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ABSTRACT
While developing data-centric programs, users often run
(portions of) their programs over real data, to see how they
behave and what the output looks like. Doing so makes it
easier to formulate, understand and compose programs cor-
rectly, compared with examination of program logic alone.
For large input data sets, these experimental runs can be
time-consuming and inefficient. Unfortunately, sampling the
input data does not always work well, because selective op-
erations such as filter and join can lead to empty results
over sampled inputs, and unless certain indexes are present
there is no way to generate biased samples efficiently. Con-
sequently new methods are needed for generating example
input data for data-centric programs.

We focus on an important category of data-centric pro-
grams, dataflow programs, which are best illustrated by
displaying the series of intermediate data tables that oc-
cur between each pair of operations. We introduce and
study the problem of generating example intermediate data
for dataflow programs, in a manner that illustrates the se-
mantics of the operators while keeping the example data
small. We identify two major obstacles that impede naive
approaches, namely (1) highly selective operators and (2)
noninvertible operators, and offer techniques for dealing
with these obstacles. Our techniques perform well on real
dataflow programs used at Yahoo! for web analytics.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms, Experimentation

1. INTRODUCTION
An increasingly popular data processing paradigm is

dataflow programming, whereby processing is specified via
acyclic graphs. Source nodes denote input data sets, and
sink nodes denote output data sets to be generated by run-
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ning the dataflow program. Intermediate nodes denote set-
transformation operations drawn from a suite of operator
templates. The operator templates typically resemble rela-
tional algebra primitives (e.g., project, filter, join) and/or
functional programming primitives (e.g., map, reduce). Re-
cent examples of dataflow programming systems include Au-
rora [1], Dryad [9], Map-Reduce [7], Pig [13], River [2] and
Tioga [15].

As with all programming paradigms, the process of con-
structing a correct dataflow program is typically an iterative
one: The user makes an initial stab at composing a program,
submits it to the system for execution, and inspects the out-
put (or failure log) to determine whether the program had
the intended effect. If not, the user revises the program and
repeats the cycle. Dataflow programs often access large data
sets and hence take a long time to execute, so the iterative
development process can be very inefficient.

To circumvent this inefficiency, users may choose to create
side data sets, consisting of small samples of the original
input data sets, for experimentation. Unfortunately this
method does not always work well. For example, suppose
the program performs an equijoin of two data tables A(x,y)
and B(x,z) on attribute x. If the original data contains
many distinct values for x, then it is unlikely that a small
sample of A and a small sample of B contain any matching x

values [5]. Hence a program involving a join over the sample
data tables may well produce an empty result, even if the
program is correct. Similarly, a program with a selective
filter executed on a sample data set may produce an empty
result.

One may consider biasing the sample so as to ensure
nonempty and uniformly sampled join or filter outputs, as
suggested in [5]. Unfortunately such methods are only ef-
ficient if the appropriate indexes have been created in ad-
vance. In the context of ad-hoc programming one cannot
always presuppose the availability of indexes that match cer-
tain predicates embedded in the program.

Besides, for the purpose of understanding the semantics of
a dataflow program, it is not necessary to provide a uniform
sample of the program’s output. In fact, it is not even neces-
sary to provide a subset of the output—if real records are too
expensive to obtain, carefully constructed synthetic records
can suffice, as we demonstrate next via a simple example.

1.1 Illustrative Example Data
Figure 1 shows an example dataflow program that finds

web surfers who tend to visit high-pagerank pages. The
program joins two data tables: a log of page visits (Vis-
its(user, url, time)) and a catalog of pages and their



Figure 1: A dataflow program.

pageranks (Pages(url, pagerank)), after first running the
log entries through a function that converts URLs to a
canonical form. After the join, the program groups records
by user, computes the average pagerank for each user, and
then filters users by average pagerank.

Figure 2 augments Figure 1 with example records that
illustrate how data flows through the program’s operators.
The salient properties are: First, the data seems realistic,
i.e., we might expect to find data of this form in the real
Visits and Pages tables. Second, the example data illus-
trates the key properties of each operator. For example, by
inspecting the example data we observe that the group op-
erator forms nested sets that can contain multiple records1

(e.g., for Amy), and the filter operator eliminates Fred,
who’s average pagerank is too low. Third, the data is con-
cise, i.e., only a few records are shown at each step.

The data in Figure 2 was generated automatically by an
algorithm we have designed. The capability for automatic
generation of realistic and concise example data to illustrate
dataflow semantics has significant real-world implications:
It enables a new type of tool for helping users construct
dataflow programs, in which illustrative example data is dis-
played on edges between dataflow operators as the user as-
sembles them. A tool of this kind can help users reason
about the behavior of their programs as they are compos-
ing them, without having to iterate over the full data to see
whether they implement the intended semantics. Perhaps
of equal importance, such a tool can also help a user under-
stand a dataflow program written by somebody else, e.g., a
predecessor who no longer works at the company. Lastly,
this type of tool may be helpful in learning a new dataflow
language or operator.

1In this example, we have used the semantics of the group
operator in Pig Latin [13].

1.2 Contributions
In this paper we formalize the problem of generating ex-

ample data to illustrate the semantics of dataflow graphs,
and identify the characteristics that are desirable for high-
quality example data. We then present a novel example
generation algorithm based on deliberate nonuniform sam-
pling combined with data synthesis. We show that our algo-
rithm is efficient and produces high-quality output on real
dataflow programs, whereas simple baseline approaches per-
form poorly. Output quality is judged according to three key
objectives: realism, conciseness and completeness, which we
formalize and quantify.

Our work is motivated by our experience helping users
write and debug dataflow programs in the Pig [13] system.
While working with users we often find ourselves construct-
ing example intermediate data tables by hand on a sheet
of paper, a labor-intensive process that impelled us to seek
automated methods. We have designed our techniques to fit
the kinds of dataflow programs that real users tend to write,
while at the same time leaving our overall approach fairly
general so as to be readily adaptable to other contexts.

