Large-scale Satellite Image Browsing using Automatic Semantic Categorization
and Content-based Retrieval*

Ashish Parulekar?

Ritendra Datta¥

JiaLi®  James Z. Wang"

The Pennsylvania State University, University Park, PA, USA
{ashishp,datta,jiali,jwang } @psu.edu

Abstract

We approach the problem of large-scale satellite image
browsing from a content-based retrieval and semantic
categorization perspective. A two-stage method for query
based automatic retrieval of satellite image patches is
proposed.  The semantic category of query patches
are determined and patches from that category are
ranked based on an image similarity measure. Semantic
categorization is done by a learning approach involving
the two-dimensional multi-resolution hidden Markov model
(2-D MHMM). Patches that do not belong to any trained
category are handled using a support vector machine (SVM)
based classifier. Experiments yield promising results in
modeling semantic categories within satellite images using
2-D MHMM, producing accurate and convenient browsing.
We also show that prior semantic categorization improves
retrieval performance.

1. Introduction

Today, the need for reliable, automated, satellite image
classification and browsing systems is more than ever
before.  Every day there is a massive amount of
remotely-sensed data being collected and sent by terrestrial
satellites for analysis. The use of automated tools for
this analysis has become imperative due to the large
volumes required to be processed on a daily basis.
Applications of this classification lie in diverse fields
such as Geography, Geology, Archaeology, Atmospheric
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Sciences, Environmental Sciences and in serving other
civilian and military purposes.

Over the last three decades, there has been an
overwhelming amount of work done in the field of
automated classification of satellite images, one of the
earliest being [7] by Haralick et al. In the more recent
years, many different techniques have been proposed, some
of which include texture analysis [10, 8], Markov random
fields [13], genetic algorithms [14], fuzzy approaches [6,
18], bayesian classifiers [11, 5] and neural networks [2, 1].
Some others have approached satellite image classification
as an application of content-based image retrieval [10, 12].

In a recent survey [17] on satellite image classification
results published in the last fifteen years, it has been
reported that the classification accuracy has not increased
significantly over the years. The paper reports a mean
overall pixel-wise classification accuracy across all these
experimental results at 76.19% with a standard deviation
of 15.59%. However, as suggested by the author, these
results need to be taken with caution, since a number
of experimental parameters have varied over the years
and across different approaches towards classification.
Nonetheless, we believe that this is certainly indicative
of the existence of an upper bound on the classification
accuracy in this type of imagery, given the current
technology. As a result, this paper is more about
approaches towards a fast and scalable working system
while maintaining respectable classification accuracy.

Our work involves learning the semantics of satellite
image patches for querying, retrieval and browsing, using a
content-based image retrieval approach. The purpose is not
so much to improve upon the accuracy rates but rather to
show that 2-D MHMM is an effective and efficient way to
jointly model the texture and spatial structure of semantic
categories within satellite imagery. Moreover, we show
through experiments that performing categorization prior
to applying image retrieval techniques increases speed and
accuracy in browsing large databases of satellite imagery.
Rather than generating an automatic segmentation of the
terrain at pixel level, we intend to provide a browsing
platform through patch-level classification followed by a



similarity matching. The reasons it is helpful to have
retrieval at the patch level are 1) within a semantic category
such as urban regions or forests, it helps to find regions
with comparable density, 2) it helps to track salient features
such as specific patterns of deforestation or terrace farming
within crop fields, and 3) from a large set of satellite images
it helps to find those that contain significant coverage of a
particular type such as cloud cover, so that manual effort
can be concentrated only on them.

We consider publicly available' Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) images [15]. For our
experiments, four categories are considered, although
there is scope for seamless addition of more classes
through a modular training process. The goal is to
build a system with an interface to browse/retrieve small
semantically homogeneous regions from large collections
of remotely sensed imagery consisting of multiple (possibly
dynamically growing) categories. The retrieval of relevant
patches or regions can be either by example or through
complex querying. Support for such querying is made
easier since automatic semantic categorization is performed
prior to retrieval and since we are dealing with patches
rather than pixels. However, classification of patches
instead of pixels leads to ambiguity, because ground-truth
inter-class boundaries are at the pixel-level. How we deal
with this issue is discussed in the Sec. 2. One of the reasons
why semantic categorization is done prior to retrieval is that
it reduces the search space by a factor roughly equal to
the number of categories. This becomes more and more
significant as the size of the patch database or the number
of categories increases.

