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ABSTRACT
We present CoScan, a scheduling framework that eliminates redun-
dant processing in workflows that scan large batches of data in a
map-reduce computing environment. CoScan merges Pig programs
from multiple users at runtime to reduce I/O contention while ad-
hering to soft deadline requirements in scheduling. This includes
support for join workflows that operate on multiple data sources.
Our solution maps well to workflows at many Internet companies
which reuse data from a common set of inputs. Experiments on
the PigMix data analytics benchmark exhibit orders of magnitude
reduction in resource contention with minimal impact on latency.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

General Terms
Algorithms

1. INTRODUCTION
Internet companies process large amounts of semi-structured user

content in order to correlate, mine, and extract valuable features. In
turn, they have developed several distributed and scalable Cloud
processing frameworks [6, 9, 16, 22] for large scale computations.
Many of the data processing tasks involve multiple, inter-dependent
steps that operate on large batches of continually arriving data per-
forming data-intensive, disk-based processing. For ease of data
management, a higher layer abstraction is required to facilitate the
flow of data between these tasks, which are not particularly la-
tency sensitive. Nova [27] is one such system developed at Ya-
hoo to manage complex workflows as a graph of inter-connected
tasks. Nova eases the management of a workflow’s lifecycle by en-
abling reuse of data processing modules, stateful processing of in-
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L1 17000 135000 0.350515464 0.308219178
L2-RJ 17000 135000 0.435897436 0.865384615
L3-J 17000 115500 0.377777778 0.712962963
L4 17000 135000 0.53968254 0.818181818
L5-J 17000 96000 0.414634146 0.695652174
L6 17000 132000 0.507462687 0.785714286
L7 17000 90000 0.557377049 0.731707317
L8 13000 99000 0.5 0.891891892
L9 17000 135000 0.169154229 0.393586006
L10 17000 135000 0.155963303 0.333745365
L11 18500 111000 0.292127557 0.587301587
L12 17000 135000 0.53968254 0.775862069
L13-J 17000 93000 0.5 0.659574468
L14-MJ 19000 150000 0.452380952 0.847457627
L15 17000 129000 0.404761905 0.704918033
L16 17000 133500 0.354166667 0.684615385
L17 34000 549000 0.282157676 0.50022779
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Figure 1: Fraction of time spent on loading and scanning data.

crementally arriving data, and support for task versioning and data
provenance. The system is built on top of the Pig/Hadoop [16, 28]
platform. Hadoop is a scalable, fault-tolerant system for executing
map-reduce [8] jobs and Pig provides a high-level language for de-
scribing relational algebra style operations on semi-structured data
that are compiled into map-reduce.

Reuse of task modules and input data at the workflow abstrac-
tion layer enables multi-query optimization [32] opportunities such
as sharing common input data. Typically, data processing tasks in
Nova are scheduled either periodically (once per week) or triggered
in a data-driven manner (on arrival of new data in sufficient quan-
tity). For tasks that are reused, the scheduler can predict the occur-
rence and cost of subsequent executions to provide better latency
guarantees. Multiple tasks also contend for access to the same set
of input files if, for example, several related research, production,
and maintenance workflows are running simultaneously in the same
cluster. The scheduler can then physically co-schedule tasks ac-
cessing the same data to eliminate redundant processing. Figure
1 reveals that the loading and processing of input data consume a
large fraction of total execution cost for jobs from the PigMix [30]
benchmark. In terms of running time, a vast majority of jobs spend
more than 20% of the time loading input data. Loading inputs
consumes an even larger fraction of system resources, approach-
ing 90% of total cost. This difference is explained by the fact that
loading of inputs is trivially parallelizable in Hadoop, resulting in
many more tasks in the map step relative to the reduce step. As a
result, load cost consumes more CPU and I/O resources in Hadoop
but does not result in a commensurate impact on running time.

Nova workflows that periodically consume raw news content
is one example in which scan sharing opportunities exist. These
include: (1) de-duplication workflows that extract features from



newly created news and cluster any duplicate content, (2) geo-
tagging workflows that derive location-based metadata from news
context, and (3) filtering workflows that classify and label news for
generating training data to use in research. These workflows con-
sume news at varying rates and exhibit different freshness require-
ments. For instance, tighter latency constraints may be imposed on
de-duplication by applications that assemble up-to-date new feeds.
In contrast, the generation of training data can be scheduled less
frequently to avoid contention with workflows used in production.

We design CoScan, a system for sharing data movement and pro-
cessing costs among multi-step map-reduce workflows executing in
Hadoop. CoScan identifies workflows that consume the same set of
input files and merges these workflows during execution to ensure
that shared data, residing in the Hadoop Distributed File System
[16], are scanned only once. The cost savings are two fold. First,
the merge reduces I/O cost in that shared inputs are read from disk
and transferred over the network once. This reduces network con-
tention by eliminating the need to shuffle the same, multi-terabyte
data file to multiple map-reduce jobs. Moreover, shared scan elim-
inates redundant data processing that includes parsing and unmar-
shaling of records, which can be fairly heavyweight. As detailed in
Section 3.1, these savings mean that fewer I/O (both disk and net-
work) and computation resources are required to perform the same
task; thereby improving overall throughput in Hadoop for highly
contentious environments.

CoScan also incorporates user specified soft deadlines and at-
tempts to meet these deadlines as closely as possible given available
resources and competing workflows in the system. We define soft
deadline as a constraint on workflow completion time that can be
violated. However, completing a workflow prior to its soft deadline
incurs a reward. Soft deadlines closely approximate performance
expectations in an I/O-bound, disk-based processing system such
as Nova, which is not designed for hard real-time requirements.
Since applications that depend on the execution of a workflow may
exhibit varying freshness requirements (i.e. content may update on
a real-time, hourly, or daily basis), failing to meet soft deadline tar-
gets in Nova is not catastrophic. Thus, users provide each workflow
with a list of soft deadlines and corresponding awards for meeting
these deadlines. CoScan then attempts to meet these deadlines as
best as possible by maximizing total award over all workflows.

Toward this goal, we make the following contributions:

• Cost models for merged Pig/map-reduce workflows. We
develop and validate cost models for merged workflows that
accurately quantify resource savings and its impact on work-
flow latency. This allows CoScan to make appropriate trade-
offs between throughput and latency.

• Algorithms for deadline-aware scheduling. Our heuristic
algorithms support both join and non-join workflows when
making scheduling decisions. The scheduler takes as in-
put user specified soft deadline functions that reward sched-
ules for early completion. CoScan then reorders and merges
workflows to maximize data sharing subject to soft deadlines
constraints.

• Support for data sharing among workflows that perform
joins. Specifically, we augment Pig’s [14] multi-query opti-
mizer to merge workflows that join two or more inputs. This
includes both map and reduce-side joins.

• Dynamic adjustments to handle cost estimation errors.
Estimating the performance of new workflows is an error
prone process, especially in the presence of data skew or

changes to the amount of available system resources. We
develop a black box approach to capture errors and refine
scheduling decisions at runtime. This allows CoScan to mask
cost estimation errors and ensure that workflow latencies are
not adversely affected.