1.3 Outline
The remainder of this paper is structured as follows. We

first supply some background on dataflow programs and il-
lustrative example data, and discuss strawman approaches
to generating example data automatically, in Section 2. We
then formalize the example generation problem in Section 3,
and present our algorithmic solution in Section 4. We evalu-
ate our solution empirically in Section 5. We summarize our
findings in Section 6, and then discuss related work in Sec-
tion 7. Lastly, in Section 8 we mention some opportunities
for future work.

2. PROBLEM OVERVIEW
In this section we describe the problem of generating ex-

ample data for dataflow programs, and give some insights
into the challenges inherent in the problem by describing
two strawman approaches and their drawbacks.

2.1 Input and Output
The input to an example generation algorithm is a

dataflow program P over database D. In this paper we take
P to be a tree of n operators, where each operator consumes
one or more input tables and produces an output table. A
table is a multiset of records. A record is a list of data val-
ues, each of which is either a scalar or a table. (The use
of nested tables facilitates grouping as a distinct operation
from aggregation, as shown in Figure 2.)

Our approach is quite general, but in this paper we focus
on the core operators of the Pig Latin language [13]:

• load: Read the content of a base table, i.e., a table stored
in D.

• filter: Eliminate unwanted records, according to ei-
ther a built-in logic predicate, or a user-supplied Boolean
function that accepts or rejects each record.

• group: Partition input records into disjoint groups, and
form one output record per group. Each output record
consists of a group identifier followed by a nested ta-
ble containing the set of input records belonging to the
group. (See Figure 2 for an example.)



Figure 2: Dataflow program with automatically-generated example data.

• transform: An arbitrary transformation function f(·)
applied to each input record; f(·) may produce zero
or more output records on each invocation.2 This is a
very general and flexible operator, designed to fill the
role played by general map and reduce functions in the
Map-Reduce architecture [7]. The transform opera-
tor can be used for projection, built-in arithmetic trans-
formations such as incrementing a numeric value, gen-
eral user-defined transformations (e.g., the user-supplied
Canonicalize(·) function in Figure 2), or aggrega-
tion. Aggregation is accomplished by first invoking a
group operation, which outputs one record per distinct
group containing a nested table of the grouped-together
records, and then invoking a transform operation that
aggregates the contents of each group record’s nested
table. Figure 2 shows an example of aggregation: the
Average(·) function is applied to the set of records as-
sociated with each distinct user.

• join: The relational equijoin operation: identify related
pairs of records from two input tables according to an
equality predicate, and combine each such pair into a
single output record.

2In Pig Latin, transform is invoked via the “foreach” syn-
tax.

• union: Place each record from each of two input tables
into a single output table.

If Operator A’s output table is one of Operator B’s in-
put tables, we say that Operator A is an upstream neighbor
to Operator B. Conversely, Operator B is the downstream
neighbor of Operator A. Operators that have no upstream
neighbors are leaf operators, and must be of type load. The
final operator, which has no downstream neighbor, is the
root operator.

The output of an example generation algorithm is a set
of example tables {T1, T2, . . . , Tn}, one corresponding to the
output of each operator in P , as illustrated in Figure 2. The
set of example tables is required to be consistent, meaning
that the example output table of each operator is exactly the
table produced by executing the operator over its example
input table(s).

Another requirement might be conformity to registered
integrity constraints, such as functional dependencies. Our
present work does not deal with integrity constraints, be-
cause our application scenario (Pig) does not include mech-
anisms for registering or enforcing constraints.

2.2 Objectives
As alluded to in Section 1, there are three primary objec-

tives in selecting example data (formalized in Section 3.2):



• Realism. The example tables that correspond to orig-
inal database tables (Visits and Pages in Figure 2)
should be subsets of the actual database tables, if pos-
sible. If not, then to the extent possible the individ-
ual attribute values should be ones found in the actual
database.

• Completeness. The example tables should collectively
illustrate the key semantics of each operator. For exam-
ple, the example tables before and after the group oper-
ator in Figure 2 serve to illustrate the semantics of group-
ing by user, namely that input records about the same
user are placed into a single output record. As another
example, the example tables before and after the filter
operator illustrate the semantics of filtering by average
pagerank, namely that input records with low average
pagerank are not propagated to the output. Complete-
ness is defined on a per-operator basis (see Section 3).

• Conciseness. The example tables should be as small as
possible, to effectively present in a user interface, and to
minimize the amount of data the user has to examine.

2.3 Strawman Approaches

2.3.1 Downstream Propagation
A tempting approach is simply to take a sample of each

base table, push the sample data through the operator tree,
and record the intermediate table produced by each op-
erator. Unfortunately, as mentioned in Section 1, in the
presence of highly selective operators this approach may not
achieve good completeness. Using larger samples may over-
come this problem, but at the risk of hurting conciseness.
Besides, taking very large samples would cause the exam-
ple generation process to take too long. We seek algorithms
that generate example data in real time as the user formu-
lates and refines her program.

Throughout this paper we assume that any database sam-
ples used in example generation are of small size. We also
assume the sampling process cannot be biased to meet the
needs of a given program: As discussed in Section 1 our work
targets ad-hoc programs, for which the indexes necessary for
efficient biased sampling may not exist a priori.

2.3.2 Upstream Propagation
A second natural approach is to work backward: given

a desired output characteristic (e.g., nonempty output ta-
ble), select input records from the database samples, or else
synthesize input records, that cause this characteristic to be
met. This idea can be applied recursively, starting from the
root operator and moving upstream toward the leaves.

Upstream propagation relies on invertiblity of operators,
i.e., the ability to produce input table(s) that, when pushed
through the operator, produce a given output table. Oper-
ator invertibility is impeded by the presence of user-defined
functions (UDFs), which are common in operators such as
transform and filter. Since UDFs contain arbitrary
code, it is not always possible to construct input record(s)
that will lead to a given output. The only way to generate
example data for a noninvertible operator is to push data
through the operator in the downstream direction.

