
Targeted Data-driven Regularization for Out-of-Distribution
Generalization

Mohammad Mahdi Kamani, Sadegh Farhang, Mehrdad Mahdavi and James Z. Wang
{mqk5591,smf5604,mzm616,jwang}@psu.edu

The Pennsylvania State University, University Park, Pennsylvania

ABSTRACT
Due to biases introduced by large real-world datasets, deviations
of deep learning models from their expected behavior on out-of-
distribution test data are worrisome. Especially when data come
from imbalanced or heavy-tailed label distributions, or minority
groups of a sensitive feature. Classical approaches to address these
biases are mostly data- or application-dependent, hence are burden-
some to tune. Some meta-learning approaches, on the other hand,
aim to learn hyperparameters in the learning process using differ-
ent objective functions on training and validation data. However,
these methods suffer from high computational complexity and are
not scalable to large datasets. In this paper, we propose a unified
data-driven regularization approach to learn a generalizable model
from biased data. The proposed framework, named as targeted
data-driven regularization (TDR), is model- and dataset-agnostic,
and employs a target dataset that resembles the desired nature of
test data in order to guide the learning process in a coupled man-
ner. We cast the problem as a bilevel optimization and propose an
efficient stochastic gradient descent based method to solve it. The
framework can be utilized to alleviate various types of biases in
real-world applications.We empirically show, on both synthetic and
real-world datasets, the superior performance of TDR for resolving
issues stem from these biases.

CCS CONCEPTS
• Computing methodologies → Machine learning; Machine
learning algorithms;Regularization;Cost-sensitive learning;
Batch learning; Stochastic games; Neural networks.

KEYWORDS
out-of-distribution generalization, data-driven regularization, bilevel
programming

ACM Reference Format:
Mohammad Mahdi Kamani, Sadegh Farhang, Mehrdad Mahdavi and James
Z. Wang. 2020. Targeted Data-driven Regularization for Out-of-Distribution
Generalization. In Proceedings of the 26th ACM SIGKDDConference on Knowl-
edge Discovery and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event,
CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3394486.3403131

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403131

1 INTRODUCTION
Drastically improving their performance, machine learning, and
more distinctively, deep learning models, are becoming the main
propulsion of technology in a variety of domains. Notwithstanding
their success, they still suffer from different forms of biases in the
training data distribution. Biases, regardless of their nature, cause
a mismatch between training and testing data distributions, which
leads to a poor out-of-distribution generalization performance of
the model. Machine learning models inherit these biases due to
the only objective of minimizing the empirical risk on the training
data in their learning process. However, empirical risk by itself
seems incapable of avoiding these biases in training data for better
out-of-distribution generalization, and needs to be accompanied by
other objectives [35].

These biases can appear in different forms in training a machine
learning model. A palpable form of them happens when the size of
different classes or groups are unbalanced. When class sizes are not
balanced, the imbalanced dataset problem stems [9, 24, 44], where
majority classes’ distribution can dominate the training process,
resulting in a model with low accuracy on minority classes. A
severe form of imbalanced dataset problem, appears in most real-
world big datasets with immense number of classes, is long-tailed
data distribution [7, 14, 38], where the distribution of classes is
skewed. In this case, most of the data belongs to a few prevailing
classes, while a large number of classes are represented by a few
number of samples. Another form of bias happens when the sample
size of different groups in a categorical feature are unbalanced
(e.g., gender). As a result, fairness issues affect the training process,
resulting in a biased performance toward minority groups in the
dataset [22]. Other forms of these biases include label noise [26],
source and target distribution mismatch [42], spurious inherent
feature correlation [5], to name but a few.

While there are a variety of different ideas for addressing each
of the aforementioned biases in the literature, there is a lack of a
unifying approach that can address all different forms. For the class
imbalance problem, a generic idea is to adapt the training distribu-
tion to the desired properties of an unbiased dataset, whether by
resampling or assigning weights based on training loss to have a
cost-sensitive weighting scheme [16, 33]. On the other side, prob-
lems raised from fairness issues are handled by pre-processing the
data [32], post-processing the models’ output [22, 31], or during
the training using constrained optimization [15]. To address the
label noise problem, approaches are mostly to try to detect the
affected samples and reduce their effects on the training procedure
either by late sampling [8, 21] or reweighting the probability of
sampling [26] of those samples. However, relying merely on the
training distribution has shown to be not practically efficient [41],
especially for out-of-distribution generalization [5].

https://doi.org/10.1145/3394486.3403131
https://doi.org/10.1145/3394486.3403131
https://doi.org/10.1145/3394486.3403131

Target distribution

Decision boundary

Unweighted
decision bounday

Group 1

Group 2

Descent direction of
unweighted

Descent direction of
target distribution

Descent direction of
weighted method

Figure 1: In a standard (unweighted) gradient-descent binary
classification with unbalanced data between two classes
(Group 1 versus Group 2), the decision boundary is mostly
determined based on the majority class’s descent direction.
In targeted data-driven regularization, we use a small and
unbiased target dataset, with which we can reweight each
class’s gradients based on their inner products with the gra-
dient of the target dataset. This will decrease the weight of
majority class and increase the weight of the minority class.
See Section 3.3 for more details.

A new strand of research is to augment single-objective learning
models with additional data-driven constraints in order to alleviate
the effect of bias in training data [13, 20, 26, 37, 41]. The main idea
behind constrained learning schema stems from the observation
that the accuracy on training data is not a satisfactory criterion by
itself, and should be accompanied by a data-driven regularization.
An appealing data-driven regularization idea is to create a target
dataset that resembles the desired properties of the unbiased dis-
tribution, and impose it to the training process as an additional
constraint. A common practice of tuning hyperparameters at the
end of training using a validation set is a simple example of this
regularization, which is a cumbersome task. Some meta-learning
approaches like [18, 41], on the other hand, introduce a coupled
framework to interlace the hyperparameter tuning using a valida-
tion set with the training process in order to guide it.

While data regularized methods have shown to be successful in
some applications, the computational burden of tuning hyperpa-
rameters limits their scalability to large datasets or training data
with skewed classes. Moreover, these methods are usually applica-
tion specific and lack a principled way to be generalized to different
types of biases discussed before. To overcome these challenges, in
this paper, we introduce the targeted data-driven regularization
(TDR) framework, which employs a small target distribution, free of
those biases in training data, and bilevel programming [12] to model
the multi-objective structure on both training and target distribu-
tions. As a bilevel programming, TDR has two levels, one dealing
with the main training process, while the other uses a well-tuned
target dataset in order to optimize the weights of each desired class
or group in the dataset. As we elaborate later, the weight for each
group is proportioned to the inner product of the gradients of target
dataset and each group’s gradient vectors. Hence, as it is depicted
in Figure 1, TDR, despite the standard training, learns the optimal

weight for each group to prevent the majority groups to prevail in
finding the descent direction in gradient descent approaches.

