A Survey of WAP Security Architecture: Course Notes

December 3, 2000

By Neil Daswani

In this course, we will learn about WAP Security Architecture. After covering some basic security concepts, we will dive into learning about WAP Security and how various security goals are accomplished in WAP.

1 Security Basics

In this section, we will discuss what it means for a system to be secure. For example, by saying that “WAP is secure,” do we mean that the protocol is 100% foolproof by all adversaries? Unfortunately, it does not. Also, while it is probably the case that it is theoretically impossible to make a system 100% foolproof, it is also cost prohibitive to achieve this.

A more practical approach is to consider various trust models and attack models, and to design a system such that the probability that a set of attacks that fall within the considered attack and trust models will fail. This approach is a reasonable one in the design of secure systems in general, and is certainly true of WAP security architecture as well. In this course, we will walk through various security architectures available in WAP, and we will cover the security trade-offs involved in each of these architectures.

1.1 Security Goals

This section discusses some basic security concepts, and briefly touches upon how these concepts are relevant to WAP.

1.1.1 Authentication

Authentication is a concept that is concerned with verifying someone’s (or something’s) identity. To authenticate someone means to verify someone’s identity. For example, in the everyday world, you can usually authenticate someone just by looking at him or her. In other cases, in which a machine may need to verify the identity of a person, authentication is carried out by way of a fingerprint scan. In the world of WAP, in some cases it is important for a mobile terminal (a phone) to be able to authenticate the network or the servers on the network that it is talking to.

1.1.2 Confidentiality

Confidentiality is a security goal that is distinct from authentication. Before telling your best friend a secret by making sure that your best friend looks exactly like he/she is supposed to, you may lock the door to the room or move your conversation to a different area or even start whispering to ensure that your secret will remain confidential; that is, it is important to you that no third-party should become aware of the secret in the process of telling your best friend. In the world of WAP, it is not only important for the mobile terminal to authenticate the network and servers that it is talking to, but it is also very important for the mobile terminal’s communication with the network to be confidential such that important data cannot be intercepted by third-parties.

1.1.3 Integrity

Integrity ensures that information is not changed or altered in transit. Under certain attack models, an adversary may not have to power to impersonate an authenticated party or understand a confidential communication, but may have the ability to change the information being transmitted.

1.1.4 Authorization

Authorization is the process by which it is determined if a person has right or permission to conduct a particular action. For example, while any employee in a company may be authorized to access general information on a company’s intranet, only managers may have the authority to access budget or salary related documents.

1.1.5 Non-Repudiation

Non-repudiation makes it impossible for someone to deny that he or she carried out a particular action. For example, a credit card purchase in which the bill of sale is signed by the cardholder is an example of a non-repudiable transaction. Neither the seller nor the buyer can deny that the transaction took place.

1.2 Cryptography

The security goals described above can be accomplished by taking advantage of cryptography. Cryptography is the study of how to encode things, but offers primitives that make it possible to accomplish authentication, authorization, confidentiality, integrity, and non-repudiation in computer systems. This section describes some of the cryptographic tools and primitives that we will refer to later in this course.

1.2.1 Symmetric

Symmetric cryptography allows one party (say, Alice) to confidentially send a message to another party (say, Bob) that has the same key. A key is a secret known to one or more parties. In symmetric cryptography, both parties use the same key to both encrypt (or encode) the message as well as decrypt (or decode) the message.

Examples of symmetric encryption functions are 3DES (Triple-DES), and RC4. Both these functions take a message and a key as input, and produce an encrypted message as output. Once the encrypted message is received, the receiver can run the encryption function in reverse on the encrypted message and the key to produce the original message.

Good encryption functions are those that take any message as input, and produce an encrypted message that appears to be a random string of bits. A good encryption function should also have the property that given complete information about how the function works, and any number of encrypted messages (ciphertext), an adversary should not be able to determine the original messages (plaintexts) without the key. Such functions are hard to construct, and their construction is typically left to number theoreticians and cryptographers.