Clearly, neither upstream nor downstream propagation
alone is sufficient to generate good example data, in general.
However, careful interleaving of downstream and upstream
propagation, combined with pruning of redundant examples,

can lead to better results, and in fact this approach forms
the basis for our algorithm described in Section 4.

3. PROBLEM FORMALIZATION
We now formalize the example generation problem. Of

the three objectives outlined in Section 2.2, completeness
presents the greatest challenge for formalization, for two rea-
sons: (1) individuals may disagree as to what constitutes
the “key semantics” of a particular operator; (2) an overly
elaborate formal definition can be hard to work with algo-
rithmically. In view of these issues we have settled on the
following approach: (1) rather than attempting to formu-
late a universal completeness definition, we supply a general
framework into which one may insert the desired complete-
ness semantics on a per-operator basis; (2) our framework
for defining completeness is based on a simple yet flexible
model of record equivalence classes, described next.

3.1 Equivalence Class Model
For the purpose of formalizing our problem, we introduce

the following model of how operator semantics are to be
illustrated via example data.

We are given a set of operators, such as the ones listed in
Section 2.1. For each operator O, we specify a set of equiv-
alence classes EO = {E1, E2, . . . , Em} over records, where
each equivalence class is meant to illustrate one aspect of
the operator semantics. Each input or output record for op-
erator O is either not a member of any equivalence class in
EO, or is a member of exactly one equivalence class Ei ∈ EO.
Completeness for operator O is defined as having example
input and output tables that collectively contain at least one
member of each equivalence class in EO.

For example, one way to define completeness for a filter
operator is to assign all input records that pass the filter to
class E1 and all records that do not pass the filter to E2.
Hence, the example input table for a filter is complete iff it
contains at least one record that passes the filter and one
that does not. If the filter is multifaceted, i.e., its predicate
combines multiple primitive expressions via logical connec-
tives, one may choose to define more than two equivalence
classes—perhaps up to one equivalence class per unique com-
bination of truth values for the primitive expressions.

3.2 Quantitative Objectives
Given the above equivalence class model, we can state our

objectives from Section 2.2 quantitatively:

• Realism ∈ [0, 1]: the fraction of example records that
are real. A record produced by a load operator is real
iff it appears in the corresponding table in D; a record
produced by any other operator is real iff every record in
its lineage is real.3 (The lineage of a record is the set of
records from which it has been derived in P .)

• Completeness ∈ [0, 1]: the average of per-operator
completeness values, where per-operator completeness is
defined as the fraction of operator equivalence classes for
which at least one example record exists.

• Conciseness ∈ [0, 1]: the average of per-operator con-
ciseness values, where per-operator conciseness is defined

3A possible refinement is to give “partial credit” to records
containing a mixture of synthetic and real values, but for
simplicity we define realism at the granularity of full records.



as the ratio of the number of operator equivalence classes
to the total number of example records for that operator
(with a ceiling at 1). (The use of the number of equiv-
alence classes in the numerator avoids penalizing opera-
tors that require a large number of examples to illustrate
their semantics.)

3.3 Discussion
The nature of this problem is such that no solution can

guarantee a satisfactory outcome on all three objectives for
arbitrary programs and data sets. In other words, even a
theoretical optimal algorithm cannot, in general, achieve a
score of 1 on each of realism, conciseness and completeness
simultaneously.

For example, consider a program that performs grouping,
then filters out groups that have cardinality below 1000, and
finally takes the average of each group that passes the filter
(i.e., large groups). Clearly, if we want to illustrate the fi-
nal transformation (taking the average), we need to show at
least 1000 input records, which violates conciseness. Hence
it is impossible to simultaneously achieve completeness and
conciseness in this case. In general there can be tensions
between each pair of objectives, e.g., there may be no way
to achieve completeness without synthesizing data and re-
ducing realism.

That said, it is still worth pursuing this problem, because
based on our experience it is possible to do quite well in
many scenarios that arise in practice. Besides, one can often
use special user-interface techniques in scenarios where the
most concise example is not concise enough: If the 1000
constituent records of a group in the above example are not
semantically different, they can be shown by an ellipsis that
is expanded on demand.

4. OUR ALGORITHM
In this section we describe our algorithm for generating

example data tables. Given the complexity of the prob-
lem, to allow an efficient solution we have taken a best-effort
approach. Our algorithm works well in practice (see Sec-
tion 5), but unfortunately we cannot offer a formal perfor-
mance guarantee. In fact, due to the nature of the problem,
even a theoretical optimal algorithm cannot always perform
perfectly on all three objectives, as explained in Section 3.3.

Our algorithm is generic and can be instantiated for spe-
cific query processing systems depending on the set of op-
erators supported, and the corresponding equivalence class
definitions (Section 3.1). In this section we give the generic
algorithm (along with a running example for concreteness).
In Appendix A we give the specific instance of our generic
algorithm that we have developed for Pig [13].

Before proceeding, we review the concept of data lin-
eage [16], of which our algorithm makes heavy use. A
record’s lineage is the set of upstream records that influ-
ence the production of a given downstream record. The set
of base, intermediate, and final records flowing through a
dataflow program may be divided into a one or more disjoint
lineage groups as follows. Let G be an undirected graph with
vertices corresponding to records, and lineage relationships
among records as edges. Each connected component in G
forms a lineage group. For example, the set of records that
get placed into a single group record, along with the group
record itself, are part of a single lineage group.

Figure 3: Downstream pass example.

