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1 True / False
a. Applying constant propagation before lazy code motion can improve the

applicability of lazy code motion

Answer: True
Example: see Figure 1

b=5

c=5
d=a+c

e=a+b

Figure 1: Applying constant propagation before lazy code motion can help

b. Applying lazy code motion before constant propagation can improve the
applicability of constant propagation

Answer: True
Example: see Figure 2
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a=f()
b=g()
c=a+b

a=5
b=3

d=a+b

Figure 2: Applying lazy code motion before constant propagation can help

c. If reverse post-order is used, the data-flow algorithm for constant propa-
gation in at most d + 2 iterations, where d is the loop depth of the input
program.

Answer: False
As explained in class, the bound is only valid when cycles don’t modify the
flow of information (which is not the case for constant propagation).

d. A reverse control flow graph is like a control flow graph, except that the
directions on the edges are reversed. That is, given a control flow graph
G =< N, E >, G′ =< N, E ′ > is a reverse control flow graph of G if
(n1, n2) ∈ E iff (n2, n1) ∈ E ′.

True or false: G′ is reducible if G is reducible.

Answer: False

2 Natural loops and reducibility
a. Natural loops

There are three back edges in the graph:

2 → 1, 2 → 3 and 4 → 3.

The corresponding natural loops are respectively: {1, 2, 3, 4, 5}, {2, 3}, {2, 3, 4, 5}.

2



Figure 3: A reducible control flow graph and the corresponding non-reducible
reverse control flow graph

b. Reducibility

If we remove the back edges, there is still a cycle between 4 and 5, so the
graph is not reducible.

3 Lazy code motion
see Figure 4.

4 Method inlining
This question had a few subtleties.

The idea here is to know for each variable all the possible classes it can be
an instance of. Given this knowledge we may in some cases statically determine
what method is invoke by a virtual call.

For a class class we’ll call sub(class) the set of all subclasses (including
class) of class (we already know the class hierarchy).

For a given variable x of type class, the lattice will be all the possible subsets
of sub(class) . It is a usual set lattice, with meet being ∪.

For all variables we’ll just take the usual product lattice, producing a function
F from variables the sets of subclasses of the corresponding delcared type.
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t=a+c
t=a+c
c=t

d=t

t=a+c

e=t f=a+c
exit

Figure 4: Result of lazy code motion
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The initialization it >, which maps variables to ∅. ⊥ maps each variable a to
sub(class) where class is the declared type of a.

The transfer function (let’s call it T ) is pretty simple, it includes the results of
part b (which will be explained later).

• a=b: T (F )(a) = F (b); for x 6= a, T (F )(x) = F (x);

• a=new C: T (F )(a) = {C}; for x 6= a, T (F )(x) = F (x);

• a = b.method(): T (F )(a) = sub(c) where c is the return type of
method. For x 6= a, T (F )(x) = F (x);

• a = b.field: T (F )(a) = sub(c) where c is the declared type of field.
For x 6= a, T (F )(x) = F (x);

• All other cases: T (F ) = F .

This transfer function is monotone and distributive.
Convergence follows from the monotonicity and finiteness of the lattice.
Explanation of the field transfer: you can’t keep track of a field as you

would a variable. Since you get them from pointers, there may be aliasing, so
when you modify one field you may very well modify the same field for another
variable. For this reason we just give up and only take the declared type informa-
tion.

Once we have the result of our analysis, we can do a static lookup for a.n()
if there is only one definition of n in the set of possible classes for variable a.
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