1.2.2 Asymmetric

One problem with symmetric cryptography is that to send a message in a secure fashion, the sender and the receiver need to agree on a key in a secure fashion since the key must be known the both parties. On the internet, the senders and receivers of secure messages cannot practically meet in person to agree on a key, and some other mechanism is necessary to allow parties that have never met to securely exchange messages with each other. Asymmetric cryptography helps solve this problem.

Asymmetric cryptography is different than symmetric cryptography in that different keys are used to encrypt and decrypt messages. In particular, for each party, there exists a public key and a private key. The public key may be known to everyone, but the private key is only known to one. A sender may encrypt a message with the receiver’s public key, and the receiver may decrypt the message with their private key. Public keys may be “published” and made known to all. Whenever you want to send a secret message to someone, you can just encrypt it with his or her public key, and only he or she will be able to decrypt it with his or her private key.

Two of the most well-known public key algorithms are RSA and ECC. RSA was named after its inventors: Rivest, Shamir, and Adelman. ECC stands for elliptic curve cryptography. While both algorithms provide the same functionality, they have different performance and key-length characteristics that suit them for different environments. For example, generating RSA keys is a CPU-intensive task that requires primality testing, and may not be efficient on constrained devices such as cell phones and PDAs without the assistance of a cryptographic sub-processor or smart card. (A smart card is a tamper-resistant device that we will talk more about in the WIM, WAP Identity Module, of this course.) Generating ECC keys, on the other hand, is typically much more efficient on constrained devices, even without the assistance of a cryptographic sub-processor or a smart card.

1.2.3 Key Exchange

Key exchange algorithms are algorithms that allow two parties to agree on a secret key in such a fashion that at the end of execution of the algorithm both parties will have computed the same key, but an adversary that has eavesdropped on all the communication will not be able to compute that key. While this may sound impossible, two scientists by the name of Diffie and Hellman proved that this is possible and provided an algorithm that does so using some simple number theory. Since then, many variations of their original algorithm have been proposed, and can be used for key agreement.

Key exchange and public-key algorithms can be used together to create authenticated, confidential connections.

1.2.4 Certificates

Certificates are “digitally-signed” documents that bind someone’s identity to a public key. Certificates themselves are signed by a Certificate Authority (CA).
A Certificate Authority is a highly trusted authority that can attest to someone’s identity.

For example, if Alice would like to securely send a message to Bob, she may do the following:

1) Ask Bob for his certificate or obtain it from the CA.
2) Verify the CA’s signature on the certificate.
3) Obtain Bob’s public key from the certificate.
4) Encrypt the message using Bob’s public key.

Bob may then decrypt the message with his private key.

2 Wireless Security

Before discussing WAP Security, it would be instructive to become aware of security available in existing networks such as AMPS, GSM, CDMA, and CDPD. WAP runs on top of these bearer protocols, and hence may or may not be able to make certain assumptions about the level of security provided by these networks. Hence, it is necessary to have security mechanisms in place at the WAP application layer as well.

2.1 Link Layer Security

AMPS is an analog cellular network, and does not offer a very high level of security. Since the technology is analog, it is possible for an amateur radio hobbyist to eavesdrop on conversations by tuning their radio to the appropriate frequencies.

GSM allows the network to authenticate the mobile terminal using the A3 algorithm. In addition, key agreement can be established using A5, and connections are encrypted using A8. The A3, A5, and A8 algorithms are specified as part of the GSM protocol.

CDMA is a spread-spectrum technology that spreads a signal across a large spectrum range based on the code sequence associated with the mobile terminal. All mobile terminals in a cell share the same spectrum, and the mix of all signals manifests itself as noise. Base stations are aware of the code sequences of all the mobile terminals in the area, and are able to decode the spread-spectrum signals.