The main contributions of this work are:
• We propose a unified framework for out-of-distribution gen-
eralization that exploits a small well-crafted target distri-
bution to guide the learning process and cast it to a bilevel
programming problem to learn the optimalmodel. The frame-
work is generic and can be utilized to tackle different types of
biases and is free of hyperparameter tuning of other frame-
works.

• Our framework addresses the computation and stability is-
sues of previous frameworks, e.g. [41], while greatly improv-
ing the performance of the model.

• We propose an efficient stochastic algorithm for TDR and
validate it via synthetic and real-world datasets on various
problems.

2 RELATEDWORK
Two main challenges raised from biases in datasets are class imbal-
ance and fairness problems. Contrary to fairness, studying imbal-
anced datasets is not a new problem in machine learning, hence
there are a number of approaches to rectify this issue.

Class Imbalance: Most of the approaches revolve around adopt-
ing the biased training distribution to the desired properties of
an unbiased one, by either re-sampling or cost-sensitive mecha-
nisms. In over-sampling, we add samples from minority classes
to the dataset via either repetition or novel approaches like do-
main adaptation or synthetic data generation [4] and interpolation
of neighboring samples [11]. Cost-sensitive learning, on the other
hand, is the method of assigning weights to each sample’s loss based
on the data distribution [27, 33]. It is common to choose weights
as the inverse of class frequency for imbalanced datasets [24]. Re-
cent efforts use more intuitive approaches than inverse of class
frequency for reweighting samples. For instance, Cui et al. [14],
based on the sample size of each class calculated the effective num-
ber of samples for that class, and balanced the loss based on that
number. Our targeted framework for out-of-distribution general-
ization belongs to the latter group, where we use an unbiased and
small target dataset to learn the weights of each group interleaved
with the main training procedure. Having these weights trained
during the main training task is the advantage of our framework
over others.

Fairness: Algorithmic fairness in machine learning has attracted
much interest in recent years. The efforts on algorithmic fairness
are divided into three categories. The first approach is to alter the
pretrained classifier for fairness improvement [22, 40]. Approaches
taking into account fairness during the training phase belong to
the second category [2, 15, 45]. In the third category, fairness can
be achieved via modifying the data while using standard machine
learning algorithms [10]. In the context of fairness, our approach
belongs to the second approach, where we update the weight for
each group to compensate for the bias in the training data.

Meta-learning: Apart from all these classical approaches, which
are mostly burdensome to tune for each specific dataset or ap-
plication, we can benefit from the new trend arising in machine

learning domain, called meta-learning [3, 17]. While meta-learning
approaches are mostly used in few-shot and multi-task learning
settings, they have also been adopted in hyperparameter optimiza-
tion tasks [18] or addressing noise in data [25]. These frameworks
aim at learning the parameters of the optimization on top of the
main learning process using gradient descent. Following this trend,
Ren et al. [41] proposed a new framework to address biases in the
dataset, using a validation set, similar to test set and by using the
perturbation idea of [34], they perturb each example’s weight in
the training. Although its effectiveness is comparable to classical
approaches, it encounters several issues, such as high computa-
tional complexity and instability of the perturbed weights, making
it impractical in large-scale problems. Litany and Freedman [37]
proposed a very similar framework to example reweighting for
transfer learning. In TDR, we use bilevel programming to develop
a framework for addressing biases in the dataset, while avoiding
the aforementioned issues. For a thorough discussion of existing
methods please refer to Appendix A.

Out-of-distribution Generalization: Attracting much attention
recently, various frameworks have been proposed for the problem
of out-of-distribution generalization. Shankar et al. [42] suggest a
combination of gradients on different domains to learn a model that
generalizes well to new domains, and does not need domain signals
like prior methods. Sun et al. [43] introduce a training approach
during the inference time to adapt the model to new domains.
Arjovsky et al. [5] try to make the model invariant to the spurious
correlation in the feature data. The main advantage of TDR over
these approaches is that we use a small target dataset that can be
adopted based on different applications, instead of using the whole
dataset from other domains.

3 TARGETED DATA-DRIVEN
REGULARIZATION (TDR)

In this section, we introduce the TDR framework and cast it as a
bilevel optimization problemwith two objectives. Then, we propose
an efficient two-level stochastic optimizer to learn the model.

3.1 The Proposed Framework
The way we define two objective functions and their parameters
is problem-independent. However, for the sake of exposition, we
tackle problems such as imbalanced dataset and fairness in clas-
sification models. These two types of problems have a common
ingredient, i.e., unbalanced distribution of different categories in
the dataset. If this unbalanced nature of the data happens in the
labels, the problem is imbalanced dataset. But if one of the sensitive
categorical features in the dataset (e.g., gender) happens to be un-
balanced, the issue of fairness would raise. In both scenarios, we are
solving a prediction problem on dataset T with 𝑛 training samples,
from input space X to label domain Y, where each sample point is
defined as (𝒙𝑖 , 𝑦𝑖) ∈ X ×Y. We use 𝑔𝑖 = ℓ (𝜽 ; (𝒙𝑖 , 𝑦𝑖)), where ℓ (·; ·)
is the training loss function and 𝜽 is the parameters of the model,
to denote the training loss on 𝑖th sample (𝒙𝑖 , 𝑦𝑖) ∈ T .

In order to address the aforementioned biases, we need to weight
loss of samples from different classes or groups separately; hence,
we define a weight vector,𝒘 ∈ R𝑐+, where 𝑐 is the number groups of
the discriminatory feature (i.e., label in imbalanced data or sensitive

feature in fair learning). Let D ∈ {0, 1}𝑛×𝑐 denote the assignments
of 𝑛 training samples to 𝑐 groups of the discriminatory feature. For
a model parameter 𝜽 and a fixed weight vector 𝒘 , we define the
loss over training examples as

𝐺 (𝒘, 𝜽 ;T) = (D𝒘)⊤ 𝒈 , (1)

where 𝒈 = [𝑔1, . . . , 𝑔𝑛]⊤ is the vector of losses per sample, and
𝐺 (., .; .) is the weighted loss over training samples.

Equipped with Eq. (1) as the training goal, for a known weight
vector𝒘 , we can find the optimal parameters 𝜽 by minimizing the
objective. However, we use the samples in the target dataset to
adaptively learn the optimal weight vector and guide the training
process. To this end, we define the loss over a small unbiased target
dataset V as:

𝐹 (𝒘, 𝜽 ∗ (𝒘);V) = 1
|V|

∑
(𝒙𝑖 ,𝑦𝑖) ∈V

𝑓 (𝜽 ∗ (𝒘); (𝒙 𝒊, 𝑦𝑖)) , (2)

where |V| is the number of samples inV , 𝜽 ∗ (𝒘) is the minimizer
of the loss function in Eq. (1), and 𝑓 (·; ·) is the target loss function
which may or may not be same as training loss ℓ (·; ·). We emphasize
that the target dataset could be a part of training dataset or it could
be separated, similar to a validation dataset.