4.1 Algorithm Overview
Our algorithm performs a series of four passes over a given

dataflow program P , with the fourth pass yielding the final
output (example data tables). Each of the four passes is de-
scribed in detail in the following sections. The basic outline
of the algorithm is as follows:

1. A first downstream pass picks arbitrary data from the
input data set to work with. The chosen data is prop-
agated through the dataflow graph providing as many
examples as possible in an acceptable amount of time.
(Section 4.2)

2. The data from the previous pass can be thought of as
a set of disjoint lineage groups. A pruning pass elimi-
nates lineage groups that are redundant, i.e., they harm
conciseness without improving completeness. (Sec-
tion 4.3)

3. In spite of the passes above, there might be some in-
completeness, i.e., some equivalence classes may not
have been illustrated due to the presence of selective
operators. Our third upstream pass remedies such
incompleteness by synthesizing additional data that
would boost completeness. This pass is only best-
effort since in the presence of noninvertible operators,
it may be impossible to determine what data would
boost completeness. (Section 4.4)

4. Lastly, an additional pruning pass similar to Pass 2 is
conducted to eliminate redundant records introduced
during Pass 3. However, since we now have both real
and synthetic data, we favor retention of real data over
synthetic data to boost realism. (Section 4.5)

4.2 Downstream Pass
In our downstream pass, we first take a sample of size S

from each input base table (i.e., each leaf operator in P ).4

We then evaluate P over the sampled input records, and
record the intermediate table produced between each pair
of operators as well as the final output table generated by
the root operator.

Example 1. We use the very simple dataflow graph
shown in Figure 3 as a running example to illustrate the
stages of our algorithm. There are two input data sets D1

and D2 with a single atribute x. Data set D1 is filtered by
a user-defined function udf(·), then unioned with D2. The
result is filtered by the condition x > 2 to get the final result.
The downstream pass is simple: arbitrary data is picked from

4In principle any form of sampling may be used here. In
practice the sampling must be done efficiently, to ensure
low latency for the overall example generation algorithm
to return to the user. Uniform random samples are not
required. In our implementation we simply read the first
10,000 records from each data file.



D1 and D2 and propagated through the dataflow graph. Note
that in this example, the records 3 and 5 happen to pass the
filter defined by udf.

4.3 Pruning Pass
The pruning pass is given a program P and the set of in-

put, intermediate and output data tables generated by the
downstream pass (e.g., the content of Figure 3). The goal
is to enhance conciseness by eliminating lineage groups that
are large and redundant with respect to completeness. Our
pruning algorithm examines one operator at a time, starting
with the root operator and proceeding upstream toward the
leaves. Without loss of generality, for simplicity of exposi-
tion we assume the operator tree consists of a linear chain of
operators O1, O2, . . . , On, where On is the final root opera-
tor and O1 is a leaf operator. The pruning algorithm starts
with On, then proceeds to On−1, and so on until reaching
O1.

Let Ok be the operator currently under consideration.
We refer to Ok+1, Ok+2, . . . , On collectively as the down-
stream operators, and O1, O2, . . . , Ok as the upstream op-
erators (note that Ok is grouped with the upstream oper-
ators). For the purpose of pruning, the set of input, inter-
mediate and output records associated with the upstream
operators O1, O2, . . . , Ok are arranged into m ≥ 1 lineage
groups, denoted L = {L1, L2, . . . , Lm}. The pruning pro-
cedure at operator Ok may eliminate one or more of these
upstream lineage groups.

4.3.1 Completeness Constraints
To ensure that completeness is not diminished in the pro-

cess, pruning is guided by completeness constraints. A com-
pleteness constraint C is a set of records {r1, r2, . . .} and an
associated minimum coverage number MC ≥ 1, which spec-
ifies that eliminating more than MC members of C causes
a reduction in completeness. The number of members of
C that are retained by the pruning algorithm is called C’s
coverage level. The coverage level of each completeness con-
straint is to be kept equal to or above the minimum coverage
level MC .

There are two kinds of completeness constraints: Up-
stream completeness constraints encode the completeness re-
quirements of the upstream operators. Downstream com-
pleteness constraints encode completeness requirements of
the downstream operators.

We first consider upstream completeness constraints. Re-
call from Section 3.1 that associated with each operator
O is a grouping of records into equivalence classes EO =
{E1, E2, . . .}. By definition, preserving any single member
of an equivalence class is sufficient to maintain the same
level of completeness. As such, each upstream equivalence
class Ei forms an upstream completeness constraint Ci with
minimum coverage MCi = 1.

Downstream completeness constraints range over op-
erator Ok’s output records, but they encode the com-
pleteness semantics on behalf of all downstream operators
Ok+1, Ok+2, . . . , On. They are propagated upstream as
pruning moves upstream. In particular, after pruning of
operator Ok is complete, the downstream completeness con-
straints, which are over Ok’s output records, are transformed
into constraints over Ok’s input records, i.e., Ok−1’s output
records, for use in the next round of pruning. This constraint
transformation process is governed by operator-specific logic

Figure 4: First pruning pass example.

associated with Ok; Appendix A.3 gives completeness con-
straint propagation logic we use in our Pig-based implemen-
tation.

4.3.2 Single-Operator Pruning Algorithm
Given the upstream lineage groups L and completeness

constraints C associated with operator Ok, pruning can be
formulated as a simple optimization problem: Select a subset
of lineage groups L̂ ⊆ L to retain, such that each complete-
ness constraint C ⊆ C is covered by at least MC records in
L̂, and the following function is minimized:X

L∈L̂

w(L)

where w(L) =
P

r∈L w(r) and w(r) is a per-record weight.
In the first pruning pass, we use uniform weights across all
records; we shall use nonuniform weights in our second prun-
ing pass (Section 4.5).

If all MC = 1, this optimization problem is isomor-
phic to the classical (weighted) set-cover problem, which is
known to be NP-hard to approximate to a factor better than
O(logn) [6, 10], where in our case n is the number of com-
pleteness constraints (n = |C|). The following greedy algo-
rithm achieves the optimal approximation factor O(log |C|):

Initialize L̂ = {}. Repeatedly add to L̂ the lineage group

L ∈ L \ L̂ with the highest value of c(L)/w(L), where w(L)
is as defined above, and c(L) is the number of complete-
ness constraints covered by L but not covered by any group
already in L̂:

c(L) = |{C ∈ C : (C ∩ L 6= {}) ∧ (∀L′ ∈ L̂, C ∩ L′ = {})}|

Stop when all completeness constraints have been covered,
i.e., ∀C ∈ C, ∃L ∈ L̂ : C ∩ L 6= {}.