The rest of the paper is arranged as follows. In Sec.
2, we discuss the proposed system architecture including
the user interface for browsing and retrieval. In Sec. 3,
the learning based categorization and retrieval methods are
discussed. The experimental setup and the results obtained
are discussed in Sec. 4. We conclude in Sec. 5.

2. System Architecture

Let us first define the generic framework of the proposed
system before going into specific details. There are
two parts to the system. The off-line processing part
consists of initial data acquisition, ground-truth labeling
and model building, while the on-line part consists of
querying, browsing and retrieval. A schematic diagram of
the architecture is given in Fig. 1.

2.1 Off-line Processing

Consider a set of M satellite images [;,¢ = 1, ..., M of an
arbitrary type (Landsat, ASTER, SRTM etc.). A subset of

Ihttp://glcf.umiacs.umd.edu/data/landsat/

the available spectra for the given type of imagery is taken
for each image. The choice of a subset is either empirical
or based on past research trends. In the case of Landsat-
7 ETM+ images used in our experiments, this choice is
discussed in Sec. 4. We first perform histogram stretching
and adjusting in order to improve the visual clarity of the
images. We then divide each image into equal sized non-
overlapping rectangular patches of dimensions X ,, X Y,
padding the right and bottom sides with zeros appropriately,
to get a total of N patches {p1, ..., pn }. For each patch p;,
information about the global position (z;, w;) of its top left
corner is stored as meta-data. This can be calculated using
the global position of the top left corner of the image it was
a part of, and its relative position within that image.

Suppose that by some means there is a way to manually
identify K non-overlapping semantic classes or categories
{S1, ..., Sk} relevant to a specific application. Note that
this need not be an exhaustive set of classifications but those
that can be easily identified through some reliable source.
We require a small number 7" of patches {t}%’ cny tgk} of
each semantic category S, for training the 2-D MHMMs.
As mentioned, one issue here is the ambiguity in the
semantic classification of individual patches.

) Y w .:. ’ . s

Figure 2: Examples of ambiguous patches. Left: Urban and
Residential. Right: Residential and Crop.

Traditionally, satellite image classification has been done
at the pixel level [13, 2]. For a typical Landsat image
at 30m resolution, a 128 x 128 sized image patch covers
roughly 14.74Km?. This is too large an area to represent
precise ground segmentation, but our focus is more on
building a querying and browsing system than showing
exact boundaries between classes. Dividing the image into
rectangular patches makes it very convenient for training
as well as browsing. Since users of such systems are
generally more interested in getting an overview of the
location, zooming and panning is allowed optionally as
part of the interface. Moreover, the training process can
be done at multiple scales in an identical manner, for
browsing and retrieval at a scale of choice. The only
consideration is that the training images need to be sampled
accordingly. Nonetheless, classification at the pixel-level in
itself does not provide for a good browsing strategy, even

2The words “class” and “category” are used interchangeably
throughout this paper.
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Figure 1: System architecture. Left side: The database building process. Right side: Real-time user interaction.

though it may give an overall segmented view of the land
cover. Even at the pixel level there may sometimes be
class ambiguity, due to which some authors have proposed
fuzzy classification [6, 18] as opposed to hard classification.
In our case of semantic categorization at patch level, both
manual and automatic, we need a strategy to resolve this
possibly greater ambiguity. For example, as shown in Fig.
2, some patches have large coverage of different categories.
We do not incorporate fuzziness. Instead, our strategy is
to consider a patch py to belong to a category Sy, if py has
roughly over 50% coverage of type S, (dominant category).
Patches which do not belong to any of the categories
{51, ..., Sk } or those that do not have a dominant category
are given class label 0 (category unknown).

