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Static Single AssignmentStatic Single Assignment
Each variable has only one reaching Each variable has only one reaching 
definition.definition.
When two definitions merge, a When two definitions merge, a ФФ function function 
is introduced to with a new definition of the is introduced to with a new definition of the 
variable.variable.
First consider SSA for alias free variables.First consider SSA for alias free variables.
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Example: CFGExample: CFG

a =

= a+5

a =

= a+5

a =

= a+5

Multiple reaching definitions



5CS243 Winter 2006
Stanford University

Example: SSA FormExample: SSA Form

a1=

= a1+5

a2=

= a2+5

a3=

a4= Ф(a1,a3)

= a4+5

Single reaching definition
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ФФ FunctionsFunctions
A A ФФ operand represents the reaching operand represents the reaching 
definition from the corresponding  definition from the corresponding  
predecessor. predecessor. 
The ordering of The ordering of ФФ operands are important operands are important 
for knowing from which path the definition for knowing from which path the definition 
is coming from.is coming from.
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SSA ConditionsSSA Conditions

1.1. If two If two nonnullnonnull paths X paths X →→++ Z and Y Z and Y →→++ Z Z 
converge at node Z, and nodes X and Y converge at node Z, and nodes X and Y 
contains (V =..), then V = contains (V =..), then V = ФФ(V, .., V) has (V, .., V) has 
been inserted at Z.been inserted at Z.

2.2. Each mention of V has been replaced by Each mention of V has been replaced by 
a mention of Va mention of Vii

3.3. V and the corresponding VV and the corresponding Vii have the have the 
same value.same value.
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OverviewOverview

SSA RepresentationSSA Representation
SSA ConstructionSSA Construction

Step 1: Place Step 1: Place ФФ statementsstatements
Step 2: Rename all variablesStep 2: Rename all variables

Converting out of SSAConverting out of SSA
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ФФ PlacementPlacement

a = …

a = Ф(a ,a)

a = Ф(a ,a)

Place 
minimal 

number of 
ФФ

functions
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RenamingRenaming

a1=

a1+5

a4 =

a4+5

a2=

a3= Ф(a1,a2)

a3+5
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SSA Construction (I)SSA Construction (I)

Step 1: Place Step 1: Place ФФ statements by statements by 
computing iterated dominance frontiercomputing iterated dominance frontier
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CFGCFG

A control flow graph G = (V, E)A control flow graph G = (V, E)
Set V contains distinguished nodes Set V contains distinguished nodes 
START and ENDSTART and END

every node is reachable from STARTevery node is reachable from START
END is reachable from every node in G. END is reachable from every node in G. 
START has no predecessorsSTART has no predecessors
END has no successors.END has no successors.

Predecessor, successor, pathPredecessor, successor, path
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Dominator RelationDominator Relation
If X appears on every path from START to If X appears on every path from START to 
Y, then X Y, then X dominatesdominates Y.Y.
Domination is both reflexive and transitive.Domination is both reflexive and transitive.
idom(Yidom(Y): immediate dominator of Y): immediate dominator of Y
Dominator TreeDominator Tree

START is the rootSTART is the root
Any node Y other than START has Any node Y other than START has idom(Yidom(Y) as ) as 
its parentits parent
Parent, child, ancestor, descendantParent, child, ancestor, descendant
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Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

CFG DT
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Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

CFG DT
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Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

b c

CFG DT
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Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

db c

CFG DT
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Dominator Tree ExampleDominator Tree Example
START

a

b c

d

END

START

a

d

END

b c

CFG DT
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Dominance FrontierDominance Frontier

Dominance Frontier DF(X) for node XDominance Frontier DF(X) for node X
Set of nodes Y Set of nodes Y 
X dominates a predecessor of YX dominates a predecessor of Y
X does not strictly dominate YX does not strictly dominate Y
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DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = ?

DF(a) = ?
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DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = {d}

DF(a) = ?
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DF ExampleDF Example
START

a

b c

d

END

START

a

d

END

b c

CFG

DT

DF(c) = {d}

DF(a) = {END}
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Computing DFComputing DF

DF(X) is the union of the following setsDF(X) is the union of the following sets
DFDFlocallocal(X), a set of successor nodes that X (X), a set of successor nodes that X 
doesndoesn’’t strictly dominatet strictly dominate

E.g. E.g. DFDFlocallocal(c(c) = {d} ) = {d} 

DFDFupup(Z) for all Z (Z) for all Z єє Children(XChildren(X))
DFDFupup(Z(Z) = {Y ) = {Y єє DF(Z) | DF(Z) | idom(Zidom(Z) doesn) doesn’’t strictly t strictly 
dominate Y}dominate Y}
E.g. X = a, Z = d, Y = ENDE.g. X = a, Z = d, Y = END
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Iterated Dominance FrontierIterated Dominance Frontier

DF(SET) is the union of DF(X), where X DF(SET) is the union of DF(X), where X єє
SET.SET.
Iterated dominance frontier DFIterated dominance frontier DF++(SET) is (SET) is 
the limit ofthe limit of

DFDF11 = DF(SET) and DF= DF(SET) and DFi+1i+1 = DF(SET U DF= DF(SET U DFii))
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Computing JoinsComputing Joins

J(SET) of join nodesJ(SET) of join nodes
Set of all nodes ZSet of all nodes Z
There are two There are two nonnullnonnull CFG paths that start at CFG paths that start at 
two distinct nodes in SET and converge at Z.two distinct nodes in SET and converge at Z.