We built and evaluated CoScan against the PigMix [30] bench-
mark, which consists of seventeen queries that test latency and scal-
ability of internal Hadoop workloads at Yahoo. We also evaluated
synthetic workloads designed to stress CoScan performance under
various conditions. Experiments indicate that CoScan consistently
improves throughput and reduces resource consumption, up to a
factor of three, in map-reduce. In fact, throughput benefits are
greater for joins (e.g. workflows that consume multiple input files)
and scale with the amount of workflow contention.

The remainder of this paper is organized as follows. We first
summarize related works in Section 2. Next, we describe our prior
experience implementing scan sharing for Hadoop in Section 3,
which covers the mechanisms for sharing and extensions to sup-
port the sharing of joins. We then present our main result for work-
flow scheduling, which balances the benefits of scan sharing with
deadline constraints. The solution includes a description of the cost
model and optimization problem in Section 4 followed by our al-
gorithmic contributions in Section 5. Finally, we demonstrate the
effectiveness of scan sharing using performance results obtained
from PigMix in Section 6 and conclude with future works in Sec-
tion 7.

2. RELATED WORK
Prior works on multi-query optimization allow database queries

that are executed together to share work and eliminate redundant
data access and computation [5, 12, 15, 17, 34, 38]. These works
describe mechanisms for scan sharing that include pipelining of
results to queries with common sub-expressions [17] and reorder-
ing of queries to maximize the probability that data in the cache
is reused by subsequent queries [15]. In Crescando [34], Unter-
brunner et. al. describe a scan sharing solution for main memory
databases in which incoming queries are batched together and share
a single cursor that continuously scans the data table. Candea et. al.
[5] present a similar solution for concurrent analysis in data ware-
houses. Namely, incoming queries latch onto a single physical plan
and share the output of continuous scans of a shared fact table. Still
other works [35, 36] focus on the scheduling aspects. Queries that
access the same portion of a data table are executed together in a
manner that prevents query starvation and accounts for precedence
constraints.

Scan sharing is studied for workloads against large datasets stored
on tertiary storage in order to minimize I/O cost [25, 31, 37]. Yu
and Dewitt [37] explored this in Paradise by reordering queries over
data stored on magnetic tape. The reordering achieves sequential
I/O by collecting data requirements during a pre-execution phase
(without physically performing the I/O), reordering tape requests,
and finally executing queries concurrently in one batch. Sarawagi
et. al. [31] provide non-sequential processing by partitioning the
data into fragments that are physically contiguous on the tertiary
device and scheduling concurrent queries on a per fragment basis.
Andrade et. al. [3] describe a general framework for caching and
reusing intermediate results to reduce I/O.

Map-reduce jobs also benefit from scan sharing. For instance,
Pig programs that share data are merged [14] into a single map-
reduce job with multiple branching pipelines so that the data is
scanned only once. This optimization proved effective in lower-
ing resource footprint and improving overall system throughput



for workflows in Nova [27], a data management system developed
at Yahoo. Hive [33] provides similar mechanisms for sharing the
work of loading and parsing data that is accessed by multiple queries.
Nykiel et al. [26] further extend these works by providing a cost-
based optimization to scan sharing in map-reduce. Specifically,
they employ a dynamic program to identify cases in which the
cost of scan sharing outweigh potential benefits. In addition to the
mechanisms for scan sharing, our paper also tackles policy.

Agrawal et al. [2] provide a solution to maximize scan sharing
in an online setting. Map-reduce jobs are grouped into batches so
that sequential scans of large files are shared among as many si-
multaneous jobs as possible. Average job completion time is min-
imized by modeling job arrival rates according to a stationary pro-
cess and scheduling the least sharable jobs first. Scheduling also
minimizes the relative difference in completion time between sim-
ilar jobs regardless of scan sharing. Rather than optimize for ag-
gregate metrics, CoScan attempts to meet individual job deadlines.
Users provide soft deadlines and corresponding rewards as input to
the system. CoScan then schedules workflows in order to extract
as much benefit from scan sharing as possible while meeting dead-
line requirements. To the best of our knowledge, CoScan is also
the first system that explores scan sharing for map and reduce-side
joins that share one or more input files.

Multiple works on scheduling theory study the problem of multi-
criteria optimization [18, 19, 23] in both single and parallel com-
puting environments. Lai et al. [21] implement an auction-based
resource allocation scheme in Tycoon in which users are allotted re-
sources based on the amount they are willing to pay. Dua et al. [10]
put forth fraction of soft deadlines met, rather than throughput or
response time, as an optimization criteria. They argue that meeting
soft deadlines ensures fairness across different applications with
varying service level requirements. Similarly, Abbott et al. [1] de-
scribe real time scheduling using soft deadlines in which the value
of completing a task decreases with time. CoScan optimizes for
soft deadlines in the presence of scans sharing among workflows.

3. SCAN SHARING IN NOVA
In this section, we describe our prior experience implementing

scan sharing for Nova [27], which is a data processing and manage-
ment system for Hadoop workflows at Yahoo. We also summarize
extensions in CoScan that support fine-grained deadline semantics
and scan sharing among join workflows. While Nova provides a
mechanism for multiple Pig programs that are executed together
to share the same input file, it does not address the scheduling as-
pects. The scheduling of scan sharing in the presence of deadline
constraints is the primary focus of this work.

3.1 Merging Pig Workflows
Nova provides a high level abstraction for managing Hadoop

workflows that consume data from the Hadoop Distributed File
System [16]. Nova pushes continually-arriving data through each
workflow, which is defined as an acyclic data flow graph of map-
reduce programs. Additionally, Nova supports stateful, incremen-
tal processing on new data and trigger-based execution. Thus, users
define triggers for workflows that specify the frequency of execu-
tion (i.e. re-running when a sufficiently large batch of new data
arrives or periodically on an hourly or daily basis). Example use
cases include incremental processing of user logs to match ad con-
tent or news feeds for de-duplication and ranking search results.

We implemented scan sharing in Nova by identifying workflows
that read from the same input file and merging them into a sin-
gle workflow. To make the example concrete, consider Figure 2 in
which two workflows, consisting of Pig programs, share file c2s0.

Workflow 1Workflow 1

WorkflowWorkflow 22

c2s0c2s0c2s0

c1s0c1s0c1s0 c3s0c3s0c3s0

c4s0c4s0c4s0

c2s0c2s0c2s0 c5s0c5s0c5s0

Workflow
Merger

Merged WorkflowMerged Workflow

c2s0c2s0c2s0

c1s0c1s0c1s0 c3s0c3s0c3s0

c4s0c4s0c4s0

c5s0c5s0c5s0

PPAA

PPBB

PPABAB

Figure 2: Merging two Pig workflows.
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Figure 3: Nested execution of Pig program PAB .