For each semantic category k, a separate 2-D MHMM is
trained using visual features of the corresponding training
patches {tg ,...,t§ }, resulting in K different models
{My,....,Mk}. Now for each of the image patches
{p1, ..., pn } in the database, the likelihood [, of belonging
to class k is computed using trained model M. Since we
are dealing with a non-exhaustive set of categories, those
patches that do not belong to any of the classes are required
to be labeled as class 0, as mentioned before. It does
not make much sense to treat them as a separate class as
far as training another 2-D MHMM is concerned, since
there may not exist any spatial or textural motif among
them. Instead, we perform another supervised classification
using Support Vector Machines (SVM). We take two sets
of randomly chosen training patches, C'1 with manual class
labels 0 (not to be categorized), and C'2 with any of the
labels {1, ..., K'} (to be categorized). The K 2-D MHMM
likelihood estimations for each of the samples of the two
classes are used as feature vectors for training an SVM.
The sampling of C1 and C2 is done in such a way that

C2 is predicted with high accuracy while allowing C'1 to
be predicted with moderate accuracy, producing a biased
SVM. A new patch pg, whose 2-D MHMM likelihood
estimation vector {l1,...,lx} is classified as C2 by this
biased SVM, is labeled ¢ = 0, while for the rest of the
patches, the class label is assigned as ¢, = argmax;(l;).
The class label cj is stored as meta-data for pi. This is
discussion in details in Sec. 3.

2.2 On-line Processing

Assume that there is an efficient indexing strategy for
handling the database of patches and their associated meta-
data. The simplest way to represent our query is the
following. Given a query patch the user seeks to find
patches within the same semantic category, sorted by their
visual similarity. There can be two kinds of such querying:
1. The patch is part of the database: In this case the
semantic category of the patch, say pj is already
stored as cg. Patches in the database whose
semantic categories are not cj are eliminated from
consideration.
2. The patch is externally uploaded: This patch is re-
sized or trimmed to fit the standard dimensions X ,, x
Y, and adjusted for spectral encoding (i.e., choosing
the required subset from the available spectra), if
needed. As mentioned before, the semantic category
cy, of this patch is predicted using the 2-D MHMM
likelihoods and the biased SVM. Again, all but the
patches labeled ¢y, are eliminated from consideration.
The remaining patches are now ranked according to their
visual similarity with the query. Visual similarity is
computed using the Integrated Region Matching (IRM)
measure, which is fast and robust and can handle large



image volumes. The top () matched patches {p.., ..., pr, }
are then displayed for perusal. The choice of @ is
contingent upon the specific application. Experimentation
on choosing () and how precision of retrieval varies with
it are discussed in Sec. 4. Note that for the purpose of
retrieval, query patches determined as C'1 (uncategorized)
are also searched from among only the C'1 patches in the
database.

Using the meta-data associated with the patches, such
as precise geographic location or semantic category (either
manually provided or automatically generated), more
complex querying is possible. Such queries are often
useful to analysts when handling large-scale image data.
Some of the possible queries are “Find the closest urban
area near a given crop field” and “Find satellite images
that contain at least 10% residential coverage and show
the associated patches”. Additionally, users often require
more information on the local neighborhood surrounding
the retrieved patches.

Restart

Restart

Resolution 5/6. Click to se\e:tteregm u interest
Figure 3: Interface for zooming, showing urban (blue),
residential (yellow) and the retrieved (green) patch. Top:
Original 30m resolution. Bottom: Zoomed out at 60m.

One way our system helps in this regard is by providing
the interface and support for zooming and panning. These
features allow the users the ability to view the position
and neighborhood of the patches of interest in their parent
satellite images. Haar wavelet transforms are used to
achieve zooming since they preserve localization of data.
These transforms decompose the images into sums and
differences of neighborhood pixels. On a given query, the
system only needs to retrieve the quantized coefficients of

the queried region for reconstruction. Since the processing
for categorization and zooming is done only once during
setup, and only localized parameters are required, the
response time is considerably low. The interface for
zooming in our system is shown in Fig. 3.