In the presence of completeness constraints having mini-
mum coverage MC > 1, the set-cover algorithm can be gen-
eralized in the obvious way: Let c(L) be the number of com-
pleteness constraints C whose coverage level was below MC ,
and increased as a result of adding L:

c(L) = |{C ∈ C : (C ∩ L 6= {})
∧(|{r ∈ C : (∃L′ ∈ L̂ : r ∈ L′)}| < MC)}|

Stop when all completeness constrains have reached or ex-
ceeded minimum coverage, i.e., ∀C ∈ C, |{r ∈ C : (∃L ∈ L̂ :
r ∈ L)}| ≥MC .

Example 2. For the purpose of our running example, say
our pruning algorithm operates according to the following
definition of equivalence classes for the filter operator: all
records that pass the filter form equivalence class E1 and
those that don’t pass the filter are in class E2. Among the
example data at the end of the dowstream pass (Figure 3),
records 3 and 5 belong to the same equivalence classes (they
both pass both the filters). Thus, one of them (say 5) is
pruned away to yield the example data as shown in Figure 4.



4.4 Upstream Pass
The upstream pass begins at the root operator, and pro-

ceeds recursively toward the leaves. At each operator, it
identifies cases of incompleteness (i.e., empty equivalence
classes). When incompleteness is detected, the algorithm at-
tempts to manufacture a constraint record, which describes
the set of possible records that would remedy the incom-
pleteness. Constraint records are inserted into the operator’s
input, and propagate upstream as the algorithm moves up-
stream. When the algorithm reaches a leaf operator, it con-
verts constraint records into concrete records, and attempts
to conform as closely as possible to real data available at the
leaves.

The details of the upstream pass are given below, starting
with a definition of constraint records.

4.4.1 Constraint Records
A constraint record is a concise representation of a set of

possible records [14]. The set of possibilities may be defined
explicitly (i.e., a list of alternatives), or implicitly (i.e., a
system of constraints over the data contained in the record);
in the latter case the set may be infinite.

In our current work we adopt the following simple lan-
guage for constraint records: a list of fields, where each field
contains one of (a) a concrete value for that field, or (b) a
“don’t care” marker denoting that any value is acceptable.
This constraint language may appear overly simple, but it
has proven adequate in our experience in terms of allowing
us to generate good example data sets (see Section 5), and
its simplicity makes it easy to deal with in our code. Our
techniques are general in that they can be extended to incor-
porate richer constraint languages; we leave this as a topic
of future work.

4.4.2 Algorithm
As mentioned earlier, our example generation algorithm is

heuristical, i.e. it does not guarantee to find an optimal so-
lution. The upstream pass has two aspects that may lead to
suboptimal results: (a) operator-at-a-time processing with
no lookahead, and (b) limited constraint language. In these
respects we have favored simplicity and efficiency over ex-
haustiveness. The upstream algorithm is as follows:

1. Let O be the operator currently under consideration.
At the outset, O is set to the root operator.

2. For each constraint record R inO’s output table (in the
case of the root operator, this set will be empty), if pos-
sible insert constraint records into O’s input table(s)
such that their fulfillment would lead to fulfillment of
R.

3. For each empty equivalence class E associated with O,
if possible introduce constraint records into O’s input
table(s) such that fulfillment of the constraint records
would cause E to become nonempty. (This step re-
lies on operator invertibility; if this step fails due to
noninvertibility, simply skip it and move on.)

4. Repeat Steps 2 and 3 recursively, with O moving to-
ward the leaves of the operator tree.

5. When a leaf operator O is reached, after performing
the processing described in Steps 2 and 3, convert
each constraint record in O’s input table into an actual

Figure 5: Upstream pass example.

record, in such a way as to conform to real data values
found in the base table as much as possible. Under our
simple constant/“don’t care” constraint language spec-
ified in Section 4.4.1, we simply replace each “don’t
care” field of a constraint record with a value sampled
from the corresponding field in the base table.

6. Discard all intermediate tables and the output table,
as well as all constraint records that have not been
successfully converted into concrete records.

7. Re-evaluate P over the newly-augmented input tables,
and record the new intermediate tables and new output
table.

Steps 2 and 3 require per-operator rules for crafting con-
straint records to insert into an operator’s input table(s).
Two types of upstream propagation rules are required:
(1) converting output constraint records received from the
downstream neighbor into input constraint records to give
to the upstream neighbor(s), and (2) creating input con-
straint records to populate empty equivalence classes. The
rules are specific to the particular equivalence class defini-
tions being applied, and tend to be of a best-effort nature. In
Appendix A we present a set of concrete equivalence class
definitions and corresponding upstream propagation rules,
to give an example of how our algorithm can be instanti-
ated.

Example 3. In our running example, the example data
at the end of the first pruning pass (Figure 4) did not cover
all equivalence classes (there are no examples of records not
passing the filters). Hence the upstream phase attempts to
cover all equivalence classes by synthesizing additional data.
Starting at the root operator (Filter2), we find that equiva-
lence class E2 (records that do not pass the filter) is empty.
Hence the upstream phase synthesizes a new record (say 1)
that will not pass the filter. This synthetic record is prop-
agated upstream. To give upstream propagation maximum
choice, 1 is propagated to both branches of the union oper-
ator. Finally, we find that 1 also happens to pass the udf
filter. The upstream pass attempts to find an example tuple
that will not pass the udf filter, but is unable to do so because
of the noninvertibility of udf(·). The final data at the end of
the upstream pass is as shown in Figure 5.

4.5 Second Pruning Pass
The final pass reapplies the pruning algorithm of Sec-

tion 4.3 to eliminate any redundant lineage groups intro-
duced in the upstream pass. Since the data now contains a
mixture of real and synthetic records, we assign weights to
records with the goal of biasing pruning toward eliminating
synthetic records (and hence retaining real ones). In partic-
ular, we assign w(r) = 1 if r is a real record and w(r) = α if
r is a synthetic record. (α ≥ 1 is a parameter that governs



Figure 6: Second pruning pass example.

the relative preference for real data over synthetic data; in
our experiments we use α = 2.)