Nova eliminates redundant processing of c2s0 by first combining
the workflows into a single workflow through simple XML rewrit-
ing. Next, Nova replaces the two Pig programs (PA and PB) that
directly consume c2s0 with a single Pig program (PAB) in the data
flow graph. Functionally, PAB is a syntactic rewrite that is no dif-
ferent, semantically, than the two original programs. At runtime
however, the rewrite ensures that Pig’s multi-query optimization
amortizes I/O and data processing costs for file c2s0 using a single
map-reduce job. (Pig’s optimizer supports scan sharing on inputs
for unary operations such as filter and aggregation but not joins).
Finally, the merged workflow is submitted for execution in place of
the two original workflows. Currently, our scan sharing implemen-
tation only supports map-reduce programs written in Pig.

Scan sharing is achieved in the merged program PAB through
nested execution of PA and PB within a single map-reduce job to
eliminate redundant I/O and processing overhead (Figure 3). First,
each record consumed by the map task is split into two branches
corresponding to the map-side computations of PA and PB respec-
tively. A combine operation then takes the intermediate key/value
pairs emitted from both map-side branches and appends an index
to each key to identify the branch which produced the key/value
pair. This indexed key is then used to partition and shuffle the in-
termediate results to the appropriate branch in the reduce task. Con-



solidating computation into a single map-reduce job in this fashion
means that file c2s0 is read from disk, transferred over the network,
and unmarshaled only once. Furthermore, start-up and tear-down
overhead is reduced due to the launching of fewer map-reduce jobs.
However, these benefits are achieved by sacrificing parallelism. We
moderate the impact of scan sharing on latency by increasing the
number of reduce tasks in CoScan (Section 5.4).

3.2 CoScan Extension
CoScan improves scan sharing in Nova by providing fine-grained

soft deadline guarantees on workflow completion. In Nova, work-
flow instances that are subject to scan sharing are queued by the
scheduler for as long as a user specified maximum queue time. Two
workflows are merged if (1) they read from the same input file, and
(2) neither workflow’s maximum queue time has expired. Finally,
a merged workflow is submitted for execution when the minimum
queue time of its constituent workflow instance expires. In CoScan,
users specify soft-deadline requirements for each workflow that re-
ward the scheduler for early completion. CoScan also tracks prior
executions of each workflow in order to estimate its expected com-
pletion time. (Note that when workflows are merged, the latency of
constituent workflows are distorted). CoScan then determines when
each workflow executes and which workflows to merge in order to
maximize scan sharing subject to deadline constraints.

CoScan also supports workflows containing Pig programs that
join multiple input files. Our implementation in Nova did not sup-
port scan sharing for join workflows due to a limitation in Pig’s
multi-query optimizer. Specifically, the optimizer cannot merge
multiple joins into a single map-reduce job such that inputs are
shared. We modified Pig’s multi-query optimizer for CoScan to
support three types of common join operations. The first is a reduce-
side join which groups records into bags based on the join key at
the map-side and joins records within each bag at the reduce-side.
Two specialized map-side joins are also supported: replicated join
(one input fits in memory and is replicated at each map task) and
sort-merge join (both inputs are sorted and an indexed seek on the
right input is performed for each key from the left input).

4. INELASTIC COMPUTE MODEL
In this section, we construct an Inelastic Compute (IC) Model

for the scheduling of scan sharing optimizations in map-reduce.
(Inelastic because we focus on environments with a fixed amount
of computation resources). The IC model optimizes for a set of
input workflows that operate on files residing on the cluster. Work-
flows that operate on the same inputs can be merged and executed
more efficiently by loading the inputs only once. This is benefi-
cial if reducing the utilization of I/O and CPU resources leads to
lower operating costs (i.e. resources offered on a pay-per-use pric-
ing model). In other cases, a user may be willing to pay the cluster
operator a bonus for completing workflows early and would like to
prevent scan sharing from distorting workflow latencies (i.e. failing
to meet deadlines that would otherwise have been met by executing
two workflows separately). In this section, we balance the benefits
of scan sharing with awards from meeting soft deadlines.

4.1 Performance Metric
We optimize along two performance dimensions in CoScan: re-

source utilization (overall system throughput) and soft deadlines
(job latency). Resource utilization measures the aggregate amount
of computation resources utilized by map and reduce tasks in a
Hadoop cluster. In particular, each physical machine is allocated
a fixed number of slots to run map and reduce tasks that are man-
aged by Hadoop. Slot time is the amount of time that a map or

reduce task occupies a given slot for computation. This includes
time spent waiting to copy input files over the network and CPU
time to apply map and reduce functions. We approximate resource
usage by summing slot time over all map and reduce tasks. CoScan
minimizes this metric by using fewer mapper and reducer slots to
perform the same amount of work. This frees additional capacity
(allowing the system to scale to more concurrent workflows) and
improves overall throughput.

Soft deadlines provide user specified rewards for job comple-
tion. (Rewards can vary depending on the importance of a job
and its deadline). Meeting a soft deadline requires that CoScan
minimize a job’s makespan, which is defined as the total elapsed
time from start (submission of a workflow) to finish (returning the
output to users). While merging workflows with shared inputs
leads to consistent reduction in resource utilization, it distorts in-
dividual workflow makespans relative to executing the constituent
workflows independently. As illustrated in Section 3.1, both map
and reduce functions for constituent workflows are nested within
the same map-reduce job. This reduces parallelism such that the
makespan of merged workflows scales linearly with the number of
constituent workflows. In the worst case, map and reduce functions
of constituent workflows are applied serially, one after another. For
latency sensitive jobs, this means that scan sharing are sometimes
avoided in order to meet soft deadlines.

4.2 Model Inputs
This section describes inputs to our execution model and the cost

estimation framework on which CoScan scheduling decisions are
based. Each workflow or job first loads a set of input files and
then applies map and reduce functions on the data. The load cost
(e.g. I/O and unmarshaling of inputs) can be shared among jobs
that operate on the same input. Each job must also meet certain
soft deadline requirements. This leads to the optimization problem:
maximize the benefits of sharing without violating soft deadlines.

Definition 1. The total time required to scan an input file F in
a fixed sized cluster is sm(F ) while incurring su(F ) resources
across all map tasks.

The execution time and amount of cluster resources required to
scan an input file are estimated by loading the input using a map-
only job, eliminating all records using a filter operator, and storing
the empty result. In practice, CoScan relies on the total size of the
inputs and number of available map slots in the cluster to approx-
imate the makespan performance of scans. (Input size is used to
approximate the number of file splits and, hence, the number of
map tasks required). Scan cost estimates are accurate even for join
jobs that scan multiple inputs.

Definition 2. A job J is defined by a set of input files f(J) it
scans, a fixed processing cost (cm(J) for time and cu(J) for re-
sources required), and a deadline d(J).

Executing a job requires that we scan all inputs in f(J) and apply
some fixed processing on the data. Thus, the makespan (job execu-
tion time) and resources utilization of a job J can be estimated by∑

F∈f(J) sm(F ) + cm(J) and
∑

F∈f(J) su(F ) + cu(J) respec-
tively. Moreover, J is a join job if |f(J)| > 1 (e.g. operates on
multiple inputs). Next, we formally define soft deadlines, which
dictate the completion time of jobs.