3. Categorization and Retrieval
3.1 Categorization using 2-D MHMMs

The two-dimensional multiresolution hidden Markov
model (2-D MHMM) has been used for generic image
categorization. Here we present a brief overview of the
model and its application to semantic categorization of
satellite images. For a more detailed discussion on the
topic please refer to [9]. Under 2-D MHMM, each image is

Figure 4: A conceptual diagram of the 2-D MHMM based
modeling process. Arrows indicate the intra-scale and inter-
scale transition probabilities among visual features.

characterized by several layers, i.e., resolutions, of feature
vectors. The feature vectors within a resolution reside on
a 2-D grid. The nodes in the grid correspond to local
areas in the image at that resolution. A node can be a
pixel or a block of pixels. The feature vector extracted at
a node summarizes local characteristics around a pixel or
within a block. The 2-D MHMM specifies the distribution
of all the feature vectors across all the resolutions by
a spatial stochastic process. Both inter-scale and intra-
scale statistical dependence among the feature vectors are
taken into account in this model. These dependencies
are critical for judging the semantic content of satellite
image patches because texture or spatial structure in these
patches can be captured at a larger scale than at a block or
pixel level. While the inter-scale dependence is modeled
using a Markov chain over multiple resolutions, the intra-
scale dependence is captured using hidden Markov models
(HMM). In our experiments we use a three-level pyramidal
structure in the model. A schematic diagram on this idea
can be found in Fig. 4. For feature extraction, 4 x 4 blocks
are taken and the visual features are characterized by a six
dimensional feature vector. This vector consists of three
moments of the wavelet coefficients in the high frequency
bands (representing texture) and the three average color
components in the LUV space.



3.2 Separating C1 and C2 using SVM

The training of the 2-D MHMMs is performed on a finite
non-exhaustive set of categories {S1, ..., Sk }. Generating
a training set covering all possible land-cover categories is
a time-consuming and expensive task, if at all it is possible.
Hence it is preferred to limit the scope to only those
semantic classes that are of interest. As a result, among
the image patches there exist many that represent categories
outside of {51, ..., Sk }. Also, there are many patches that
are a mixture of multiple categories without any one being
dominant. In both cases, these patches should ideally be
assigned a category label 0 (C'1). As mentioned previously,
all of the patches labeled {1, ..., K'} are considered as C2.

Using the maximum likelihood approach, we end up
assigning a category label between 1 and K to every patch,
regardless of whether they belong to C1 or C2. This is not
a desirable outcome, and as explained in Sec. 2.1, neither
can we train another 2-D MHMM to model patches in class
C1 to solve the problem. A naive approach to solving this
problem is based on the following assumption: Given a
patch that does not visually resemble any of the semantic
categories, the likelihood estimation from all the models
should be low. Under such an assumption, if all likelihood
scores are below a certain threshold, then the patch can be
assigned C'1. However, not surprisingly, it is found that for
a given patch, the likelihood estimates are not independent
of each other. This may be due to the fact that the 2-D
MHMMs are trained on samples that have some degree of
visual resemblance across categories.

Let the set of likelihood estimates for a given patch py
be its feature vector Ly, = {l1, ...,k }. In our experiments,
we consider 4 classes. We plot the 4-D feature vectors of
2000 patches manually labeled as C1 or C2. The plots,
taken two dimensions at a time, are shown in Fig. 5.
Clearly, a non-linear method can better model the class
separation than thresholding or other linear methods. We
experimented with Quadratic Discriminant Analysis (QDA)
and Logistic Regression for classification. The accuracy
rate with Logistic Regression turned out to be the best
at approximately 79% with accuracy of classifying only
C2 at about 84%. We then tried SVM on the data using
the LibSVM software package [3], using the RBF Kernel
o(fi, fj) = e=3Ifi=fil" The results were still better,
at around 81.7% overall accuracy and 86.4% accuracy at
classifying C2. When a patch is classified as C1 it is
removed from further consideration for retrieval. We do not
want to leave out any patch that could be a potential target
for a given query, while it is acceptable to have some C'1
patches to be classified as C'2, hence the focus is on higher
accuracy in detecting C'2. Hence we desire to have a biased
classifier. This process eliminates a significant chunk of
unwanted patches. One way to introduce weights into

Figure 5: Plot of 4-D likelihood feature vector L for C1
(black) and C2 (red). Six pairs of dimensions are shown.