Example 4. In our running example, the example data
at the end of the upstream pass (Figure 5) contains some
redundant records. The pruning procedure yields the final
example data as shown in Figure 6. Note that even in this
extremely simple example, our algorithm does well on con-
ciseness but lacks perfect realism (one of the records is syn-
thetic), and perfect completeness (there is no example to il-
lustrate when udf would not pass). However, as discussed in
Section 3.3, doing perfectly well on all the three metrics is
generally impossible for any algorithm.

5. EXPERIMENTS
In this section we evaluate our approach quantitatively, on

real programs and data used at Yahoo! The programs are
written in Pig Latin. For confidentiality reasons we cannot
give details of the programs or data. Instead we show the
abstract dataflow structure of each program, and disclose
features of these programs that get in the way of automatic
example generation. We then present quantitative results
over these workloads.

5.1 Dataflow Programs
Our real-life dataflow programs have the following ab-

stract structure:

Program 1 (web search query frequency over time):

1. load table A
2. filter using a UDF (noninvertible)
3. transform using a UDF (noninvertible)
4. group
5. transform using a built-in aggregation function
6. filter via arithmetic comparison
7. group
8. transform using a built-in aggregation function

Program 2 (news web site usage statistics):

1. load table B
2. filter via arithmetic comparison (highly selective)

3. group
4. transform using a built-in aggregation function

Program 3 (web search result viewing statistics):

1. load table C
2. filter using a compound arithmetic comparison
3. group
4. transform using a built-in aggregation function

Program 4 (web search result viewing statistics):

1. load table C
2. filter using a compound arithmetic comparison
3. group
4. transform using a built-in aggregation function
5. group
6. transform using a built-in aggregation function

Program 5 (web search result viewing statistics):

1. load table C
2. filter using a compound arithmetic comparison
3. group
4. transform using a built-in aggregation function
5. group (forms very large groups)
6. transform using two built-in aggregation functions

Program 6 (web advertising query frequency):

1. load table D
2. load table E
3. join D and E w/equality predicate (highly selective)

Program 7 (web advertising human judgments):

1. load table F
2. filter F using a compound logical expression
3. load table G
4. join F and G w/equality predicate (highly selective)
5. transform using four string transformation UDFs

(noninvertible)

Program 8 (web advertising activity):

1. load table H
2. filter H using a compound logical expression
3. load table I
4. join H and I w/equality predicate (highly selective)
5. transform using four string transformation UDFs

(noninvertible)

The above programs contain instances of each of the main
challenges we have identified in this paper: selective oper-
ators, which poses a problem for downstream propagation,
noninvertible operators, which poses a problem for upstream
propagation, and group operators whose groups are all large,
which poses a problem if pruning is applied only at the root
level (see Section 5.2).

5.2 Example Generation Algorithms
We tried four algorithms (two baseline algorithms, and

two new ones):

• Downstream: propagate a database sample down-
stream through the operator tree (Section 2.3.1).

• Upstream: propagate constraints upstream through
the operator tree (Section 2.3.2).

• Root-level pruning: our algorithm (Section 4), with
pruning performed at the root operator only, rather than
iteratively pruning each operator via an upstream tree
traversal as in our full algorithm.

• Our algorithm: our algorithm (Section 4), with full
pruning.

The rationale for including the root-level pruning variant of
our algorithm is to determine whether full pruning is worth
the additional cost.

For both variants of our algorithm, we found that taking
the logarithm of the lineage group weights yielded somewhat
better results, compared with using raw weights. By taking
the logarithm, we de-emphasize the weights, causing our al-
gorithms to favor a smaller number of groups over groups
with a small number of records.

We also found that our algorithms are not very sensitive
to the parameter α (Section 4.3.2); we use α = 2 in all of our
experiments. For all algorithms that involve a downstream
propagation step, we use a sample size of 10,000 base table
records.



Figure 7: Algorithm running times.

5.3 Running Time
We implemented the four algorithms in Java, and did not

spend any time tuning them for fast execution. Figure 7
shows the running time of each algorithm on each program,
when run on a modern commodity workstation. The up-
stream algorithm is by far the fastest, because it does not
perform an initial downstream propagation step with 10,000
records as done by the other three algorithms. The down-
stream propagation step takes up to 1.5 seconds on these
programs, as indicated by the performance of the down-
stream algorithm in Figure 7. As expected, our algorithms
add additional overhead, bringing the total execution time to
at most 3.5 seconds on the programs we studied. A response
time of 3.5 seconds to produce example data is acceptable
for an interactive end-user application, although ideally with
a bit of performance tuning we can reduce this figure.

5.4 Quality of Generated Example Data
Figure 8 shows the result of running all four algorithms

on all eight programs, under our three metrics given in Sec-
tion 3.2.

The downstream algorithm performs well on realism, of
course, since it does not synthesize data. However it is un-
able to achieve simultaneously good conciseness and com-
pleteness. For example, on Program 1, it achieves good
completeness by luck, due to the sheer number of records
pushed through the program, but of course conciseness is
extremely poor (approaching zero). Program 2 represents
the opposite extreme, in which a highly selective operator
early in the program keeps conciseness high but leads to
poor completeness.

The upstream algorithm fares better on completeness for
Program 2 by introducing synthetic data, thereby decreas-
ing realism. On Program 1, the upstream algorithm per-
forms poorly on both completeness and realism relative to
the downstream algorithm, due to the presence of a nonin-
vertible operator blocking the upstream propagation of con-
straints.

The behavior of the downstream and upstream algorithms
on Programs 3–5 is similar to their behavior on Program 1.
On Programs 6–8, which involve selective joins, the down-
stream algorithm does not always achieve good completeness
because of the selectivity of the join. The upstream algo-
rithm also struggles with completeness on these programs,
although our simplistic constraint language is to blame. This
situation could be remedied by moving to a more sophis-

ticated constraint language able to express equality con-
straints among synthetic data values. However, even with
such limited expressibility in the constraint language, our
algorithms are able to achieve perfect completeness scores
on these programs by matching real data values with syn-
thetic ones, and this simplicity ensures that the algorithm
is sufficiently fast (see Section 5.3).

