Stanford University

SSA

CS243 Winter 2006

Wei Li

1

Overview

m SSA Representation
s SSA Construction
m Converting out of SSA

Stanford University CS243 Winter 2006

Static Single Assignment

m Each variable has only one reaching
definition.

= \When two definitions merge, a ® function
IS introduced to with a new definition of the
variable.

m First consider SSA for alias free variables.

Stanford University CS243 Winter 2006

Example: CFG

= d=
=a+5\ /

l =a+5

=

Multiple reaching definitions

= a+5

Stanford University CS243 Winter 2006
4

Example: SSA Form

a,= i

I
| = a,+5
=a,+5 Single reaching definition

Stanford University CS243 Winter 2006

®D Functions

s A © operand represents the reaching
definition from the corresponding
predecessor.

m [he ordering of ® operands are important
for knowing from which path the definition
IS coming from.

Stanford University CS243 Winter 2006

SSA Conditions

1. If two nonnull paths X -*Zand Y —»* Z
converge at node Z, and nodes X and Y
contains (V =..), then V = @(V, .., V) has
been inserted at Z.

2. Each mention of V has been replaced by
a mention of V.

3. V and the corresponding V; have the
same value.

Stanford University CS243 Winter 2006

Overview

s SSA Representation

m SSA Construction
m Step 1: Place @ statements
m Step 2: Rename all variables

m Converting out of SSA

Stanford University CS243 Winter 2006

®d Placement

d

Stanford University

~N. S
a=®d(a,a)
l
\/
a = d(a,a)

CS243 Winter 2006

Place
minimal
number of
D

functions

Renaming

d,=

1 /
aTS \

a;= ®(a,,a,)
a, =

| |

a;+d
a,+5

S a

10

SSA Construction (l)

m Step 1: Place & statements by
computing iterated dominance frontier

Stanford University CS243 Winter 2006

11

CFG

= A control flow graph G = (V, E)

m Set V contains distinguished nodes
START and END
m every node is reachable from START
= END is reachable from every node in G.
= START has no predecessors
= END has no successors.

m Predecessor, successor, path

Stanford University CS243 Winter 2006 -’

Dominator Relation

m [f X appears on every path from START to
Y, then X dominates Y .

m Domination is both reflexive and transitive.
= idom(Y): immediate dominator of Y

m Dominator Tree
m START is the root

= Any node Y other than START has idom(Y) as
its parent

m Parent, child, ancestor, descendant

Stanford University CS243 Winter 2006 3

Dominator Tree Example

START

CEFG

Stanford University

END

CS243 Winter 2006

START

/

DT

14

Dominator Tree Example

START

CEFG

Stanford University

END

CS243 Winter 2006

START

/

a

DT

15

Dominator Tree Example

START

CEFG

Stanford University

END

START

CS243 Winter 2006

DT

16

Dominator Tree Example

START

CEFG

Stanford University

END

START

CS243 Winter 2006

DT

17

Dominator Tree Example

START

CEFG

Stanford University

/

a

STAR”I{

END

/ N\

END

C d

CS243 Winter 2006

DT

18

Dominance Frontier

m Dominance Frontier DF(X) for node X
= Set of nodes Y
= X dominates a predecessor of Y
= X does not strictly dominate Y

Stanford University CS243 Winter 2006

19

DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

i DF(c) = ?

CFG END DF(a) = ?

Stanford University

CS243 Winter 2006 20

DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

i DF(c) = {d}

CFG END DF(a) = ?

