

Overview

SSA Representation
SSA Construction
Converting out of SSA

Static Single Assignment

- Each variable has only one reaching definition.
- When two definitions merge, a Φ function is introduced to with a new definition of the variable.
- First consider SSA for alias free variables.

Example: CFG

Φ Functions

- A Φ operand represents the reaching definition from the corresponding predecessor.
- The ordering of Φ operands are important for knowing from which path the definition is coming from.

SSA Conditions

- 1. If two nonnull paths $X \rightarrow^+ Z$ and $Y \rightarrow^+ Z$ converge at node Z, and nodes X and Y contains (V =..), then V = $\Phi(V, ..., V)$ has been inserted at Z.
- Each mention of V has been replaced by a mention of V_i
- V and the corresponding V_i have the same value.

Overview

SSA Representation
 SSA Construction

 Step 1: Place Φ statements
 Step 2: Rename all variables

 Converting out of SSA

Φ Placement

Renaming

SSA Construction (I)

Step 1: Place Φ statements by computing iterated dominance frontier

CFG

A control flow graph G = (V, E) Set V contains distinguished nodes START and END every node is reachable from START END is reachable from every node in G. START has no predecessors END has no successors. Predecessor, successor, path

Dominator Relation

If X appears on every path from START to Y, then X dominates Y.

Domination is both reflexive and transitive.

idom(Y): immediate dominator of Y

Dominator Tree

START is the root

Any node Y other than START has idom(Y) as its parent

Parent, child, ancestor, descendant

Dominator Tree Example

Stanford University

Dominator Tree Example

Dominance Frontier

Dominance Frontier DF(X) for node X
 Set of nodes Y
 X dominates a predecessor of Y
 X does not strictly dominate Y

DF Example

DF Example

DF Example

Computing DF

DF(X) is the union of the following sets DF_{local}(X), a set of successor nodes that X doesn't strictly dominate • E.g. $DF_{local}(c) = \{d\}$ ■ $DF_{up}(Z)$ for all $Z \in Children(X)$ • $DF_{up}(Z) = \{Y \in DF(Z) \mid idom(Z) \text{ doesn't strictly} \}$ dominate Y} ■ E.g. X = a, Z = d, Y = END

Iterated Dominance Frontier

- DF(SET) is the union of DF(X), where X є SET.
- Iterated dominance frontier DF⁺(SET) is the limit of

• $DF_1 = DF(SET)$ and $DF_{i+1} = DF(SET U DF_i)$

Computing Joins

J(SET) of join nodes Set of all nodes Z There are two nonnull CFG paths that start at two distinct nodes in SET and converge at Z. Iterated join J⁺(SET) is the limit of \blacksquare J₁ = J(SET) and J_{i+1} = J(SET U J_i) \square J⁺(SET) = DF⁺(SET)

Placing **Φ** Functions

For each variable V
 Add all nodes with assignment

- Add all nodes with assignments to V to worklist W
- While X in W do
 - For each Y in DF(X) do
 - If no Φ added in Y then
 - Place (V = Φ (V,...,V)) at Y
 - If Y has not been added before, add Y to W.

Computational Complexity

Constructing SSA takes O(A_{tot} * avrgDF), where A_{tot}: total number of assignments avrgDF: weighted average **DF** size The computational complexity is $O(n^2)$. e.g. nested repeat-until loops

S

a

b

 \mathbf{C}

IE

Φ Placement Example

Place Φ at Iterative Dominance Frontiers

SSA Construction (II)

Step 2: Rename all variables in original program and Φ functions, using dominator tree and rename stack to keep track of the current names.

Variable Renaming

- Rename from the START node recursively
 For node X
 - For each assignment (V = ...) in X
 - Rename any use of V with the TOS of rename stack
 - Push the new name V_i on rename stack
 - ∎ i = i + 1
 - Rename all the Φ operands through successor edges
 - Recursively rename for all child nodes in the dominator tree
 - For each assignment (V = ...) in X
 - Pop V_i in X from the rename stack

Overview

SSA Representation
 SSA Construction
 Converting out of SSA

Converting Out of SSA

Mapping all V_i to V?

Overlapping Live Ranges
 Simply mapping all V_i to V may not work

Stanford University

CS243 Winter 2006

Converting Out of SSA

Option 1: coloring

- Compute live ranges, and assign a unique variable name for each live range
- Similar techniques used in register allocation to be covered next week.

 Option 2: simply remove all Φ functions
 Every optimization in SSA needs to guarantee not to generate overlapping live ranges

Reference

"Efficient Computing Static Single **Assignment Form and the Control** Dependence Graph", R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. K. Zadeck, Transactions on **Programming Languages and Systems** (TOPLAS), Oct 1991. http://citeseer.ist.psu.edu/cytron91effici ently.html

Handling Arrays

Difficult to treat A[i] as a variable

$$= A[i] = R(A,i) = R(A_8,i_7)$$

$$A[j] = V = A[k] = R(A,j,V) = R(A_8,j_6,V_5)$$

$$= A[k] = R(A,k) = R(A_9,k_4)$$

The entire array can be treated like a scalar.

Unnecessary Liveness

W operator may introduce unnecessary liveness for A. Introduce HW (HiddenW).

repeat

A[i] = i i = i +1 until i>10 repeat $i_2 = \Phi(i_1, i_3)$ $A_1 = \Phi(A_0, A_2)$ $A_2 = W(A_1, i_2, i_2)$ $i_3 = i_2 + 1$ until $i_3 > 10$ repeat $i_2 = \Phi(i_1, i_3)$

 $A_2 = HW(i_2, i_2)$ $i_3 = i_2 + 1$ until $i_3 > 10$