SVM learning is to sample the training classes accordingly.
In our case we introduce bias by sampling C1 and C2
in the approximate ratio 13 : 25 for training the SVM,
resulting in a total of about 9000 samples (with repetition).
In this manner, we achieve high accuracy of classifying
C2 (96.04%) while for C1 the score is moderate (53.7%)
which is acceptable in our case. Hence less than 4% of the
patches within categories {51, ..., Sk } will be mistakenly
eliminated. This may not be a problem since patches of
one category in a satellite image are usually spread over a
large region. It is highly unlikely that all patches in one
region will be eliminated and a target patch will slip the
user’s attention, since our system supports panning.

3.3 Retrieval using IRM

Integrated Region Matching (IRM) [16] is a robust region-
based image similarity measure. In our experiments, IRM
was used to perform retrieval by ranking image patches
within the query category.

The images are segmented and for each segment, a
nine dimensional feature vector is composed. The feature
vectors used include the same six texture and color features
used in 2-D MHMM (see Sec. 3.1), and three more features
characterizing the shape of the segment. The matching is



performed by a soft similarity measure in the following
manner. For two images ¢ and i2, suppose they have k;
and ko segments respectively. The IRM distance between
images 71 and ¢ is given by

ki ke

d(i],ig) = Z Z Simdim
=1 m=1
where d;,, denotes the euclidian distance between the

nine dimensional feature vectors of segment [ of 7 ; and m of
19 and sy, is the significance credit associated with that pair
of segments. The significance credit between a given pair
of segments measures how much importance is to be put on
the comparison of visual features between that pair. This is
partly dependent on the percentage of area covered within
their respective images. The significance computation is
performed using the most similar highest priority (MHSP)
principle [16]. Our experiments show that IRM performs
well with satellite images, possibly due to the soft matching
approach and the emphasis on texture features.

4. Experimental Results

For our experiments, we use M = 3 Landsat-7 ETM+
multi-spectral satellite images with 30m resolution. We
choose to support K = 4 semantic categories in our
experimental system, namely mountain, crop field, urban
area, and residential area. In consultation with an expert
in satellite image analysis, we choose near-IR (infra-red),
red and green bands as the three spectral channels for
classification as well as display. The reasons for this
choice are as follows. Near-IR band is selected over blue
band because of a somewhat inverse relationship between a
healthy plant’s reflectivity in near-IR and red, i.e., healthy
vegetation reflects high in near-IR and low in red. Near-IR
and red bands are key to differentiating between vegetation
types and states. Blue light is very abundant in the
atmosphere and is diffracted all over the place. It therefore
is very noisy. Hence use of blue band is often avoided.
Visible green is used because it is less noisy and provides
unique information compared to Near IR and red.

The pixel dimensions of each satellite image I; used
in our experiments are 6000 x 6600, with geographic
dimensions being approximately 180 K'm x 198 K'm. The
choice patch size is critical. A patch should be large enough
to encapsulate the visual features of a semantic category,
while being small enough to include only one semantic
category in most cases. We choose patch size X, X Y,, to be
128 x 128 pixels. Our experiments show that 2-D MHMMs
are able to capture visual features of semantic categories
quite well at this size. We obtain N = 9874 patches
from all the images in this manner. These patches are
stored in a database along with the identity of their parent
images and the relative location within them. Ground-
truth categorization is not available readily for our patches.

This is required for testing the accuracy of 2-D MHMM
based categorization and retrieval. In order to build a
manual categorization of the patches, an expert working
on satellite image analysis in a government research lab
gave 2 arbitrarily chosen subjects a tutorial on how to
distinguish between the 4 semantic categories. The subjects
then independently labeled each patch as either {1, 2, 3,4},
or 0 in case it belonged to neither class or had no dominant
coverage, keeping in mind the 50% coverage policy (Sec.
2). The final category labels {c1, ..., c19s4} are determined
by taking the overlap of the sets as it is, and in case of
conflict, randomly choosing one of the two. With the high-
quality Landsat images it is not hard to visibly identify the
four categories used. The overlap between these two sets is
approximately 94%. This serves as our “silver standard”.