Definition 3. A soft deadline d is defined by n pairs (ti, pi) for
1 ≤ i ≤ n in which 0 < ti < ti+i and pi > pi+1.
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Figure 4: Scheduling outcomes (with and without scan shar-
ing). Deadlines met are shown in bold.

If the job completes by time ti, then pi points are awarded to the
scheduler. (We assume that the earliest deadline, t1, is at least as
large as the job’s makespan). For instance, latency sensitive jobs
are assigned tighter deadlines and larger awards compared with
long running jobs in which users are willing to wait. CoScan pri-
oritizes jobs that are submitted together based on point assignment
and attempts to meet soft deadlines on a best-effort basis.

Definition 4. The upper bound on the time required to execute
a merged job consisting of J1 and J2 is sm(f(J1) ∪ f(J2)) +
cm(J1) + cm(J2).

We bound makespan in the worst case by allowing the initial scan
cost to be shared while assuming that processing costs (cm(J1) and
cm(J2)) are not parallelizable. Note that sm(f(J1) ∪ f(J2)) esti-
mates the makespan of scanning all inputs as one unit. For small in-
puts, multiple files can be loaded in parallel in a single wave of map
tasks. For inputs that are too large to be loaded in a single wave,
scan cost is approximated by summing the cost of scanning each in-
dividual file (e.g.

∑
F∈f(J1)∪f(J2)

sm(F )). Moreover, makespan
performance vary wildly for merged jobs. While makespan of some
jobs approach the estimated upper bound, other jobs (i.e. joins)
tend to finish well under these bounds. Several factors contribute to
these differences including the amount of network congestion and
data skew. While better makespan estimates can be derived through
in-depth analysis of the map-reduce pipeline [7, 13, 24], these tech-
niques are beyond the scope of this paper.

Definition 5. The resource utilization of a merged job consisting
of J1 and J2 is

∑
F∈f(J1)∪f(J2)

su(F ) + cu(J1) + cu(J2).

Considering scan cost alone, we expect savings in resource us-
age to converge sublinearly with the number of jobs merged for
non-join jobs. Specifically, merging two jobs eliminates one re-
dundant scan (50% savings), three jobs eliminates two redundant
scans (66% savings), and so on. This model remains accurate for
up to six-way merges. In addition, savings in resource utilization is
fairly insensitive to changes in resource contention or cluster con-
figuration (i.e. addition or removal of machines).

4.3 Optimization Problem
Given a set of jobs, CoScan finds a schedule that executes all

jobs while maximizing the aggregate number of points awarded
from meeting soft deadlines over all jobs. In particular, the sched-
uler shuffles the execution order of jobs and employs scan sharing
when appropriate in order to balance resource usage with rewards
for early job completion.

To illustrate various dimensions to this problem, consider the
scheduling of jobs J1, J2, and J3 which scan four inputs in Fig-
ure 4. For simplicity, only the earliest soft deadline for each job
is marked in the three scheduling outcomes. (Deadlines met are in
bold). J1’s deadline is the most restrictive and satisfying all three
deadlines simultaneously is not possible. If no scan sharing is em-
ployed, we are left with two outcomes that satisfy soft deadlines
for either J1 and J2 or J1 and J3. With scan sharing on input C,
we can merge and satisfy the deadlines for both J2 and J3. The
optimal outcome depends on the number of points awarded for the
early completion of J1. If every job is weighted the same, then scan
sharing is preferred since it reduces resource utilization and overall
runtime (e.g. increased throughput).

Formally, we define a schedule S = [s1, ..., sn] as a complete
execution plan of a set of input jobs J. An element si consists of a
set of one or more jobs (si ⊆ J) that share inputs and are merged
during execution. Moreover, the elements in S are ordered; that
is, all jobs in si are executed prior to sj if i < j. Using Figure
4 as example, the three schedules corresponding to each outcome
are: [{J1}, {J2}, {J3}], [{J1}, {J3}, {J2}], and [{J2, J3}, {J1}].
Next, let µ be a function in which µ(si) is the resource utilization
of executing jobs in si (Definition 5). Let τS(si) be the estimated
completion time of jobs in si under schedule S. Thus, τS(s1) is the
makespan of s1 (Definition 4), τS(s2) is τS(s1) plus the makespan
of s2, and so on. Finally, let ρ be a function in which ρ(τS(si))
denotes the number of points awarded for the completion of jobs in
si by time τS(si).

Provided a set of jobs, a set of input files, and a fixed sized com-
puting cluster, the optimal schedule S is one that maximizes total
points awarded (

∑n

i=1 ρ(τ
S(si))) while utilizing the least amount

of resources (
∑n

i=1 µ(si)). In the following section, we describe
two algorithms that solve this optimization problem.

5. SCHEDULING ALGORITHM
This section presents our algorithmic results that aim to optimize

the number of points awarded by employing scan sharing. We start
by showing that solving the general optimization problem is in-
tractable (Section 5.1). Therefore, we resort to efficient heuristic
solutions and present two main algorithmic techniques. We first
present a suite of algorithms based on greedy ordering (GO) of
jobs (Section 5.2) that are highly efficient but potentially sensitive
to the ordering. Any of the greedy algorithms may be used to boot-
strap our second set of approaches based on local improvements,
with simulated annealing-style selection that provide more robust
solutions (Section 5.3). We conclude with a description of opti-
mizing for the parallelism of reduce tasks, handling errors in cost
estimates, and applying our algorithms in the online setting (Sec-
tion 5.4).

5.1 Complexity
We show that it is intractable to optimally solve our scheduling

problem, meaning that there does not exist any polynomial time
exact algorithm.

THEOREM 1. Maximizing points awarded in the Inelastic Com-
pute Model is NP-complete when all jobs scan a single file and have
soft deadlines.

PROOF. NP-hard: There is a direct reduction from the 0-1 Knap-
sack problem, a well-known NP-hard problem [20]. Let the max-
imum weight of the knapsack be W . Each item i with weight wi

becomes a distinct input file that requires time wi to scan. (There is
exactly one job corresponding to each file). The value vi of an item



Inputs: jobs J, files F, deadline D
01 S = sort J in ascending order by D
02 for job set si ∈ S in order, 1 ≤ i < n
03 for job set sk ∈ S in order, i < k ≤ n
04 if jobs in si and sk share inputs
05 S′ = S ∪ {merge(si, sk)} - {si, sk}
06 if morePoints(S′,S)
07 set S = S′

08 return S

Figure 5: Greedy ordering algorithm.

i becomes the number of points awarded upon completing the cor-
responding job before its soft deadline W . We then assign all jobs
a single soft deadline of W , after which zero points are awarded.

NP: It is easy to verify that the problem is NP. Given a schedule,
we can compute the total points awarded in polynomial time, based
on the completion time of each job.