Having two interlaced optimization problems, we can cast the
TDR as a game between two players, called leader and follower [6].
Both players want to minimize their specific objective functions
which results in the following bilevel programming:

𝒘∗ ∈ argmin
𝒘

𝐹 (𝒘, 𝜽 ∗ (𝒘);V)

s.t. 𝜽 ∗ (𝒘) ∈ argmin
𝜽

𝐺 (𝒘, 𝜽 ;T) , (3)

where the objective of the leader and the follower, 𝐹 (·; ·) and𝐺 (·; ·),
are defined in Eqs. (2) and (1), respectively.

It is worth noting that despite the similarity of this algorithm
with universal bilevel programming, the two levels are being op-
timized on different data distributions. This is the key difference
that makes the TDR framework capable of solving some challenging
problems with a data-driven regularization using a target dataset.

We note that unlike constrained optimization problems, where
first-order algorithms such as gradient descent (GD) or stochastic
gradient descent can be easily utilized, in the above formulation, to
find the optimal𝒘 , we need to first solve the inner objective 𝐺 (·; ·)
with respect to 𝜽 which depends on 𝒘 . As a result, any iteration
of GD algorithm requires fully optimizing the inner optimization
which makes the optimization intrinsically hard. In next subsec-
tion, we propose an efficient stochastic optimization algorithm to
approximately solve the stated bilevel optimization problem.

3.2 Stochastic Bilevel Optimizer
In general, if we want to solve a bilevel program, we have to solve
each level to reach a local minimum. However, in order to control
the computational complexity of the algorithm, we propose an
stochastic method where we iteratively update the parameters of
the outer optimization problem. In this setting, instead of solving
the inner problem completely per outer iteration, we only take few
gradient steps over its parameters. Then, we update the weights
of each group using a gradient step over the target dataset. We
continue these loops until we reach a convergence or early stop

Algorithm 1: Targeted Data-driven Regularization

input 𝜽0 ∈ R𝑑 ,𝒘0 ∈ R𝑐 , 𝜂in, 𝜂out, 𝑡in
for 𝑘 = 0, 1, . . . do

set: 𝜽0 = 𝜽𝑘
for𝑚 = 0, 1, . . . , 𝑡in − 1 do

𝜽𝑚+1 = 𝜽𝑚 − 𝜂in · ∇𝜽𝑔(𝒘𝑘 , 𝜽)
end
set: 𝜽𝑘 = 𝜽𝑡in
𝒘𝑘+1 = 𝒘𝑘 − 𝜂out · ∇𝒘 𝑓 (𝒘, 𝜽𝑘)

end
return 𝜽𝑘

S
am

pl
e

S
iz

e

Groups

Figure 2: The proposed targeted data-driven regularization
for out-of-distribution generalization.

at the best solution. This requires to define a number for inner
iterations 𝑡in, which indicates how many stochastic steps we have
to take each time we are in the inner problem. We note that, similar
to [19], 𝑡in could be tuned adaptively to a monotonically increasing
sequence, because in the beginning we might be far away from
a local minimum of the inner problem. As we move along in the
training process, we are getting closer to the local minimum of
the inner problem, and hence we might need more stochastic steps
toward it before updating weights.

The inner problem in TDR is minimizing the objective function of
the main problem, defined in Eq. (1), with respect to its parameter
set,𝜽 , on the training data distributionT . Usingmini-batch gradient
descent, we want to minimize the inner problem as follows:

𝜽 ∗ (𝒘) ∈ argmin
𝜽 ∈Θ

{𝑔(𝒘, 𝜽) = E
𝜉∼T

[𝐺 (𝒘, 𝜽 ; 𝜉)] } , (4)

whereΘ is the domain of all feasible solutions for 𝜽 , 𝜉 is amini-batch
drawn from the training data distribution T with the mini-batch
size of |𝜉 | = 𝑏 and 𝑔(·) denotes the empirical loss over 𝜉 . Then the
outer problem gets the solution of the inner problem and minimizes
its own objective function, defined in Eq. (2), over its parameter set,
𝒘 , using data samples of the target datasetV:

𝒘∗ ∈ argmin
𝒘∈Ω

{ 𝑓 (𝒘, 𝜽 ∗ (𝒘)) = E
𝜉𝑣∼V

[
𝐹 (𝒘, 𝜽 ∗ (𝒘); 𝜉𝑣)

]
} , (5)

where Ω is the feasible domain for𝒘 , and 𝜉𝑣 is a mini-batch drawn
from the target distribution with the size |𝜉𝑣 | = 𝑏𝑣 and 𝑓 (·) is the
loss over 𝜉𝑣 . The key point that connects two levels together is the
solution of the inner level, which is a function of𝒘 . The proposed
generic TDR framework is defined in Algorithm 1, in which the
procedure is illustrated in Figure 2.

For both aforementioned use cases of TDR, namely, imbalanced
dataset and fairness issues, we need a discriminatory feature vector.
In imbalanced dataset scenario, this vector is the label of samples.
In fairness problems, generally, there is an unbalanced categorical
feature, which turns to an unfair classifier in favor of the majority
category of that feature in the dataset. As an example, when in a
dataset the numbers of samples for different genders are unbalanced,
the resulting class is inclined to have a better performance in terms
of accuracy for the majority category rather than the minority
group. In this case, the discriminatory vector is a feature vector from
the data itself, where we want to optimally weight each category
in the classification. The weight for each category can be seen
as a sampling probability, where in a simple stochastic GD it is
considered to be a uniform distribution, while in TDR we find the
optimal probability distribution for categories. Thus, to make these
weights resemble a probability distribution, we have to impose two
constraints on the weights. The weights for each sample in the
mini-batch in step 𝑘 is 𝒘̃𝑘 ∈ R𝑏×1, and it is defined as:

𝒘+
𝑘
= max(0,𝒘𝑘) , (6)

𝒘̃𝑘 ≜
D̃𝒘+

𝑘

∥D̃𝒘+
𝑘
∥1
, (7)

where𝒘𝑘 comes from step 𝑘 in Algorithm 1, and D̃ is the stochastic
counterpart of the discrimination matrix for mini-batch 𝜉𝑘 . We
want each sample’s weight in the mini-batch to be positive and also
sum over all samples’ weights in the mini-batch to be one. Hence,
we normalize weights of samples in the mini-batch with their 𝑙1
norm to be in range of [0, 1] and sums up to 1.