The root-level pruning variant of our algorithm does not
prune as aggressively as our full algorithm, and consequently
achieves lower conciseness in a few cases. Given that the full
algorithm incurs only modestly higher running time than the
root-level variant (Section 5.3), it seems worthwhile.

Comparing our full algorithm against the downstream
and upstream baselines, we see substantially better results.
Completeness is the most important metric, i.e., without
good completeness the other metrics are irrelevant. As such,
completeness is treated as a hard constraint in our approach,
whereas realism and conciseness are soft constraints. On all
eight programs the level of completeness achieved by our al-
gorithm matches or exceeds the better of downstream and
upstream. The conciseness and realism levels tend fall in
between the levels for downstream and upstream, matching
the better of the two baselines in about half the cases.

In absolute terms, our algorithm yields very good results:
Completeness is at or near 100% in seven out of eight cases,
and in the remaining case it is over 50%. In half the cases
100% realism is achieved, and three of the four remaining
cases have a roughly even mixture of real and synthetic data.
In all cases conciseness is close to or above 50%—a 50% con-
ciseness score means that example tables are only twice as
large as necessary to illustrate the program semantics. (Re-
call from Section 3.3 that even a theoretical optimal algo-
rithm cannot always achieve full conciseness along with full
completeness for a given program.)

6. SUMMARY
While formulating a dataflow program, it is helpful to

trace a handful of example data records as they flow through
the operators, to verify that each operator is behaving as
intended. This kind of example-driven development requires
the ability to concoct a small set of realistic records, that
collectively illustrate the operator behaviors.

In this paper we formalized this problem and presented
an algorithm that generates example data records for this
purpose. Using experiments over real programs and data,
we demonstrated the effectiveness of our algorithm, as well
as the ineffectiveness of two baseline approaches.

Our example generation algorithm is fully implemented
and released as an open-source contribution to the Apache
Pig dataflow system at http://hadoop.apache.org/pig. It
can be invoked via the illustrate command from the Pig
shell.

7. RELATED WORK
The idea of generating example data to illustrate data

processing semantics appeared some time ago in [12]. The
work in [12] focused on illustrating the semantics of an entire
query block as a unit, whereas our work focuses on illustrat-
ing each intermediate result of a dataflow program. Conse-
quently the techniques are very different. In particular our
approach performs a series of forward and backward passes
over the dataflow graph, and attempts to achieve suitable



Figure 8: Example generator output quality.

intermediate example tables at each level simultaneously,
working within the constraint of mutual consistency across
the intermediate tables. In contrast, [12] focuses only on the
last level (the final query output) and on making sure all the
functional dependencies are illustrated there.

Recent work on reverse query processing [3] can poten-
tially be applied to the “backward pass” portion of our ap-
proach. Indeed, [3] does mention some applications in ver-
ification and post-hoc debugging, which are related to our
scenario of generating illustrative example data but at the
same time impose rather different requirements. In particu-
lar, verification is not driven by conformity to a pre-existing
input database, and post-hoc debugging does not involve
the kind of synthesis and pruning of data that our context
necessitates.

There is recent work on synthesizing test databases in or-
der to uncover DBMS implementation bugs. The approach

in [4], which tailors the test database to a particular query,
bears some resemblance to the one we propose in this paper,
namely its use of symbolic query processing over constraint
records, in the spirit of constraint databases [14]. However
the factors that drive the symbolic processing are quite dif-
ferent from our case: In [4] the aim is to ensure that inter-
mediate record sets conform to a particular distribution and
cardinality, whereas our processing aims to produce records
that illustrate the key semantic properties of each operator,
while conforming as closely as possible to records found in
a pre-existing database. Also, the notion of conciseness is
different: in automated test generation the goal is to mini-
mize test execution time, whereas in our context the goal is
to minimize the size of intermediate result sets so that they
can be effectively presented in a user interface.

In the formal verification and software engineering com-
munities there has been extensive work on automatic gen-



eration of test cases for general software and hardware sys-
tems, much of it well before the aforementioned work on
automated DBMS testing; see, e.g., [8, 11]. At a high level
the goals are similar to ours, namely to generate a concise
suite of input data instances that collectively exercise all as-
pects of a given program or circuit. Therefore, not surpris-
ingly, our methods bear some resemblance to the methods
used in software and hardware testing, although there are
fundamental differences as we point out below.

Many hardware verification techniques perform forward
and reverse propagation of constraints, as in our approach.
However, whereas hardware verification deals with abstract
{0, 1} data values, our approach focuses on conforming as
closely as possible to an underlying input database to maxi-
mize“realism,”which is not a factor in hardware verification.
Moreover, in our work a principal objective is to minimize
intermediate data sizes in the presence of set-valued opera-
tors, which do not arise in hardware circuits.

As with hardware verification, software testing also lacks
the notions of conformity to pre-existing input data and min-
imizing intermediate data sizes, both of which are central to
our work. That said, it should be possible to adopt some
of the sophisticated logical and arithmetic reasoning algo-
rithms from software model-checking to our context, to im-
prove upon our simple “don’t care” constraint language.

8. FUTURE WORK
Directions for future work include:

• Coherence across program modifications. When a
program is being constructed iteratively, it is desirable
to maintain some coherence of the example data across
iterations. In other words, if a certain example record
is shown to the user for iteration i of program construc-
tion, all else being equal it would be good to keep show-
ing the same example record throughout all subsequent
iterations i+ 1, i+ 2, . . ..