2.2 Application Layer Security

WAP achieves application layer security by taking advantage of WTLS (Wireless Transport Layer Security), access control features in WML and WMLScript, and TLS (Transport Layer Security) / SSL (Secure Sockets Layer). These protocols will be explained in more detail in following sections.

NTT DoCoMo’s I-Mode service does not offer any application layer security or HTTPS (HTTP over TLS/SSL) at this time.

3 WAP Security Models

This section will review the architecture of WAP services, and the security trade-offs that result from locating WAP gateways at different locations and with different configurations in the network.

3.1 Network Operator Hosts Gateway

In the US, most WAP gateways are hosted by network operators such as Sprint PCS, Verizon, or AT&T Wireless. WAP services may be deployed with or without public-key infrastructure (PKI) in place. In this section, we will look at the security-related advantages and disadvantages of having network operators host WAP gateways.

3.1.1 Without PKI

In a WAP architecture in which the network operator hosts the WAP gateway, and in which there is no PKI deployed, the mobile terminal is hardcoded to connect to the network operator’s WAP gateway. The network operator’s WAP gateway accesses content from web servers on behalf of the mobile terminal. The mobile terminal connects to the WAP gateway using WTLS or encrypted HDTP, and the WAP gateway connects to web sites using TLS / SSL.

The mobile terminal is hardcoded to connect to the carrier’s gateway if no PKI or certificates are deployed in the system, as there is no way for the mobile terminal to authenticate the gateway.

The advantages of this architecture are as follows:

1) No extra work for Content Provider. Content providers do not need to worry about running gateways, and they can get their WAP applications up and running quickly.

2) No extra work for the mobile terminal user. Users can have their phones pre-configured by the network operator, and do not need to worry about what gateway they need to use to connect to various WAP applications.

3) One logical gateway. The WAP browser running on the mobile terminal only needs to worry about connecting to one logical WAP gateway. This simplifies the design of the WAP browser that needs to be running on the mobile terminal. While a network operator has the flexibility to run an entire farm of WAP gateway servers, the mobile terminal only needs to worry about connecting to one logical IP address for the entire farm of gateway servers.

The disadvantages of this architecture are as follows:

1) Content Providers must trust Network Operator. Although communication between the mobile terminal and the WAP gateway is being encrypted with WTLS, the communication is being decrypted at the gateway such that it can be re-encrypted using SSL to be sent off to web servers on the Internet. While some gateway manufacturers take precautions to ensure that decrypted information is in memory for the shortest amount of possible time, and that such information is never paged to disk, it is still the case that the content is in decrypted form on the network operator’s gateway for some (hopefully small) amount of time. Hence, the content provider must trust that the network operator has taken appropriate precautions to ensure the physical and network security of the WAP gateway. Some content providers, such as large banks, require that network operators sign formal non-disclosure agreements and policy agreements before they make their WAP application available on a particular network.

2) Network Operator can control home deck. Since the network operator controls the gateway that the mobile terminal makes its first connection to, it gives the network operator the opportunity to control the home page, or home deck (in WML parlance), that the user sees.

3) Network Operator can introduce advertising. In addition to controlling the home deck, the network operator could, subject to usability constraints, wrap advertising around every WML page that is returned by any content provider!

3.1.2 With PKI

With a PKI infrastructure in place, web servers can request certificates from a “PKI Portal” and can kick off secure communication with a mobile terminal by encrypting a message with the mobile terminal’s public key. Hence, although all subsequent communication will take place through the gateway, the information transmitted will be opaque to the gateway.

This approach offers the advantage that Content Providers no longer need to have as much trust in Network Operators, but the downside is that PKI infrastructure must be deployed to support this architecture.

3.2 Content Provider Hosts Gateway

In scenarios where PKI infrastructure is not deployed, and content providers cannot comfortably trust network operators, content providers can opt to host the WAP gateway themselves. Some banks in the UK and in other non-US countries, for example, have opted to take this approach.