5.2 Greedy Ordering (GO)
Greedy Ordering (GO) arrives at a feasible schedule by first

sorting the jobs based on their soft deadlines, and at each itera-
tion, merge as many jobs that scan the same inputs as possible in
sorted order. Our solution shares some similarities with the ear-
liest deadline first algorithm [4], but exhibits key differences: a
job’s makespan is decoupled from its deadline, alternative job sort
orders are explored, and jobs can be merged to reduce overall run-
time. Our algorithm greedily obtains an ordering of jobs, and then
performs merges; for the ordering, we sort jobs using one of the
following methods:

• Earliest soft deadline: jobs are ranked in increasing order
of deadlines in which the earliest soft deadline pair (t1, p1)
is used. Intuitively, meeting the earliest soft deadline yields
the most points for a job. This ordering allows jobs with the
most restrictive deadlines to be scheduled first.

• Steepest point drop: jobs are scheduled in order of dead-
lines that if violated, result in the largest loss of points. In
particular, the loss of points between two consecutive dead-
lines ti and tj is pi − pj . The steepest such loss is a pair of
deadlines in which pi − pj is maximal. Jobs are ordered by
ti such that they are scheduled prior to incurring this loss.

• Steepest slope: similar to steepest point drop order except
that the loss between two consecutive deadlines ti and tj is
computed as pi−pj

tj−ti
. This normalizes loss by the amount of

slack, in terms of completion time, between two consecutive
deadlines. Scheduling jobs prior to ti ensures that CoScan
avoids a high point loss per unit of time.

• Normalized deadline: jobs are scheduled in order of de-
creasing number of points acquired per unit of time. Specif-
ically, we order jobs based on the earliest soft deadline pair
as follows: p1

t1
. This favors jobs that award the most number

of points per unit of time for early completion.

We present a simple example to illustrate the various orderings.
Consider a job J with soft deadlines given by the set {(10s, 28pts),
(25s, 13pts), (28s, 5pts)}. The earliest soft deadline method sim-
ply considers 10s as the deadline for ordering J . The steepest point
drop occurs between 10s and 25s for a total drop of 15pts. In con-
trast, the steepest slope is between 25s and 28s, with a slope of

Inputs: jobs J, files F, deadline D
01 S = sort J in ascending order by D
02 improved = true
03 while improved do
04 S′ = S, improved = false
05 for each pair (si, sk) ∈ S do
06 if jobs in si and sk share inputs
07 S′′ = S ∪ {merge(si, sk)} - {si, sk}
08 if morePoints(S′′,S′) {set S′ = S′′}
09 S′′ = swap(S,si,sk)
10 if morePoints(S′′,S′) {set S′ = S′′}
11 for each merged job si ∈ S do
12 for each job J ∈ si do
13 S′′ = split(S,J)
14 if morePoints(S′′,S′) {set S′ = S′′}
15 if morePoints(S′,S)
16 set S = S′, improved = true
17 return S

Figure 6: Local improvement algorithm.

13−5
28−25

= 8
3

points per second. Finally, the normalized deadline
method considers 28

10
points per second.

Figure 5 illustrates the pseudo-code for GO. Line 1 sorts (using
any of the greedy orderings described above) jobs in deadline or-
der and uses the resulting sequence of jobs as the initial schedule
S. Lines 2-4 iterate over each set of jobs si in S and attempt to
merge si with jobs in sk if they scan the same input files. Line 5
rewrites the schedule to perform scan sharing by substituting job
sets si and sk with a merged job. Finally, lines 6-7 replace the cur-
rent schedule if the new schedule S ′ either increases the number of
points awarded or reduces resource utilization without sacrificing
points awarded. Note that in practice, merging too many Hadoop
jobs together can result in memory issues (e.g. running out of heap
space). We limit merges to a maximum of six jobs to avoid cascad-
ing failures.

5.3 Local Improvement (LI and LI-J)
We start by describing LI, the algorithm that gradually improves

a schedule by applying incremental improvements. We then en-
hance local improvement with LI-J, which is optimized for work-
loads with lots of join jobs. LI-J accounts for the degree in which
an input is shared when selecting inputs to apply scan sharing.

The Local Improvement (LI) algorithm starts with a feasible so-
lution and applies incremental improvements until the schedule can-
not be improved further. LI starts from a schedule in which jobs
are sorted in deadline order (Section 5.2) and none of the jobs are
merged; we may use any greedy ordering to bootstrap LI. At each
step, we choose among a polynomial number of possible refine-
ments to the schedule that includes: merging a pair of jobs, swap-
ping the order of two jobs, or splitting a job that was previously
merged. We keep the refinement which yields the most points and
gradually increase the number of points awarded with each itera-
tion. In addition, we apply simulated annealing style random start
at any point to prevent the solution from being stuck at a local min-
imum. While LI converges on a good solution fairly quickly and
provides a modest improvement over GO, it does so at the expense
of significantly more computation time on large workloads.

The pseudo-code for LI is provided in Figure 6. We start with an
initial schedule on line 1 and improve upon the number of points
awarded. Lines 5-10 iterate over every pair of job sets si and sk
and make the following refinements: merge the two sets of jobs or
swap the execution order of the jobs. At each step, only the best



Inputs: jobs J, files F, deadline D
01 S = sort J in ascending order by D
02 F = sort F in order of significance
03 for each file f ∈ F in order do
04 J

′ = scansInput(J,f)
05 for each Ji ∈ J

′ in order, 1 ≤ i < n
06 for each Jk ∈ J

′ in order, i ≤ k ≤ n
07 si = set(S, Ji), sk = set(S, Jk)
08 S′ = S ∪ {merge(si, sk)} - {si, sk}
09 if morePoints(S′,S) {set S = S′}
10 J = J - J

′

11 improved = true
12 while improved do
13 S′ = S, improved = false
14 for each pair (si, sk) ∈ S do
15 S′′ = swap(S,si,sk)
16 if morePoints(S′′,S′) {set S′ = S′′}
17 if morePoints(S′,S)
18 set S = S′, improved = true
19 return S

Figure 7: Local improvement with join extension.

refinement (e.g. one that increases points awarded or reduces re-
source utilization) is kept. Lines 11-14 evaluate refinements that
split jobs that were previously merged. Finally, lines 15-16 con-
tinue until none of the refinements improve upon the schedule from
the prior iteration.

We extend local improvement to account for joins in LI-J; that
is, jobs with multiple input files that can benefit from scan sharing.
This is accomplished by first sorting the input files in descending
order of significance: a product of file size and its degree of sharing
(number of jobs that scan the file). This metric is a proxy for the
total amount of potential savings in resource utilization and is used
in other works to address the file-bundling problem [29]. Next,
local improvement is applied in two phases, beginning with the
merging of jobs in file order. Namely, for jobs that scan a given
file, LI-J determines the maximal set of jobs that can be merged
without sacrificing the number of points awarded. In the second
phase, we swap the execution order of jobs incrementally until no
further improvements are possible.