The training framework defined in Algorithm 1 is straightfor-
ward and can be implemented using any machine learning or deep
learning libraries such as Tensorflow [1] and PyTorch [39]1. The
main challenge is the connection between inner and outer models.
Because the outer objective function is an implicit function of the
weights used in the inner level, we should create this relationship
in the model construction time so the derivative of the outer objec-
tive function with respect to the weights could be algorithmically
computable. For instance, in Tensorflow using Estimator API, after
construction of the inner model’s graph, we can create the outer
model’s graph using 𝜽out = 𝜽in −𝜂in∇𝜃𝑔(𝒘, 𝜽), which is simply the
update rule of the inner problem. Thus, the parameters of the outer
model would be an implicit function of weights.

3.3 Weights Interpretation
To better understand the learned weights for each class or group
during the training, we further elaborate on the update rules of
Algorithm 1. First, in the inner loop, we update the parameters of
the model by propagating weighted gradients of 𝑡in mini-batches.
Thus, the update rule of the inner level at the step 𝑘 of the outer
level can be rewritten as:

𝜽𝑚+1 = 𝜽𝑚 − 𝜂in · ∇𝜽𝑔(𝒘𝑘 , 𝜽)

= 𝜽𝑚 − 𝜂in
|𝜉 | ·

|𝜉 |∑
𝑖=1

𝑤
𝑐𝑖
𝑘

· 𝜕𝑔𝑖 (𝜽)
𝜕𝜽

����
𝜽=𝜽𝒎

,
(8)

1The code repository https://github.com/mmkamani7/Targeted-Meta-Learning

https://github.com/mmkamani7/Targeted-Meta-Learning

where𝑤𝑐𝑖
𝑘

is the weight of the 𝑖th sample in the mini-batch, which
belongs to class or group 𝑐𝑖 . Now, we can write the update rule
of the outer level for weights of each class or group separately as
follows:

𝑤𝑐
𝑘+1 = 𝑤

𝑐
𝑘
− 𝜂out ·

[
∇𝒘 𝑓 (𝒘, 𝜽𝑘)

]
𝑐

= 𝑤𝑐
𝑘
− 𝜂out

|𝜉𝑣 |
·
|𝜉𝑣 |∑
𝑗=1

𝜕𝑓𝑗 (𝜽 (𝒘))
𝜕𝒘𝑐

����
𝒘=𝒘𝑘

= 𝑤𝑐
𝑘
− 𝜂out

|𝜉𝑣 |
·
|𝜉𝑣 |∑
𝑗=1

(
𝜕𝑓𝑗 (𝜽 (𝒘))

𝜕𝜽

)⊤ (
𝜕𝜽 (𝒘)
𝜕𝒘𝑐

)

= 𝑤𝑐
𝑘
+ 𝜂out𝜂in|𝜉𝑣 | |𝜉 |

· ©­«
|𝜉𝑣 |∑
𝑗=1

𝜕𝑓𝑗 (𝜽 (𝒘))
𝜕𝜽

ª®¬
⊤ ©­­«

|𝜉 |∑
𝑖=1
𝑐𝑖=𝑐

𝜕𝑔𝑖 (𝜽)
𝜕𝜽

ª®®®¬ ,
(9)

where 𝑓𝑗 (·) is the empirical risk of the 𝑗 th sample of the mini-batch
drawn from the target dataset and [·]𝑐 is the 𝑐th element of the
vector.

The final equality reveals an elegant property about the learned
weights in the TDR framework. Indeed, it demonstrates that the
weight of each class or group changes with the conformity of the
average gradients of samples from that class or group with the aver-
age gradients of the target dataset. As long as the average gradients
of one group is aligned with the average gradient of the target
dataset, its weight will increase; otherwise, it will decrease. In this
case, when the average gradients of a majority group is not highly
correlated with the average gradients of the target dataset, they fail
to dominate the descent direction for updating the parameters of
the network.

4 EXPERIMENTAL RESULTS
We provide experimental results for the TDR algorithm to show its
efficacy in dealing with imbalanced datasets, as well as fairness
concerns in a classification problem. To show the performance of the
TDR framework on imbalanced dataset problem, we use the MNIST2
and CIFAR103 datasets. In addition, we apply TDR to a real-world
dataset for severe weather prediction consisting of radar images
of the whole continental United States using data gathered from
NEXRAD level III radars (or WSR-88D)4 of the National Weather
Services. For demonstrating how TDR could preserve fairness in
classification tasks, we use the Adult5 dataset, where the goal is to
predict the range of people’s salary based on some demographic
information of each person. Because the number of samples for
male and female is unbalanced in this dataset, normal classification
tasks would have poor accuracy on minority groups in this dataset.
In all these experiments we use 𝑡in = 10.

4.1 Imbalanced and Long-tailed Datasets
As stated in Section 3, in an imbalanced dataset scenario, the dis-
criminatory vector is the label vector in the dataset. Thus, in this
case for each class we learn a weight and update it based on the

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/~kriz/cifar.html
4https://mesonet.agron.iastate.edu/archive/
5https://archive.ics.uci.edu/ml/datasets/Adult

0 20 40 60 80 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

TDR
Example Reweighting

(a)

0 2 4 6 8
Wall Clock Time (Minutes)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

TDR
Example Reweighting

(b)

Figure 3: Test accuracy on imbalanced dataset containing
two classes (‘4’ and ‘9’) of MNIST. The test dataset is a bal-
anced dataset of the two classes. Total number of training
samples is 5, 000 and class 4 is in the smaller class with the
imbalance ratio of 𝜌 = 0.005. Target distribution has 50 bal-
anced samples. TDR outperforms example reweighting, both
in terms of accuracy and speed.

gradient descent direction of the target objective function. In order
to better measure the imbalance level in a dataset, we introduce
an imbalance ratio (𝜌) which is the ratio between the number of
samples in the smallest class (𝑛m) and the largest class (𝑛M), i.e.,
𝜌 ≜ 𝑛m/𝑛M. Using TDR, we train networks on imbalanced and
long-tailed data distributions using a small balanced target distri-
bution. In order to demonstrate the robustness of our algorithm,
we compare it to example reweighting [41]. In this experiment, we
choose 𝑏 = 50, 𝑏𝑣 = 10, 𝜂in = 0.001, and 𝜂out = 0.2.

4.1.1 Synthetic Data. To show the effectiveness of TDR, we first
apply it to the MNIST dataset. We generate two different datasets,
one with only two classes and the other using all ten classes in the
dataset. For the first experiment, we want to create an imbalanced
dataset of two digits. To better examine the framework, we choose
the two most confused digits based on the MNIST classification
confusion matrix, which are ‘4’ and ‘9’. For this experiment the class
4 is the minority class and 9 is the majority class. If the total number
of samples in training is 𝑁 , the size of minority class and that of
majority class are 𝜌𝑁

𝜌+1 and 𝑁
𝜌+1 , respectively. We use the LeNet [36]

model as the base model with cross entropy over output logits as
the loss function. This is a simple convolutional neural network
with two convolution layers each with a max pooling at the output
following with 3 fully connected layers. For the first experiment, we
choose ratios from 𝜌 ∈ {0.1, 0.05, 0.02, 0.005} and generate different
imbalanced datasets for 𝑁 = 5, 000. For instance, 𝜌 = 0.005 means
that for every 200 samples from the larger class, only one sample
is from the smaller class. The target distribution is a dataset with
50 data points balanced over different classes. The test dataset is a
balanced set with 2, 000 samples. Figure 3 shows the performance of
TDR and sample reweight on the aforementioned imbalanced dataset
with ratio of 𝜌 = 0.005, based on epochs (Figure 3(a)) and wall
clock time (Figure 3(b)) of training. It can be inferred that the TDR
outperforms example reweighting on accuracy with a substantially
higher convergence speed.

