)

39CS243 Winter 2006
Stanford University

Unnecessary Unnecessary LivenessLiveness

W operator may introduce unnecessary W operator may introduce unnecessary
livenessliveness for A. Introduce HW (for A. Introduce HW (HiddenWHiddenW).).

repeat

A[i] = i
i = i +1

until i>10

repeat
i2 = Ф(i1,i3)
A1 = Ф(A0,A2)
A2= W(A1,i2,i2)
i3 = i2 +1

until i3>10

repeat
i2 = Ф(i1,i3)

A2= HW(i2,i2)
i3 = i2 +1

until i3>10