The pseudo-code for LI-J is shown in Figure 7. In lines 1-2, we
sort the jobs in deadline order and files in descending order of sig-
nificance. Lines 3-10 illustrate the first phase of local improvement
in which we iterate over each file in order. For a file f , we extract
all jobs that scan f in J

′. Then for every pair of jobs in J
′, we

merge the corresponding job sets in the schedule S if more points
are obtained. Finally, we remove jobs in J

′ from J and proceed to
the next file. In the second phase (lines 11-18), pairs of jobs are
swapped until no further improvements can be made to S.

5.4 Additional Optimizations
CoScan includes two optimizations that (1) improve makespan

performance by increasing the parallelism of reduce tasks and (2)
make scheduling robust to errors in cost estimation. The first op-
timization arose from the fact that Pig’s multi-query optimizer sets
the reduce parallelism (i.e. number of reduce tasks) of a merged
job to the maximum parallelism among its constituent jobs. Of-
ten times, this policy leads to considerable increase in makespan
as more jobs are merged. By increasing the parallelism of reduce
tasks, we observed a factor of two to three reduction in latency. This
works up to a point; that is, if the number of reduce tasks saturate
the number of reduce slots available in Hadoop, then performance

is negatively impacted (i.e. overhead from idle reduce tasks and ad-
ditional start-up and tear down). Thus, CoScan sets the number
of reduce tasks by summing the parallelism of the constituent jobs
and capping this amount to be no more than the number of available
reduce slots.

CoScan relies on past execution of jobs for cost estimation, which
may lead to errors (i.e. data skew in the input file or configuration
change in the Hadoop cluster). Many works [7, 13, 24] exist that
estimate the running time of jobs by sampling the input data or
performing a static analysis of the execution pipeline. These tech-
niques are complementary and can be applied in CoScan to improve
cost estimation. Our goal is to demonstrate the value of scan shar-
ing and not design a better cost estimator. Instead, we develop a
black box approach to capture estimation errors at runtime, adjust
schedules dynamically, and make CoScan robust to noise.

CoScan adjusts schedules at runtime to mask cost estimation er-
rors and ensures that latency of subsequent jobs are not adversely
affected. We first observe, for a completed job, the error between
actual and estimated performance. We then record this error, which
is keyed by the input file scanned and operation performed. Finally,
we adjust cost estimates for similar jobs and re-run the schedul-
ing algorithm for the affected jobs. Consider a simple example
with jobs J1 (filter), J2 (group-by with aggregation), and J3 (fil-
ter with group-by) that scan input A. Upon completion of J1 and
J2, we observe that actual makespan is 10% and 5% more than
estimated makespan respectively. CoScan accumulates these er-
rors by recording the following key-value pairs: {A::filter, 10%},
{A::group-by, 5%}, and {A::aggregation, 5%}. The scheduling
algorithm is then re-run after the estimated makespan of J3 is in-
creased by 7.5% (using {A::filter, 10%} and {A::group-by, 5%}).

Finally, we note that our scheduling algorithms naturally extend
to the online setting, where the entire workload is not known apriori
and jobs arrive on-the-fly. Specifically, we first employ the offline
algorithms to merge and order the jobs seen so far. As new jobs
arrive, we re-apply our algorithms for the new workload to obtain
a revised schedule.

6. EXPERIMENTS
We implement CoScan for the PigMix [30] web analytics bench-

mark, which consists of seventeen Pig jobs designed to test latency
and scalability requirements of internal workflows at Yahoo. The
queries are grouped into roughly the following types: group by
with aggregation (L1, L4, L6, L7, L8, L12, L17), nested group by
with aggregation (L15, L16), order by (L9, L10), distinct (L11),
and joins (L2, L3, L5, L13, L14). The inputs consist of eight data
files that include user identification and behavior logs. Consider
the following PigMix scripts (altered for ease of presentation) that
illustrate use cases for both join and non-join jobs:

L2.pig (Replicated Join)
A = load ’page_views’ as (user, action,

timespent, query_term, ip, timestamp,
revenue, page_info, links);

B = foreach A generate user, revenue;
alpha = load ’power_users’ as (name,

phone, address, city, state, zip);
beta = foreach alpha generate name;
C = join B by user, beta by name

using "replicated";
store C into ’L2out’;



L5.pig L8.pig 0.567308 0.902522 53 0.615385 0.900614 0.504762
L5.pig L9.pig 0.729459 0.846692 54 0.615385 0.902522 0.514286
L5.pig L10.pig 0.759144 0.860718 55 0.615385 0.908588 0.52381
L5.pig L11.pig 0.608696 0.783639 56 0.618644 0.910917 0.533333
L5.pig L12.pig 0.590909 0.83911 57 0.621849 0.92135 0.542857
L5.pig L13.pig 0.567308 0.831171 58 0.621849 0.923831 0.552381
L5.pig L15.pig 0.60177 0.898488 59 0.621849 0.926099 0.561905
L5.pig L16.pig 0.615385 0.891199 60 0.625 0.966451 0.571429
L6.pig L7.pig 0.583333 1.06346 61 0.628099 1.005026 0.580952
L6.pig L8.pig 0.583333 1.02714 62 0.628099 1.011214 0.590476
L6.pig L9.pig 0.735812 1.067558 63 0.634146 1.019344 0.6
L6.pig L10.pig 0.764192 1.225095 64 0.637097 1.026274 0.609524
L6.pig L11.pig 0.621849 0.886021 65 0.642857 1.02714 0.619048
L6.pig L12.pig 0.605263 1.005026 66 0.648438 1.039447 0.628571
L6.pig L13.pig 0.583333 0.835044 67 0.729459 1.053532 0.638095
L6.pig L15.pig 0.615385 1.098189 68 0.729459 1.059678 0.647619
L6.pig L16.pig 0.628099 1.053532 69 0.729459 1.060273 0.657143
L7.pig L8.pig 0.567308 1.375373 70 0.729459 1.06346 0.666667
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Figure 8: Makespan and resource usage of pairwise merges.

L4.pig (Group-by with Aggregation)
A = load ’page_views’ as (user, action,

timespent, query_term, ip, timestamp,
revenue, page_info, links);

B = foreach A generate user, action;
C = group B by user;
B = foreach C {

aleph = B.action;
beth = distinct aleph;
generate group, COUNT(beth); }

store D into ’L4out’;

L2.pig first loads the page_views (behavior log for users) and
power_users (group of highly active users) tables. The two tables
are then joined to determine a list of revenues that power users
generated. A replicated join is used which copies (into memory) the
power_users table for each map task and evaluates the join at the
map-side. L4.pig computes the number of unique actions logged
for each user. This is accomplished by first projecting each user’s
actions at the map-side. On the reduce-side, actions are grouped by
user and a count is performed on the list of distinct actions.