In addition to accuracy on balanced test set, in classification of
an imbalanced dataset, the crucial metric is the recall rate, which
shows the performance of the classifier on the positive (smaller)

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://mesonet.agron.iastate.edu/archive/
https://archive.ics.uci.edu/ml/datasets/Adult

class data points. Figure 4 shows the recall rate of the class 4 in
training procedure, in which the superiority of the TDR is noticeable.

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

TDR
Example Reweighting

(a)

0 2 4 6 8
Wall Clock Time (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

TDR
Example Reweighting

(b)

Figure 4: Recall rate of the smaller class 4 during the training
of the experiment in Figure 3 with imbalance ratio 𝜌 = 0.005,
based on epoch (a), and wall-clock time (b). Similar to test
accuracy, TDR outperforms example reweight in recall rate.

0.1 0.05 0.02 0.005
Imbalance Ratio ()

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

TDR
Example Reweighting

Figure 5: Comparing the test accuracy of TDR with exam-
ple reweighting for different imbalance ratios from 𝜌 ∈
{0.1, 0.05, 0.02, 0.005}. The dataset is MNISTwith two classes (4
and 9), with the same setting as in Figure 3. We repeat each
experiment 5 times to examine the robustness of algorithms.

Figure 5 presents a comparison of these two frameworks on dif-
ferent imbalance ratios. To compare reliably, we repeat the training
procedure for 5 times and report the average and standard deviation
of the test accuracy. TDR not only boosts the performance, but also
is more stable compared to example reweighting. This is the result
of incremental class weight updates in TDR, compared to perturbing
each sample’s weight on each iteration in the example reweighting.

As for the second experiment, we use the same model but cre-
ate a long-tailed dataset. To generate a long-tailed dataset from
MNIST, using the same scheme as [14], we use 𝑛𝑖 = 𝑛0𝜇𝑖 , in order
to decrease the class size exponentially, where 𝑛𝑖 is the number of
samples in class 𝑖 . Hence, based on the definition, the imbalance
ratio would be 𝜌 =

𝑛9
𝑛0

= 𝜇9. We use the same imbalance ratio
as before from 𝜌 ∈ {0.1, 0.05, 0.02, 0.005}, and test both TDR and
sample reweight on these datasets. Figure 6(a) shows the result of
this experiment on two frameworks. As it can be implied, example
reweighting has an extremely poor performance on long-tailed
dataset. This is due to perturbing weights for each sample at each it-
eration, which can introduce a large noise to the training. Figure 6(b)
exhibits the distribution of learned weights for each class in the
training process. This observation shows that, the optimal weights

0.1 0.05 0.02 0.005
Imbalance Ratio ()

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

TDR
Example Reweighting

(a)

0 0.454
Weights

0
1

2
3

4
5

6
7

8
9

Cl
as

se
s

(b)

Figure 6: (a) The test accuracy of targeted data-driven reg-
ularization vs. example reweighting for different imbal-
ance ratios 𝜌 ∈ {0.1, 0.05, 0.02, 0.005} with long-tailed MNIST
dataset. Each experiment is repeated 5 times. (b) Distribu-
tion of learned weights for each class for 𝜌 = 0.02. Each row
shows the distribution ofweights for each class during train-
ing. The size of each class is decreased exponentially, how-
ever, the learned weights are not exactly proportional to the
inverse of their size.

Figure 7: A NEXRAD level III radar image of the United
States with a bow echo onMay 24, 2008, 10:20 GMT. The bow
echo part is being magnified.

for each class would not necessarily correlate with its inverse of
frequency.

4.1.2 SevereWeather Prediction Dataset. In real-world applications,
the primary challenge is often to detect critical incidents in datasets.
Notwithstanding their importance in the classification tasks, nor-
mally those critical incidents are scarce in the dataset. Therefore,
based on earlier discussions, a typical classifier would fail miserably
in detecting these incidents.

One of the conspicuous examples is severe weather prediction
using radar, satellite, and other sensor data. Severe weather condi-
tions, such as tornadoes, thunderstorms, and straight-line winds,
are occasional phenomena, but can be spotted in radar or satellite
images with some specific patterns to provide early warnings. One
of these patterns, associated with some severe weather conditions
such as thunderstorms and straight-line winds, is called Bow Echo,
because it has archer’s bow shape pattern in radar images as it is
depicted in Figure 7. Detecting and predicting the formation of bow
echoes could help meteorologists predict related severe weather
conditions and prevent their detrimental consequences [28–30].

We use NEXRAD level III radar data in order to create our dataset
of radar images for the whole year of 2008 gathered from 160 high-
resolution radars across the United States. We will test the model

on a balanced set of bow echo and non-bow echo samples from
the year 2009. The year 2008 is chosen for training because of
a high number of severe weather activities in that year. We use
the reflectivity images of radar data, similar to Figure 7, which
are 4-bit color map with spatial size of 2, 600 × 6, 000 pixels. The
colors in these images, as indicated in Figure 7, show different
amplitude of the reflected signal in dBZ from 0 to 75 dBZ. Bow echo
patterns mostly revealed in areas with more than 50 dBZ, i.e., in
areas with orange or red colors in the images. These images are
created from radar data every five minutes; hence, we have 288
images per day, which can lead to more than 105𝐾 images every
year. Despite the enormous number of images each year, number
of images with a bow echo sample on it is very low. For instance,
in the year 2008, there are only 1, 821 images from 81 different
instances that are labeled as bow echo samples. Therefore, this
dataset, similar to other severe weather detection and prediction
datasets, is greatly imbalanced with 𝜌 = 0.017. The data distribution
is immensely skewed toward normal data points, as it is the case
for most related critical incident detection applications. Thus, we
apply TDR framework on this dataset to overcome the imbalance
problem in this case.

For this dataset, we apply TDR on ResNet20 [23] model, with
image size of 52 × 180. The target distribution is a balanced dataset
of both bow echo and non-bow echo samples from year 2008 with
the size of |𝜉𝑣 | = 273 that has 137 bow echo samples. The balanced
test set contains 3, 524 images from the year 2009, which has 1, 762
bow echo samples. In this experiment, we set 𝑏 = 50, 𝑏𝑣 = 10,
𝜂in = 0.001, and 𝜂out = 0.2. For comparison, we add the results for
hard weighting classes with inverse of their frequency and also
standard training without weights. The result of this training after
11 epochs in Figure 8 reveals that TDR has an exceptional capacity
on addressing biases problem in this dataset, by achieving more
than 86% in accuracy and 85% in bow echo recall rate.