Iterated join JIterated join J++(SET) is the limit of (SET) is the limit of 
JJ11 = J(SET) and J= J(SET) and Ji+1i+1 = J(SET U = J(SET U JJii))

JJ++(SET) = DF(SET) = DF++(SET) (SET) 
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Placing Placing Ф FunctionsFunctions

For each variable VFor each variable V
Add all nodes with assignments to V to Add all nodes with assignments to V to 
worklistworklist WW
While X in WWhile X in W dodo

For each Y in DF(X) doFor each Y in DF(X) do
If no If no ФФ added in Y thenadded in Y then

Place (V = Place (V = ФФ (V,(V,……,V)) at Y,V)) at Y
If Y has not been added before, add Y to W.If Y has not been added before, add Y to W.
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Computational ComplexityComputational Complexity
Constructing SSA takes Constructing SSA takes 
OO(A(Atottot * * avrgDFavrgDF), where), where

AAtottot: total number of : total number of 
assignmentsassignments
avrgDFavrgDF: weighted average : weighted average 
DF sizeDF size

The computational The computational 
complexity is O(ncomplexity is O(n22). ). 

e.g. nested repeate.g. nested repeat--until until 
loops loops 

S

a

b

c

E

d



28CS243 Winter 2006
Stanford University

Ф Placement ExamplePlacement Example

a = …

a = Ф(a ,a)

a = Ф(a ,a)

Place Ф at 
Iterative 

Dominance 
Frontiers
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SSA Construction (II)SSA Construction (II)

Step 2: Rename all variables in original Step 2: Rename all variables in original 
program and program and ФФ functions, using functions, using 
dominator tree and rename stack to keep dominator tree and rename stack to keep 
track of the current names.track of the current names.
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Variable RenamingVariable Renaming
Rename from the START node recursivelyRename from the START node recursively
For node XFor node X

For each assignment (V = For each assignment (V = ……) in X) in X
Rename any use of V with the TOS of rename stackRename any use of V with the TOS of rename stack
Push the new name VPush the new name Vii on rename stackon rename stack
i = i + 1i = i + 1

Rename all the Rename all the ФФ operands through successor edgesoperands through successor edges
Recursively rename for all child nodes in the Recursively rename for all child nodes in the 
dominator tree dominator tree 
For each assignment (V = For each assignment (V = ……) in X ) in X 

Pop VPop Vii in X from the rename stackin X from the rename stack
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Renaming ExampleRenaming Example

a1=

a1+5

a =

a+5

a=

a= Ф(a1,a)

a+5

TOS

Rename expr
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OverviewOverview

SSA RepresentationSSA Representation
SSA ConstructionSSA Construction
Converting out of SSAConverting out of SSA
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Converting Out of SSAConverting Out of SSA

Mapping all VMapping all Vii to V?to V?
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Overlapping Live RangesOverlapping Live Ranges
Simply mapping all VSimply mapping all Vii to V may not workto V may not work

a1= b1

a1+5

b2=

a1+5

a1= b1

b1+5

b2=

b1+5

a1= b1

b1+5

b2=

a1+5
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Converting Out of SSAConverting Out of SSA

Option 1: coloringOption 1: coloring
Compute live ranges, and assign a unique Compute live ranges, and assign a unique 
variable name for each live range variable name for each live range 
Similar techniques used in register allocation Similar techniques used in register allocation 
to be covered next week.to be covered next week.

Option 2: simply remove all Option 2: simply remove all ФФ functionsfunctions
Every optimization in SSA needs to guarantee Every optimization in SSA needs to guarantee 
not to generate overlapping live ranges not to generate overlapping live ranges 
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BackupBackup
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Handling ArraysHandling Arrays
Difficult to treat Difficult to treat A[iA[i] as a variable] as a variable

The entire array can be treated like a The entire array can be treated like a 
scalar.scalar.

= A[i]
A[j] = V

= A[k]

= R(A,i)
A = W(A,j,V)

= R(A,k)

= R(A8,i7)
A9 = W(A8,j6,V5)

= R(A9,k4)
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Unnecessary Unnecessary LivenessLiveness

W operator may introduce unnecessary W operator may introduce unnecessary 
livenessliveness for A. Introduce HW (for A. Introduce HW (HiddenWHiddenW). ). 

repeat

A[i] = i
i = i +1

until i>10

repeat
i2 = Ф(i1,i3)
A1 = Ф(A0,A2)
A2= W(A1,i2,i2)
i3 = i2 +1

until i3>10

repeat
i2 = Ф(i1,i3)

A2= HW(i2,i2)
i3 = i2 +1

until i3>10