• Richer constraint language for constraint records.
Adopting a richer constraint language for constraint
records (e.g., arithmetic predicates like “X < 5”) may
lead to better results. Techniques from constraint data-
bases [14], symbolic query processing [4] and reverse
query processing [3], are likely to be of use here.
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APPENDIX
A. AN EXAMPLE GENERATOR FOR PIG

Given our generic algorithm described in Section 4, we
now present a concrete instantiation that we have developed
for Pig Latin [13]. It is by no means the only possible, or
even reasonable, instantiation for Pig Latin, because as we
mentioned in Section 3 there are many reasonable ways to
define completeness, but it is one we have designed to meet
the needs of our user community. Recall from Section 3 that
completeness is defined via per-operator equivalence class
definitions, presented next.

A.1 Equivalence Class Definitions
• load: Every record in the base table being loaded is

assigned to a single equivalence class E1.

• filter: Every input record that passes the filter is as-
signed to a class E1; all others are assigned to E2. (The
intention is to show at least one record that passes the
filter, and one that does not pass.)

• group: Every record that can be produced by the opera-
tor, and whose nested table contains at least two records,
is assigned to a class E1; other records are not assigned
to any equivalence class. (The purpose of E1 is to illus-
trate a case where multiple input records are combined
into a single output record.)

• transform: Every input record is assigned to a single
equivalence class E1. (The intention is to illustrate at
least one application of the transformation.)



• join: Every output record is assigned to a single class
E1. (The intention is to illustrate a case of two input
records being joined.)

• union: Every record from the first input table is as-
signed to E1; every record from the second input table is
assigned to E2. (The aim is to show at least one record
from each input table being placed into the unioned out-
put.)

A.2 Constraint Record Propagation Rules
Recall from Section 4.4.2 that the upstream propaga-

tion pass requires per-operator rules that (1) create input
constraint records to populate empty equivalence classes,
and (2) convert output constraint records received from the
downstream neighbor into input constraint records to give
to the upstream neighbor(s). We sketch a set of rules below,
which attempt to achieve completeness under the equiva-
lence class definitions of Appendix A.1 (for brevity we omit
many straightforward details).

• load: Replace the “don’t care” fields of each output con-
straint record by real data values sampled from the base
table.

• filter: For each output constraint record received
from the downstream neighbor, create a copy and check
whether it passes the filter. If it does pass, then give the
copy to the upstream neighbor. If it does not pass, then
attempt to modify it so that it does pass by converting
some of the “don’t care” fields into concrete data values
using heuristical satisfiability logic, and then give it to
the upstream neighbor.

After all the output constraint records have been pro-
cessed, if there are no (concrete or suggestion) input
records that pass the filter, attempt to create a new con-
straint record that does pass the filter and give it to the
upstream neighbor, using heuristical satisfiability logic.
Similarly, if there are no input records that fail to pass
the filter, attempt to create a new constraint record that
does fail to pass and give it to the upstream neighbor.

• group: For each concrete or suggestion output record,
which corresponds to one group and is of the form
rG = (group id , {r1, r2, . . . , rm}), create input constraint
records as needed to ensure that the group contains at
least two records (i.e., m ≥ 2). (In this way we en-
sure that each group rG has adequate membership to
be placed into equivalence class E1 (see Appendix A.1),
thereby giving the subsequent pruning phase many vi-
able lineage groups to choose from.)

• transform: To the extent possible, apply the inverse
transformation to convert output constraint records into
input constraint records. For example, if the transfor-
mation is a projection, add extra fields with “don’t care”
markers for the projected attributes. Unfortunately,
as mentioned earlier, noninvertible transformations will
block the upstream propagation of constraint records.

• join: Separate each output constraint record into two
input constraint records that, when joined, produce the
output record.

• union: For each output constraint record, create k copies
to serve as input constraint records for the k inputs being
unioned. (The idea is to give the subsequent pruning
phase the option to chose which branch of the program
the synthesized record ought to come from, e.g., based on
which one yields better realism.) If there were no output
constraint records, then create k new input constraint
records with “don’t care” markers in every field, one for
each input.

A.3 Maintaining Downstream Completeness
During Pruning

Recall that in pruning (Section 4.3.1), downstream com-
pleteness constraints are used to avoid pruning data whose
removal results in reduced downstream completeness, i.e.,
reduced coverage of downstream equivalence classes. Given
the equivalence class definitions we adopt for Pig (Ap-
pendix A.1), it is difficult in general to use simple cover-
age constraints to guarantee that completeness is upheld in
all cases. Programs that contain the equivalent of an SQL
having clause represent one of the problematic cases. For
example, consider a program that groups web page views by
user, then computes the average age, and then filters groups
whose average age is less than thirty. If we need to retain a
group of users whose average age is below thirty to illustrate
the semantics of filter, then we need to constrain upstream
pruning such that as it prunes individual users from within
the group, it keeps the average age below thirty.

Rather than adopt a complex constraint language, we use
the following simple heuristical approach. First, after per-
forming pruning at operator Ok, we perform a downstream
completeness check, which entails computing downstream
records and verifying that every previously-covered down-
stream equivalence class remains covered. If not, pruning is
halted and the data is rolled back to the result of the prior
pruning step on Ok+1.

Second, to reduce the likelihood of failing the complete-
ness check, some simple completeness constraints are intro-
duced and propagated on a best-effort basis. In practice,
the case most likely to cause a failed completeness check is
one in which there is a downstream group operator. Re-
call from Appendix A.1 that to illustrate the semantics of
grouping we require that at least two records be present in
a group. Hence, whenever a group operator is encountered
at position Ok, after pruning of Ok is complete a set of com-
pleteness constraints with MC = 2, one per group retained
while pruning Ok, are formed and passed to the Ok−1 prun-
ing step, to ensure that upstream pruning retains at least
two members of each group.

Completeness constraints introduced by a group operator
are propagated upstream in the following best-effort manner.
For filter and transform operators, there is a one-to-one
mapping from output records to input records, making it
possible to translate constraints over the output records to
ones over the input records directly. For group, join and
union operators there is no way to propagate the constraints
exactly so we simply do not propagate them; any problems
that arise will be detected by the completeness check. Lastly,
for obvious reasons there is no need to propagate constraints
through a load operator.