4.2 CIFAR10 Dataset
Similar to the MNIST experiment in Figures 3 and 5, we run ex-
periments on the CIFAR10 Dataset with having the same structure
for creating imbalanced dataset of classes “4” and “9” with class
“4” as the minority class in the dataset. We run the experiment for
4 different imbalance ratios from 𝜌 ∈ {0.3, 0.2, 0.1, 0.05}. We also
choose two different network architectures, ResNet20 [23] and a
simple 4-layers ConvNet with 2 fully connected layers at the top for
classification. In order to show the efficacy of the TDR framework,
we compare with example reweighting [41], hard weighting with
inverse of class frequency, random weighting, and without any
weights. The results for the ConvNet on datasets with different im-
balance ratio are depicted in Figure 9, where the superiority of TDR
is noticeable. Example reweighting is better than random weights,
but cannot even beat the learning without any weights, nor the
hard weighting with inverse of frequency. The other major issue of
example reweighting, is the high computational complexity, which
prevents us from running it on larger networks like ResNet. The
detailed results of this experiment on both models are in Table 1,
in which TDR has the highest test accuracy on all the experiments.

In addition to two classes, we run a similar experiment to long-
tailedMNIST on CIFAR10 data. In order tomake the data long-tailed,

0 2 4 6 8 10
Epochs

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

TDR
With Hard Weights
Without Weights

(a)

0 2 4 6 8 10
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

TDR
With Hard Weights
Without Weights

(b)

0 2 4 6 8 10
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
R

at
e

TDR
With Hard Weights
Without Weights

(c)

Figure 8: Accuracy, recall, and precision rates on balanced
test dataset after 11 epochs of training for targeted-meta
learning, hard reweighting with inverse of frequency, and
without weights. The training dataset contains the complete
radar images from year 2008with 𝜌 = 0.017, while the test set
is a balanced dataset from the year 2009. Test accuracy and
recall rate on bow echo samples reach to 0.8605 and 0.855, re-
spectively.With hard weights the recall rate increases but at
the cost of decreasing precision.

0.3 0.2 0.1 0.05
Imbalance Ratio ()

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

TDR
Hard Weights
Example Reweighting
Random Weights
No Reweighting

Figure 9: Comparing the test accuracy of targeted data-
driven regularization with example reweighting, hard
weighting with inverse of frequency, random weights and
no reweighting. These experiments are run for different im-
balance ratios from 𝜌 ∈ {0.3, 0.2, 0.1, 0.05}. The dataset is CI-
FAR10 with two classes (4 and 9) and the model is a 4-layer
ConvNet. We repeat each experiment 5 times and report the
average results. The detailed results are in Table 1.

we decrease the size of classes with 𝑛𝑖 = 𝑛0𝜇𝑖 and generate two
datasets with imbalance ratio of 𝜌 ∈ {0.1, 0.2}. Then, we run our
framework as well as example reweighting, hard weighting with
inverse of class frequency, random weighting, and standard train-
ing, on two models of ResNet20 and the similar 4-layer ConvNet.
Because of the aforementioned reasons, we are not able to run
example reweighting on ResNet20 for comparison. The results of
these experiments in Table 2 indicates the superiority of TDR for

ResNet20 ConvNet
Imbalance Ratio 0.3 0.2 0.1 0.05 0.3 0.2 0.1 0.05

TDR (Ours) 0.9011
±0.018

0.9222
±0.005

0.8878
±0.049

0.8756
±0.014

0.9284
±0.004

0.9266
±0.002

0.9175
±0.004

0.9025
±0.003

Example Reweighting [41] N/A N/A N/A N/A 0.4999
±0.0

0.737
±0.133

0.5977
±0.135

0.6641
±0.15

Hard Weighting 0.8545
±0.091

0.8966
±0.034

0.8498
±0.067

0.7969
±0.155

0.9007
±0.019

0.8672
±0.021

0.9055
±0.01

0.8899
±0.006

Random Weights 0.4998
±0.002

0.5694
±0.146

0.5005
±0.002

0.5006
±0.002

0.5656
±0.147

0.5317
±0.074

0.4978
±0.002

0.499
±0.001

No Reweighting 0.6564
±0.159

0.5643
±0.114

0.5438
±0.108

0.4993
±0.108

0.8485
±0.144

0.8439
±0.145

0.7532
±0.166

0.5002
±0.002

Table 1: Experiment results on imbalanced CIFAR10 dataset with two classes of “4” and “9”, where “4” is the minority class.
We use two different models, namely, ResNet20 and a simple 4-layer ConvNet with 2 fully connected layers as the classifier.
We compare targeted data-driven regularization with example reweighting, hard weights with inverse of class frequency and
no weights or standard training.

ResNet20 ConvNet
Imbalance Ratio 0.1 0.2 0.1 0.2

TDR (Ours) 0.5602
±0.017

0.5758
±0.046

0.2596
±0.018

0.2897
±0.018

Example Reweighting [41] N/A N/A 0.0998
±0.0

0.1001
±0.0

Hard Weighting 0.367
±0.058

0.3336
±0.077

0.0921
±0.02

0.3072
±0.02

Random Weights 0.0908
±0.15

0.1062
±0.076

0.0911
±0.004

0.0961
±0.004

No Reweighting 0.3628
±0.08

0.3308
±0.066

0.4482
±0.154

0.4739
±0.154

Table 2: Experimental results on long-tailed CIFAR10, with
imbalance ratio from 𝜌 ∈ {0.1, 0.2} with two models,
ResNet20 andConvNet.Weuse𝑛𝑖 = 𝑛0𝜇𝑖 to decrease the class
size and make the dataset long-tail. Targeted data-driven
regularization achieves the best accuracies in ResNet20,
however the normal training is doing better in ConvNet,
which is not a suitable model for training of this dataset.

long-tailed CIFAR10 on ResNet20. Although ConvNet is not a suit-
able model choice for this training, we include it in the results for
better comparison, where standard training outperforms all other
weighting schemes.

4.3 Fairness in Classification
Considering the massive improvement in accuracy of machine
learning and computer vision models, concerns about fairness of
these models are arising. The issue of fairness comes from the fact
that data collection is not fair among different groups or categories.
Hence, analogous to imbalanced datasets, the dataset is skewed
more toward the majority group. For instance, in the Adult dataset,
out of 30, 162 training samples, 20, 380 samples are for male partici-
pants, while only 9, 782 samples belong to female participants. For
showing the performance of our framework on Adult dataset, we
simply use a 3-layer multilayer perceptron (MLP), with 120, 84, and
2 units, respectively, with ReLU activation on the first two layers.
We test the learned model on a balanced test set of both groups.
Table 3 shows that using TDR we can achieve better performance
on balanced set of both groups.