Stanford University

CS243 Winter 2006 21

DF Example

START STARI{
! /
a a END
\ / N\~
b C b C d DT
N/

L DF(c) = {d}

CFG END DF(a) = {END}

Stanford University

CS243 Winter 2006 29

Computing DF

m DF(X) is the union of the following sets

= DF, .,(X), a set of successor nodes that X
doesn't strictly dominate
m E.g. DFcq(c) = {d}
= DF(Z) for all Z € Children(X)
m DF (Z) ={Y e DF(Z) | idom(Z) doesn't strictly
dominate Y}
mEg. X=a,Z=d,Y =END

Stanford University CS243 Winter 2006 ’a

lterated Dominance Frontier

m DF(SET) is the union of DF(X), where X €
SET.

m |[terated dominance frontier DF*(SET) is
the limit of

= DF, = DF(SET) and DF.,, = DF(SET U DF;)

Stanford University CS243 Winter 2006 o

Computing Joins

m J(SET) of join nodes
= Set of all nodes Z

= [here are two nonnull CFG paths that start at
two distinct nodes in SET and converge at Z.

m lterated join J*(SET) Is the limit of
= J, = J(SET) and J;,, = J(SET U J)
m J7(SET) = DF*(SET)

Stanford University CS243 Winter 2006 5
5

Placing @ Functions

m For each variable V

= Add all nodes with assignments to V to
worklist W

= While X in W do

m For each Y in DF(X) do
= If no ® added in Y then
m Place (V=o (V,...,V))atY

m If Y has not been added before, add Y to W.

Stanford University CS243 Winter 2006

26

Computational Complexity

m Constructing SSA takes
O(A.; * avrgDF), where

= A, total number of
assignments

= avrgDF: weighted average
DF size

m [he computational
complexity is O(n?).

= €.g. nested repeat-until
loops

O | T |« O |« UV

e e

Stanford University

CS243 Winter 2006 27

&P Placement Example

d

Stanford Univer

sity

~N. S
a = ®d(a,a)

1
\/

a = d(a,a)

CS243 Winter 2006

Place @ at
Iterative
Dominance
Frontiers

28

SSA Construction (ll)

m Step 2: Rename all variables in original
program and ® functions, using
dominator tree and rename stack to keep
track of the current names.

Stanford University ©S243 Winter 2006 2

Variable Renaming

m Rename from the START node recursively

m For node X

m For each assignment (V =...)in X
m Rename any use of V with the TOS of rename stack
m Push the new name V, on rename stack

mi=|+1
= Rename all the @ operands through successor edges

= Recursively rename for all child nodes in the
dominator tree

m For each assignment (V= ...)in X
m Pop V. in X from the rename stack

Stanford University CS243 Winter 2006 20

Renaming Example

d,=

!

a,+5

TOS

ad—

Rename expr

l —

d—

!

a+5

Stanford University

a= (I)(a1!a)

|

at+h5

CS243 Winter 2006

31

Overview

s SSA Representation
s SSA Construction
m Converting out of SSA

Stanford University CS243 Winter 2006

Ky

Converting Out of SSA

= Mapping all V; to V?

Stanford University CS243 Winter 2006

KK]

Overlapping Live Ranges
= Simply mapping all V. to V may not work

a,= b, a,= b, a,= b,
a1ll-5 b1‘+5 b1‘+5
b,= b:= b=
a,+5 a,+5 b +5

Stanford University CS243 Winter 2006

Converting Out of SSA

= Option 1: coloring

= Compute live ranges, and assign a unigue
variable name for each live range

= Similar techniques used in register allocation
to be covered next week.

m Option 2: simply remove all @ functions

= Every optimization in SSA needs to guarantee
not to generate overlapping live ranges

Stanford University CS243 Winter 2006 2

Reference

m “Efficient Computing Static Single
Assignment Form and the Control
Dependence Graph”, R. Cytron, J.
Ferrante, B. Rosen, M. Wegman, and F.
K. Zadeck, Transactions on
Programming Languages and Systems
(TOPLAS), Oct 1991.
http://citeseer.ist.psu.edu/cytron91effici
ently.html

Stanford University CS243 Winter 2006 26

Stanford University

Backup

CS243 Winter 2006

37

Handling Arrays

m Difficult to treat A[i] as a variable

m [he entire array can be treated like a
scalar.

Stanford University CS243 Winter 2006 28

Unnecessary Liveness

m W operator may introduce unnecessary
liveness for A. Introduce HW (HiddenW).

Stanford University CS243 Winter 2006 29