For classification, we use 7' = 40 samples of each of
the four categories for training the 2-D MHMMs to yield
models My, My, Ms and My. It is important that accuracy
of these models in categorization be high, otherwise many
critical patches might be wrongly eliminated from the
retrieval process. In order to test the accuracy, we randomly
picked up 900 patches outside of those used for training
and compared the classification results with the manual
“silver standard”. We computed the confusion matrix for
the 4 classes as well as for the class 0 (C'1) patches,
shown in Table 1. Note that the accuracy of classifying
C1 patches reflects on the model accuracy of both 2-D
MHMMs and the biased SVM. The overall unweighted
accuracy over the 4 categories and 0 for these 900 samples
is 87.22%. A measure of accuracy often used in the remote-
sensing community to evaluate multi-class classification
performance is Cohen’s Kappa Coefficient:

_ NZfil Riz‘ - Zfil(Ri/ Riu)
N2 - (Ry Riv)

K

where K is the number of classes, N is the total number
of samples R;; indicates observation in row ¢ column j,
R, is the total of row ¢ and R;~ is the total of column
i. When taking only classes 1 to 4, k = 93.02% , while
when including class 0 (C'1) also into consideration we have
k = 82.81%. These results are very encouraging.

Sample results obtained when querying using a
residential patch and a mountain patch are shown in Fig.
6. It is worth noting that in our system, patches in untrained
categories can also be effectively retrieved. For example,
as shown in Fig. 7, retrieval results for a query using
a coastline patch are rather satisfactory, albeit with less
precision. The IRM similarity based ranking and display
of patches should reflect relevance to the query. Of the @
patches displayed in response to each query, one measure
to determine retrieval effectiveness is the percentage of
relevant patches in them. We measure this as follows. For
each of the four classes, we use our system to retrieve from
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Figure 7: Demonstrating the effectiveness of retrieval within the Other (C1) category: Coast-lines, though not learnt using
2-D MHMM, are retrieved with high accuracy due the SVM classification and the IRM measure.

5 to 30 patches per query (in intervals of 5) and measure the
percentage of patches retrieved that have the same manual
category label as the query patch. This is repeated 5
times for each category and the average accuracy results are
plotted over variation of (), as shown in Fig. 8. The most
vital observation made is that semantic categorization using
2-D MHMM results in roughly 6% to 10% improvement in
retrieval accuracy. However, that accuracy drops when the
number of patches retrieved increases. Yet, the values are

considerably high at ) = 30. For specific requirements,
these graphs can be used to choose suitable values of ().

About 20 minutes are required to train each 2-D MHMM
on a 1.7 GHz Intel Xeon machine, but this is not a recurring
process. Subsequent indexing is done only once for each
image added to the database. Our system performs retrieval
in real-time. Since linear search is performed within the
five-class database, the retrieval time decreases roughly five
times on an average with semantic categorization.



Table 1: Classification Results using 2-D MHMM
| Min. | Crop | Urban | Res. | Oth. || Accuracy ]

M. (1) | 198 | 0 0 0 13 || 93.84%
Crop(2 | 0 | 176 1 6 19 || 87.13%
Urban 3) | 1 0 43 6 8 74.14%
Res. (4) 3 3 5 76 3 84.44%
Oth. (0) 6 1 17 20 | 292 || 86.14%
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Figure 8: Average accuracy of IRM based retrieval for each
category, with/without prior categorization.

5. Conclusions

We have proposed a convenient learning based approach
for large-scale browsing and retrieval of satellite image
patches. It has been shown that automatic semantic
categorization of image patches using 2-D MHMM prior
to retrieval improves speed and accuracy. Our intuition
is that 2-D MHMM and IRM complement each other to
boost retrieval performance. Prior categorization reduces
the search space to fewer, more relevant patches, thereby
also reducing search time. SVM has been effectively
used to deal with patches that have not been trained for.
Performing classification at patch level instead of pixel level
in satellite images helps in building a more convenient
interface that allows complex querying. There are still
some issues which have not been tackled in our present
work. Square patches are used due to the convenience in
computation, but the users may desire more flexible shapes
for querying. Moreover, size of the patch is a function of the
user’s specific needs as well as performance requirements.
How the patch size affects these two factors remains to
be studied. We use only three of the six available bands
from the satellite images. What impact there may be to use
more bands on the performance has not been tested. How
performance varies with change in the number of levels of
the 2-D MHMM will also be an interesting study.
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