Balanced Test Accuracy
Normal Training 0.7511

TDR 0.7906

Table 3: The accuracy of normal training versus targeted
data-driven regularization on the Adult dataset. The test set
contains balanced number of samples for male and female
instances. It shows that TDR can achieve higher and equal
true positive rates among groups on the test dataset.

5 CONCLUSIONS & FUTUREWORK
Biases in datasets can pose a variety of problems in training a
machine learning model for out-of-distribution generalization. In
this work, we advocate the use of a small unbiased target dataset in
the form of a bilevel programming as a data-driven regularization
for the main training with biased datasets. Our proposed targeted
data-driven regularization utilizes this target dataset to learn the
weight of each designated class or category in the training process
using the bilevel program. We empirically show the efficacy of this
framework in dealing with various forms of biases in datasets.

This work leaves interesting directions as future work. First, we
believe our proposed data-driven regularization has the potential
to be used on other learning scenarios such as adversarial training,
and that is worthy of investigation. Also, time series prediction
tasks are mostly engaging with imbalanced datasets, hence it is
valuable to extend this model to temporal data classification and
prediction tasks. Finally, a non-asymptotic convergence analysis
of the proposed bilevel stochastic optimization algorithm for non-
convex objective functions on both levels can help to better analyze
the framework from a theoretical perspective.

ACKNOWLEDGMENTS
We gratefully acknowledge the generous support of the Microsoft
AI for Earth program for providing Azure services, and Nvidia
equipment grants. This work also used the Extreme Science and En-
gineering Discovery Environment (XSEDE), which is supported by
the National Science Foundation under grant number ACI-1548562.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In Proc. of the 12th
𝑈𝑆𝐸𝑁𝐼𝑋 Symposium on Operating Systems Design and Implementation (𝑂𝑆𝐷𝐼

16). 265–283.
[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classification. arXiv preprint
arXiv:1803.02453 (2018).

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning to
learn by gradient descent by gradient descent. In Advances in Neural Information
Processing Systems. 3981–3989.

[4] Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmenta-
tion generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017).

[5] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.
Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019).

[6] Tamer Basar and Geert Jan Olsder. 1999. Dynamic Noncooperative Game Theory.
Vol. 23. SIAM.

[7] Samy Bengio. 2015. Sharing representations for long tail computer vision prob-
lems. In Proc. of the ACM International Conference on Multimodal Interaction.
ACM, 1–1.

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proc. of the International Conference on Machine Learning.
ACM, 41–48.

[9] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. 2018. A systematic
study of the class imbalance problem in convolutional neural networks. Neural
Networks 106 (2018), 249–259.

[10] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Rama-
murthy, and Kush R Varshney. 2017. Optimized pre-processing for discrimination
prevention. In Advances in Neural Information Processing Systems. 3992–4001.

[11] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research 16 (2002), 321–357.

[12] Benoît Colson, Patrice Marcotte, and Gilles Savard. 2007. An overview of bilevel
optimization. Annals of Operations Research 153, 1 (2007), 235–256.

[13] Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. 2019. Two-Player Games
for Efficient Non-Convex Constrained Optimization. In Algorithmic Learning
Theory. 300–332.

[14] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-
Balanced Loss Based on Effective Number of Samples. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 9260–9269.

[15] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massim-
iliano Pontil. 2018. Empirical risk minimization under fairness constraints. In
Advances in Neural Information Processing Systems. 2796–2806.

[16] Charles Elkan. 2001. The foundations of cost-sensitive learning. In Proc. of the
International Joint Conference on Artificial Intelligence, Vol. 17. Lawrence Erlbaum
Associates Ltd, 973–978.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proc. of the International Confer-
ence on Machine Learning-Volume 70. JMLR. org, 1126–1135.

[18] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano
Pontil. 2018. Bilevel programming for hyperparameter optimization and meta-
learning. arXiv preprint arXiv:1806.04910 (2018).

[19] Saeed Ghadimi and Mengdi Wang. 2018. Approximation Methods for Bilevel
Programming. arXiv preprint arXiv:1802.02246 (2018).

[20] Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander. 2016. Satis-
fying real-world goals with dataset constraints. In Advances in Neural Information
Processing Systems. 2415–2423.

[21] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural net-
works with extremely noisy labels. In Advances in Neural Information Processing
Systems. 8535–8545.

[22] Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in
supervised learning. In Advances in Neural Information Processing Systems. 3315–
3323.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition. 770–778.

[24] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. 2016. Learning
deep representation for imbalanced classification. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition. 5375–5384.

[25] Simon Jenni and Paolo Favaro. 2018. Deep bilevel learning. In Proc. of the European
Conference on Computer Vision. 618–633.

[26] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentor-
net: Learning data-driven curriculum for very deep neural networks on corrupted
labels. In Proc. of the International Conference on Machine Learning. 2309–2318.

[27] Herman Kahn and Andy W Marshall. 1953. Methods of reducing sample size in
Monte Carlo computations. Journal of the Operations Research Society of America
1, 5 (1953), 263–278.

[28] Mohammad Mahdi Kamani, Sadegh Farhang, Mehrdad Mahdavi, and James Z
Wang. 2019. Targeted meta-learning for critical incident detection in weather
data. In Proc. of the International Conference on Machine Learning, Workshop on
Climate Change: How Can AI Help.

[29] Mohammad Mahdi Kamani, Farshid Farhat, Stephen Wistar, and James Z Wang.
2016. Shape matching using skeleton context for automated bow echo detection.
In Proc. of the IEEE International Conference on Big Data. IEEE, 901–908.

[30] Mohammad Mahdi Kamani, Farshid Farhat, Stephen Wistar, and James Z Wang.
2018. Skeleton matching with applications in severe weather detection. Applied
Soft Computing 70 (2018), 1154–1166.

[31] Mohammad Mahdi Kamani, Farzin Haddadpour, Rana Forsati, and Mehrdad
Mahdavi. 2019. Efficient Fair Principal Component Analysis. arXiv preprint
arXiv:1911.04931 (2019).

[32] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and Information Systems 33, 1
(2012), 1–33.

[33] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and
Roberto Togneri. 2018. Cost-sensitive learning of deep feature representations
from imbalanced data. IEEE Transactions on Neural Networks and Learning Systems
29, 8 (2018), 3573–3587.

[34] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In Proc. of the International Conference on Machine Learning-
Volume 70. JMLR. org, 1885–1894.

[35] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Bi-
nas, Remi Le Priol, and Aaron Courville. 2020. Out-of-distribution generalization
via risk extrapolation (rex). arXiv preprint arXiv:2003.00688 (2020).