Our evaluation studies the effectiveness of our scheduling algo-
rithms, performance benefits from join-based optimization, and ro-
bustness of cost estimates to noise. We compare GO and LI to NS
with respect to makespan and resource utilization (Section 4.1). NS
evaluates each job independently with no scan sharing. We first
characterize our workload before presenting our main results for
PigMix. We then employ synthetic workloads to test the generality
of our solution by varying skew in the input data, degree of sharing
between jobs, and number of join jobs in the workload.

For experiments, we deployed an eight node Hadoop cluster with
2.4GHz Quad Core CPU and 4GB of RAM per node. Each node
is configured as RAID 0 (two 500GB disks) with an HDFS block
size of 128MB and allocates four map and two reduce slots. We
also generate a 500GB version of the PigMix dataset in which the
primary data file, page_views, contains 625 million rows.

6.1 Workload
Figure 8 illustrates the performance distribution of two-way merges

for pairs of PigMix jobs that share at least one input. Merge per-
formance is relative; that is, makespan and resource utilization is
normalized by the cost of executing the pair of jobs independently.
(Thus, a relative performance of 1 indicates that there is no perfor-
mance difference). Reduction in resource utilization is substantial
in that between 20% and 45% fewer resources are used by map

L11 M+R Time #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L11 M+R Time Est. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L11 M+R Time Err #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L12 Makespan 415500 525000 607000 795000 974000 1115000
L12 Makespan Est. 415500 631000 846500 1062000 1277500 1493000
L12 Makespan Err 0 0.201904762 0.394563427 0.335849057 0.311601643 0.339013453
L12 M+R Time 12526000 15230000 16880000 19031000 20863000 22736000
L12 M+R Time Est. 12526000 19022637.79 25519275.57 32015913.36 38512551.14 45009188.93
L12 M+R Time Err 0 0.249024149 0.511805425 0.682303261 0.845973788 0.97964413
L13 Makespan 442000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L13 Makespan Est. 442000 884000 1326000 1768000 2210000 2652000
L13 Makespan Err 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L13 M+R Time 9370000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L13 M+R Time Est. 9370000 18740000 28110000 37480000 46850000 56220000
L13 M+R Time Err 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L14 Makespan #DIV/0!
L14 Makespan Est. #DIV/0!
L14 Makespan Err #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L14 M+R Time #DIV/0!
L14 M+R Time Est. #DIV/0!
L14 M+R Time Err #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L15 Makespan #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L15 Makespan Est. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L15 Makespan Err #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L15 M+R Time #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
L15 M+R Time Est. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
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Figure 9: Actual vs estimated makespan.
L1 0.41374469 27778000 44063000 61021000
Savings % L1 0 0.5 0.647147539
L4 0.747003042 11178000 14006000 16345000
Savings % L4 0 0.5 0.686187625
L6 0.702752662 12442500 16141000 19252000
Savings % L6 0 0.5 0.689062977
L7 0.864342126 9306500 10569000 11529000
Savings % L7 0 0.5 0.67920189
L8 0.852026991 9410500 10803000 11885000
Savings % L8 0 0.5 0.679575123
L12 0.784129012 12526000 15230000 16880000
Savings % L12 0 0.5 0.702436707
L17 0.062885712 1147500 #DIV/0! #DIV/0!
Savings % L17 0 #DIV/0! #DIV/0!
Baseline Savings 0 0.5 0.66667

L2 #DIV/0! 11158000 #DIV/0! #DIV/0!
Savings % L2 0 #DIV/0! #DIV/0!
L3 #DIV/0! 10236000 #DIV/0! #DIV/0!
Savings % L3 0 #DIV/0! #DIV/0!
L5 #DIV/0! 8712500 #DIV/0! #DIV/0!
Savings % L5 0 #DIV/0! #DIV/0!
L13 #DIV/0! 229000 #DIV/0! #DIV/0!
Savings % L13 0 #DIV/0! #DIV/0!
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Figure 10: Actual vs estimated savings in scan cost.

and reduce tasks to complete the same amount of work. Surpris-
ingly, job latencies are not significantly impacted by merging (up
to a 38% increase in makespan) and in fact, improves slightly when
join jobs are merged. This is because merging jobs reduces I/O con-
tention (i.e. less network congestion) compared with executing the
two jobs separately.

We also validate our cost model for estimating makespan and re-
source utilization in PigMix. Figure 9 plots actual versus estimated
makespan performance as we merge an increasing number of jobs
of the same type. Recall that our cost model bounds the makespan
of merged jobs in the worst case. Thus, we plot actual makespan
normalized by the estimated upper bound. While most jobs outper-
form these bounds, those containing expensive aggregation opera-
tions (i.e. L4 and L6) track closely with the estimated makespan.
Next, consider Figure 10 which compares actual versus estimated
savings in scan cost as we merge an increasing number of jobs. For
simplicity, we only show non-join jobs in which merged jobs scan
the same input. As expected, merging two jobs eliminates one re-
dundant scan (50% savings), three jobs eliminates two redundant
scans (66% savings), and so on.

Figure 11 shows the cumulative probability of errors in cost es-
timation for both single and merged jobs. (Measurements were
obtained from the execution of a one hundred job PigMix work-
load). Resource utilization can be reliably estimated with actual
utilization deviating by no more than 5% for most jobs. Error for
the remaining jobs do not exceed 15%. For makespan, we measure
the amount by which a job’s actual execution time exceeds esti-
mated time (Definition 4). 88% of jobs finish prior to the estimated
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Figure 11: Error in cost estimation.
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Figure 12: Points awarded and resource usage by algorithm.

time and, with the exception of two jobs, the remaining jobs fin-
ish within 5% of the estimated time. Thus, CoScan estimates the
performance of merged jobs with reasonably high accuracy.

6.2 Results
We evaluate the performance of a one hundred job PigMix work-

load across various scheduling algorithms. The workload draws
uniformly from the seventeen types of PigMix jobs in which the
maximum amount of points a job can receive is drawn from a Zipf
distribution. We employ piece-wise linear decay functions for soft
deadlines, but supporting alternative decay functions would not af-
fect our core algorithms. Moreover, job arrival is staggered in
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Figure 13: Best schedule over time for local improvement (LI).
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Figure 14: Throughput and response time by algorithm.

which two consecutive jobs are submitted between seven and ten
minutes apart and up to two dozen jobs can be in-flight at a given
point in time. The workload is evaluated against seven schedul-
ing algorithms: NS which orders jobs by earliest soft deadline
without employing scan sharing, GO using four different order-
ings (GO1 for earliest soft deadline, GO2 for steepest point drop,
GO3 for steepest slope drop, and GO4 for normalized deadline),
and LI bootstrapped using two different orderings (LI1 for earliest
soft deadline and LI2 for arrival order).