3.2.1 Static Gateway Connection

In the static gateway connection scenario, the mobile terminal is configured to connect to the content provider’s WAP gateway. This can be accomplished by

1) having the user enter the IP address of the gateway, as well as other necessary configuration information into the mobile terminal,

2) having the content provider pre-configure / provision mobile terminals for its users, or

3) the content provider can send a message to the user’s mobile terminal OTA (over-the-air) with the appropriate configuration information.

Not all mobile terminals have minibrowsers burned onto them that allow for the above capabilities. Most mobile terminals deployed in the US, for example, currently do not support this capability, while models such as the Nokia 7110 deployed abroad do support this capability.

This approach has the following advantages:

- the content provider does not need to trust the network operator
- the content provider has the ability to control the home deck (or one of the home decks), and
- OTA can be used to simplify the configuration process if the mobile terminal supports it.

This approach has the following disadvantages:
- the mobile terminal may be limited in the number of gateways that it can access.
- the mobile terminal needs to be configured to talk to a gateway different than that of the network operator, which may introduce complexity for users, and for content providers.

3.2.2 Dynamic Gateway Connection

The dynamic gateway connection model allows the user’s mobile terminal to talk to the network operator’s gateway most of the time, and “dynamically” switch to a content provider’s gateway when a secure transaction needs to take place.

While this eliminates the need for the content provider to trust the network operator for secure transactions, the network operator needs to trust the content provider to the extent that it feels secure in directing the user’s sensitive data to the content providers gateway. Typically, a “lightweight” agreement will be in place between the network operator and the content provider to enable dynamic gateway connection.

This connection model was only approved by the WAP Forum as of the middle of this year, and is described further in the WAP Transport Layer E2E Security Specification. It may be some time before this connection model is available in live systems.

4 WTLS & SSL

WTLS is the Wireless Transport Layer Security protocol designed to support the security requirements of authentication, privacy, and integrity in the Wireless Application Protocol (WAP) defined by the WAP Forum.

In the following, we review the steps required in a full WTLS handshake, and we will identify the necessary cryptographic operations required on the client.

In a full WTLS handshake, two round-trips are required before the client and server can start exchanging encrypted application data. In the first round-trip, client and server hello messages are exchanged. These messages are used to negotiate protocol versions, key exchange suites, cipher suites, and a number of other parameters. If the client is to authenticate the server, the server is expected to send the client its public-key certificate in the second half of the first round trip. When the client receives the server’s certificate, it validates the certificate by verifying the CA’s signature on the certificate.

The exact messages that are exchanged next depend upon 1) whether only the server or both parties are to be authenticated, and 2) whether RSA or ECC is to be used for key agreement and authentication. Let us consider the server-authenticated only case first. The reader may refer to Figure 1 for an illustration of the messages that are exchanged between the client and server in the server-authenticated only case.

Server-Authenticated Only

In the server-authenticated only case, the client sends a ClientKeyExchange message to the server after receiving the server’s certificate.

Figure 1: Server-Authenticated Only WTLS Messages

If RSA is to be used for key agreement, the client generates a random value to be used as the pre-master secret, and encrypts the pre-master secret with the server’s public key. The encrypted pre-master secret is sent to the server in the ClientKeyExchange message. The server decrypts the pre-master with its private key, and the pre-master secret is now known to both parties.

On the other hand, if ECC-DH is to be used for key agreement, the client generates an EC Diffie-Hellman public key, and sends it to the server in the ClientKeyExchange message. To derive the pre-master secret, the client multiplies the server’s public key with its the Diffie-Hellman private key. (The server derives the pre-master secret by multiplying the EC Diffie-Hellman pubic key with its private key.)

Therefore, in the server-authenticated only case, the cryptographic operations required on the client are: 1) verification of the server’s certificate, and 2) session key establishment. In the case that RSA is used for key agreement, an encryption with the server’s public key is required. In the case that ECC-DH is used for key agreement, the client needs to generate an ECC-DH key pair and the appropriate multiplications for key agreement need to take place.