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. Proceedings of the IEEE 86, 11
(1998), 2278–2324.

[37] Or Litany and Daniel Freedman. 2018. SOSELETO: A Unified Approach to
Transfer Learning and Trainingwith Noisy Labels. arXiv preprint arXiv:1805.09622
(2018).

[38] Wanli Ouyang, Xiaogang Wang, Cong Zhang, and Xiaokang Yang. 2016. Factors
in finetuning deep model for object detection with long-tail distribution. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition. 864–873.

[39] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In Proc. of the NIPS AutodiffWorkshop:
The Future of Gradient-based Machine Learning Software and Techniques.

[40] Geoff Pleiss, Manish Raghavan, FelixWu, Jon Kleinberg, and Kilian QWeinberger.
2017. On fairness and calibration. In Advances in Neural Information Processing
Systems. 5680–5689.

[41] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning
to Reweight Examples for Robust Deep Learning. In Proc. of the International
Conference on Machine Learning. 4334–4343.

[42] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi
Jyothi, and Sunita Sarawagi. 2018. Generalizing across domains via cross-gradient
training. arXiv preprint arXiv:1804.10745 (2018).

[43] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A Efros, and Moritz
Hardt. 2019. Test-time training for out-of-distribution generalization. arXiv
preprint arXiv:1909.13231 (2019).

[44] Kai Ming Ting. 2000. A comparative study of cost-sensitive boosting algorithms.
In Proc. of the International Conference on Machine Learning. Citeseer.

[45] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learn-
ing classification without disparate mistreatment. In Proc. of the International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 1171–1180.

A TIME COMPLEXITY COMPARISON
In this Appendix, we compare the computational complexity of
other approaches that use a data-driven regularization scheme,
closely related to our framework. Also, we show that they can be
considered as a special case of our proposed TDR framework. These
frameworks are example reweighting [41], SOSELETO [37], Mentor-
net [26], and Deep Bilevel learning [25]. In all of these frameworks,
except for deep bilevel learning, the main idea is to have different
weights in the cost function for different samples, reflecting sam-
ples’ importance in each of the aforementioned tasks. Hence, the
computational complexity of these approaches is at least 𝑡in times
the computational complexity of the TDR. Deep bilevel leaning is
similar to TDR, except for their approximation for inner level, which
makes it faster at the price of degradation in accuracy.

Example reweighting [41] uses the perturbation idea [34], where
they investigate the effect of input perturbation on the output
of a network. They try to address the problem of an imbalanced
dataset using a balanced validation set, by perturbing the weight
of each sample from zero. The main difference between example
reweighting and TDR is that they perturb each samples’ weight from
zero using the gradient direction, rather than learning the weights
with gradient descent approach. Hence, each time the network
encounters a specific example, without considering its weight in
last epoch, they assign a new weight to it using perturbation. In
addition, due to sample-based nature of the algorithm, as indicated
in the paper, the computational complexity of perturbing weights
is linear in the number of samples, while in TDR it is linear in
number of classes, which is a significant improvement. In practice,
we showed that TDR outperforms example reweighting in both
speed and accuracy. Their approach can be rewritten as a bilevel
programming similar to Algorithm 1, where 𝑡in is 1, which means
every level updates only once before going to another level. This is
equal to solving the bilevel programming as a Lagrangian form and
finding the solution for primal and dual variables in an iterative
fashion. Because of this high computational cost, applying this
method to rather large networks such as ResNet20 is not feasible,
compared to TDR.

SOSELETO introduces a framework for transfer learning using
a target dataset [37]. In this framework, they consider two mod-
els for source and target datasets, and for each model, parameters
considered as a union of two parts, namely, feature part and classi-
fication part. In both target and source models, the feature part of
the parameters is the same. They optimize the classification part’s
parameters for the target model, using a weighted loss on the source
data. Hence, learning weights for source data points and feature’s
part parameters for target model at the same time can be written as
a bilevel program. If we combine the two parameter sets together
and have a single parameter set, the framework is exactly similar
to example reweighting framework with its aforementioned issues.

Mentornet classifies a dataset with noisy labels using the cur-
riculum learning approach [8]. They train another network, with

features extracted from the main network as its input, to learn the
weight of each sample in the training operation. Similar to example
reweighting, the objective of this framework can be written as a
Lagrangian problem. It is worth noting that in this problem, the
parameters of the main network or student net are not involved
directly, but they are affected by changing the weights for each sam-
ple calculated from the simple network of 𝑔(·). The main difference
between this framework and the previous ones is that the weights
of each samples are output of a network, which should be trained
(based on the optimal weights, 1 if the main label is correct and 0
otherwise). However, in previous ones we consider the samples’
weights as a hyperparameter. Based on the optimization problem
in Eq. (3), this problem can be rewritten as a bilevel problem with
equal inner and outer functions.

While deep bilevel by [25] is closely related to our idea in order
to cast the problem as a bilevel optimization, the idea of bilevel
programming for hyperparameter tuning is not new (e.g. [18]). Fur-
ther, their idea of having different weights for different batches and
trying to learn those weights based on gradients on the validation
set is more related to [41]. Despite the relatedness among these
papers, our idea is different in three key aspects as follows:

• The main idea of TDR is to employ a target dataset that is
free of those mentioned biases as a surrogate to not well-
defined objectives in the training (when the training and
test distributions are different). In deep bilevel, they ran-
domly choose both training and validation datasets, hence,
their framework is not designed to address problems such
as imbalanced datasets. Further, their validation dataset is
changing in each epoch and is relatively big in size, which
is more like a cross-validation. However, in TDR the target
dataset is very small (|V |

|T | ≤ 0.0002), it could be part of the
training itself, and is not changing during the training, which
indicates the capability of TDR.

• The optimization approaches are completely different. They
approximate the inner level with Taylor expansion, which
makes it a quadratic function to reduce the computational
complexity of the bilevel problem by avoiding the second
order derivatives. We are approximating the bilevel program-
ming with a stochastic version of it, in which the computa-
tional complexity depends on 𝑡in.

• Their experiments are mainly focused on noise in data and
labels, like other frameworks mentioned in our paper, such
as [26, 41]. In most of these methods, the key property is
that noisy data usually have higher loss, hence they should
be ignored or weighted down to avoid their dominance in
the training. Our framework is more general because we are
not bounded to a specific problem and can adapt to different
problems by adapting the target dataset, like using a small
clean dataset as the target dataset for noisy training data.

	Abstract
	1 Introduction
	2 Related Work
	3 Targeted data-driven regularization (TDR)
	3.1 The Proposed Framework
	3.2 Stochastic Bilevel Optimizer
	3.3 Weights Interpretation

	4 Experimental Results
	4.1 Imbalanced and Long-tailed Datasets
	4.2 CIFAR10 Dataset
	4.3 Fairness in Classification

	5 Conclusions & Future Work
	References
	A Time Complexity Comparison