Figure 12 evaluates the seven algorithms in terms of the num-
ber of points awarded from meeting soft deadlines and the total
amount of resources utilized. Of note is that by employing scan
sharing, the ability to meet soft deadlines improves by orders of
magnitude. (Scan sharing reduces resource usage by roughly 45%
over NS). Across the four greedy ordering algorithms, we find that
sorting jobs based on the earliest soft deadline yields the best per-
formance in terms of points awarded. Recall that GO1 schedules
the most time constrained jobs first. However, if slack exists be-
tween a job’s deadline and its estimated makespan, then GO1 at-
tempts scan sharing for one of the input files by merging the next
most time constrained job. Sorting jobs by the steepest point (GO2)
or slope (GO3) drop perform slightly worse as meeting the earli-
est deadline dominates over the marginal amount of points gained
from meeting a later deadline. GO4 performs significantly worse
because by scheduling jobs with higher point value first, jobs that
are time constrained may fail to meet their deadlines.

Finally, we note that local improvement is sensitive to the ini-
tial ordering, with a clear advantage for sorting jobs by the earli-
est deadline (LI1). LI1 provides marginal improvement in points
awarded over GO1 by swapping jobs to explore additional sort or-
ders. This is not without a cost. Adding an additional job to the
workload increases running time by 5 seconds for LI1 compared
with 8 milliseconds for GO1. Also, LI1 actually merges fewer jobs
than GO1 as evident by the higher resource utilization. Figure 13
provides insights into the scheduling decision of LI1. For each it-
eration, we plot points awarded and resource usage for the best
schedule discovered so far. Toward the end, a marginal improve-
ment in points awarded requires large reductions in resource utiliza-
tion (half of the reduction is used to achieve the final 10% gain in
points). Thus, finding scan sharing opportunities that do not violate
existing soft deadlines becomes more difficult with each iteration.

In measuring system throughput and average job response time
(Figure 14), scan sharing yields up to 57% increase in through-
put and 41% reduction in response time. In broad terms, lower
resource utilization translates into improved throughput and more
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Figure 15: Sensitivity of GO and LI algorithms to workload changes.

points awarded results in lower response time. As such, GO1 and
LI1 exhibit the best throughput and response time performances re-
spectively. However, the differences are small and indicate that, at
the margins, LI1 merges fewer jobs in exchange for better job la-
tencies. For example, a light-weight map-only job should not be
merged with a a reduce-heavily job to avoid distorting the latency
of the light-weight job. For subsequent results, we use GO1 and
LI1 to represent greedy ordering and local improvement.

We study the generality of our algorithms by varying the input
files and number of joins using synthetic workloads. The work-
loads consist of one hundred jobs based on the PigMix benchmark.
In Figure 15(a), we vary the skew in the sizes of input files as mea-
sured by the ratio of the largest to smallest file size. We compare
points awarded and resource utilization for GO and LI. (Perfor-
mance is normalized against that of NS). While GO and LI are
awarded a similar number of points when skew is low, LI provides
a nearly 20% improvement when shared inputs differ by a factor
of ten or more in size. This is because scan sharing for larger files
provides greater savings in resource utilization. Since GO does not
account for input sizes when exploiting scan sharing opportunities,
it may choose to merge jobs that scan smaller inputs over those that
scan larger inputs.

Figure 15(b) compares GO and LI as we vary the degree in which
inputs are shared. Specifically, by reducing the number of inputs
from twenty to two, we increase the number of jobs that contend
for the same file. Again, points awarded and resource utilization are
normalized against that of NS. As expected, the difference in points
awarded falls drastically as we increase the number of inputs. This
is because fewer scan sharing opportunities are available. Likewise,
decreasing the number of inputs reduces resource utilization to 41%
(factor of two) and 29% (factor of three) of NS for two and five
inputs respectively. Clearly, CoScan benefits from high contention
when the same inputs are scanned by a large fraction of jobs.

Next, we study the join extension to local improvement (LI-J)
by varying the fraction of join jobs (mostly two-way joins) in the
workload (Figure 15(c)). In comparing the number of points awarded
without joins, the three algorithms exhibit similar performance with
a slight advantage for LI. Recall that LI-J merges jobs in a pre-
defined order based on decreasing significance of input files (Sec-
tion 5.3) whereas LI explores all possible merges. When a join job
offers multiple inputs on which to perform scan sharing, LI-J fa-
vors sharing the input that leads to the largest reduction in resource
utilization. The results show that LI consistently outperforms LI-J
at a low fraction of joins (60% or less) and, with more than 80%
joins, LI-J yields 4% and 22% improvement over LI and GO re-
spectively. An additional benefit is that the running time of LI-J is
significantly lower than that of LI.
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Figure 16: Robustness of LI to errors in makespan estimation.

Figure 16 studies the robustness of LI to cost estimation errors
and the effectiveness our solution (Section 5.4) to mask noise in
the estimation of makespan at runtime (denoted by LI-E). We add
noise to the estimated makespan of individual operations (i.e. scan-
ning a given input) and vary the percent spread in the amount of
error applied. We then plot the number of actual points awarded for
LI and LI-E. The results demonstrate that LI is fairly robust to small
errors in the estimation of job makespans (10% error leads to a 7%
reduction in points awarded). However, large errors (both over and
under-estimation) reduce the effectiveness of LI by nearly 50%. Al-
though, this performance still exceeds that of NS. By comparison,
capturing noise in makespan estimation and reordering jobs at run-
time in LI-E ensure that CoScan still meets most of the soft dead-
lines even with large errors in cost estimation (losing 11% of the
points at 50% error). Thus, scheduling based on scan sharing en-
sures efficient utilization of cluster resources and allows the system
to meet more soft deadlines even in the presence of cost estimation
errors.

7. DISCUSSION
We evaluated several techniques that demonstrate the effective-

ness of scan sharing for join and non-join jobs using the Pig/Hadoop
[16, 28] platform as a motivating application. These include greedy
ordering and local improvement algorithms that balance the bene-
fits of scan sharing with meeting soft deadlines, join extensions
optimized for workloads with lots of joins, and runtime techniques
that dynamically adjust the schedule to make CoScan robust to er-
rors in cost estimation. Experiments demonstrate that judicious ap-
plication of scan sharing allows the scheduler to simultaneously



meet more deadlines and lower resource usage. These benefits
scale with contention, leading to a three-fold reduction in resource
usage when many jobs contend for a small number of files.

In ongoing work, we plan to apply our scheduling results to clus-
ters with elastic resources in which cluster size (number of physical
machines) can expand or shrink (i.e. Amazon EC2 pricing model
[11]). As such, CoScan can allocate additional machines for a job
in order to speed-up execution and reduce makespan at the expense
of increased resource usage. For example, while a customer may
be willing to pay a monetary bonus for early job completion, con-
suming more resources results in higher operating costs. The goal
in the elastic model is to balance soft deadlines with resource usage
by maximizing the net reward after operating costs.

We also plan to validate the generality of our approach in other
data processing systems (such as Hive [33] and BigTable [6]). This
includes implementing specific multi-query optimization mecha-
nisms to support scan sharing and validating our cost model for
scheduling. In addition, CoScan requires better cost estimators that
predict the execution of new jobs for which prior performance is
not available. While CoScan depends on the quality of cost esti-
mates and Pig-specific optimization techniques, scheduling based
scan sharing will ensure lower resource footprint and improved
throughput performance irrespective of the system.
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