Mutual Authentication

The messages exchanged in the mutual-authentication case are shown in Figure 2. After the ServerHelloDone message is received, the client sends its certificate to the server.

Figure 2: Mutual-Authentication WTLS Messages

If RSA is to be used for key agreement, the client transmits a ClientKeyExchange message to the server just as in the server-authentication only case, but then sends a CertificateVerify message to the server containing an RSA signature on all handshake messages starting from the ClientHello message up to (but not including) the CertificateVerify message.

If ECC-DH is to be used for key agreement in the mutual-authentication case, a ClientKeyExchange message does not need to be sent to the server since we assume the client’s certificate (that was already sent to the server) contains the appropriate ECC-DH public key. However, an explicit ECC-DSA signature is required to authenticate the client, and this signature is sent in a CertificateVerify message.

The cryptographic operations required on the client in the mutual-authentication case are the same as those in the server-authenticated only case with the addition that the appropriate RSA or ECC-DSA signature needs to take place to create the CertificateVerify message.

After the appropriate Certificate and ClientKeyExchange messages are sent by the client as needed, the pre-master secret is set, the master secret is computed, the client transmits the ChangeCipherSpec message, both parties transmit Finished messages, and the client and server can then start exchanging application data encrypted with the master secret. The computation of the master secret from the pre-master secret only requires a number of hashes whose computation time is relatively insignificant compared to the other cryptographic operations required of the client.

5 WIM

The WAP Identity Module specified by the WAP Forum provides a tamper-resistant environment in which cryptographic keys can be stored, and cryptographic operations using these keys can be securely carried out. A tamper-resistant environment is one provided, for example, by a smart card in which the device will “self-destruct” or be rendered useless if an adversary attempts to tamper with the card.

In particular, WIMs carry out the following operations:
- storage of both keys used to sign WTLS messages, as well as “signing” keys used to execute non-repudiatiable transactions using the WML Crypto API.
- storage of long-lived WTLS master secrets
- storage of CA, root CA, and user certificates and/or the URLs of these certificates
- “unwrapping of keys”
- computation of ECC-DH master secrets that take place in a WTLS handshake

6 WMLScript Crypto API

WAP 1.2 specifies a signText() WMLScript function that can be used to execute non-repudiable transactions in WAP applications. The function takes a message to be signed, and the key with which the message should be signed as input, and returns a signed message as output.

7 WML Access Control

Access to WML decks and WMLScript libraries can be restricted to requests coming in from particular domain names and paths. An <access> tag can be placed in the <head> of a WML deck to restrict the set of referring domains and paths that may link to this deck. Similarly, WMLScript libraries can prevent their external functions from being invoked by WML from untrusted domains and paths.

8 References

· C. Arehart, N. Chidambaram, S. Guruprasad, et. al. Professional WAP. Wrox Press, 2000. ISBN 1-861004-0-44

· WAP-100, Wireless Application Protocol Architecture Specification

· WAP-191, Wireless Markup Language Specification
· WAP-193, WMLScript Language Specification
· WAP-199, Wireless Transport Layer Security Specification
· WAP-198, Wireless Identity Module

· WAP-161, WMLScript Crypto API Library

· WAP-187, WAP Transport Layer E2E Security Specification

· WAP-217, WAP Public Key Infrastructure Definition

ClientHello			----------->

							ServerHello

							Certificate

				<-----------	ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished			----------->

				<-----------	Finished

Application Data		<----------->	Application Data

Client Hello		----------->	ServerHello

							Certificate

							CertificateRequest

				<-----------	ServerHelloDone

Certificate	

ClientKeyExchange (only for RSA)

CertificateVerify

ChangeCipherSpec

Finished			----------->

				<-----------	Finished

Application Data		<----------->	Application Data

