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1 Introduction

Cameras on mobile phones are becoming the primary means of photo creation for
common people. Because of the convenience of mobile phones, it is effortless to
take snapshots and share with others. As a result, pictures are being created at a
much faster pace. It is estimated that as many as one trillion photos will be taken
in the year of 2015. Software tools that make it easier for average photographers
to improve photo taking will likely have broad acceptance. Understanding visual
aesthetics (Datta et al., 2006) can aid various applications including summarization
of photo collections (Obrador et al., 2010), selection of high quality images for
display (Fogarty et al., 2001), and extraction of aesthetically pleasing images for
retrieval (Obrador et al., 2009). It can also be used to render feedback to the
photographer on the aesthetics of his/her photographs.

In order to make image aesthetic quality assessment more dynamic and to
reach out to the general public with a practical perspective, we conducted
research to develop new technologies that can provide on-site feedback to the
photographers (Yao et al., 2012). We focused on feedback from a high-level
composition perspective. Composition is the art of putting components together with
conscious thoughts. In photography, it concerns the arrangement of various visual
elements, such as line, color, texture, tone, and space. Composition is closely related
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to the aesthetic qualities of photographs. Partly because the problem is not well
defined, insufficient research efforts have been placed on photographic composition
within technical fields such as image processing and computer vision. We studied
photographic composition from the perspective of spatial design, i.e., how visual
elements are geometrically arranged in a picture.

Providing instant feedback on the composition style can help photographers
reframe the subject leading to an aesthetically composed image. We recognized
that the abstraction of composition can be done by analyzing the arrangement
of the objects in the image. This led us to identify five different forms of
compositions, namely, textured images, and diagonally, vertically, horizontally, and
center composed images. In our work, these composition types are recognized
by three classifiers, i.e. the “textured” vs. “non-textured” classifier, the diagonal
element detector, and the k-NN classifier for “horizontal”, “vertical”, and “centered”
composition categories. Understanding the composition layout of the query image
facilitates the retrieval of images that are similar in composition and content.

Many other applications have been built around suggesting improvisations to the
image composition (Bhattacharya et al., 2010; Liu et al., 2001) through image re-
targeting, and color harmony (Cohen-Or et al., 2006) to enhance aesthetics. These
applications are more off-line in nature. Although they are able to provide useful
feedback, it is not on the spot, and requires considerable input from the user. On-
site professional feedback that we propose can accomplish image improvements that
are impossible once the photographer moves away from the photo-taking location.

Building upon our feedback framework, we developed a new method to provide
tonal adjustment function based on exemplar pictures chosen by the user. The
retrieved images provided by the composition feedback serve as candidates for
the exemplar. With a simple click, even on a mobile device a user can pick an
exemplar from a short list of images. Particularly in the current work, we make
use of an important composition or design concept of dark and light arrangement
of masses, sometimes referred to as “Notan” by artists. The Notan is fundamental
to a composition that artists are advised to examine the Notan of a painting before
heading out to paint (Raybould, 2014).

In the tonal adjustment, we try to reach a chosen Notan design by transforming
the tonal values. This is in some measure like the dodging and burning operations
performed in the darkroom by analog photographers. In dodging and burning, the
photographer chooses an area to darken or brighten so that details in such areas can
be brought out to enhance the overall composition. In our work, for the consideration
of both the limitation of the mobile device and the fact that general users are
not necessarily knowledgeable in photography, the computer system automatically
determines the areas that should be brightened or darkened, as well as the level
of adjustment. The decision is guided by a Notan design, which can be either
automatically suggested by the computer or selected by the user from a number
of candidates. The involvement of the user is minimal. While tonal adjustment has
been a common image processing technique, our approach offers a new perspective
because it is based on high-level composition concept of Notan rather than low-level
features such as contrast and dynamic range.
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Future generations of digital cameras are expected to have access to the high-
speed mobile network and possess substantial internal computational power, the
same way as today’s smart phones. Camera phones can already send photos to a
remote server on the Internet and receive feedback from the server (Sorrel, 2010).
As a photographer composes, the photos in a lower resolution are streamed via the
network to a cloud server. Our software system on the server analyzes the photos
and sends on-site feedback to the photographer so that immediate recomposition
can be possible. We propose a system comprising of the modules described below.

Given an input image, the composition analyzer evaluates its composition
properties from different perspectives. For example, visual elements with great
compositional potential, such as diagonals and curves, are detected. Photographs
are categorized by high-level composition properties. Composition-related qualities,
e.g., visual balance and simplicity of background, are also evaluated. Images similar
in composition as well as content can be retrieved from a database of photos with
high aesthetic ratings so that the photographer can learn through examples.

In the retrieval module, a ranking scheme is designed to integrate the
composition properties into a content-based retrieval system. In our experiments,
we used SIMPLIcity, an image retrieval system based on color, texture and shape
features (Wang et al., 2001). Images with high aesthetic ratings, as well as similar
composition properties and visual features, are retrieved. An effective way to learn
photography as a beginner is often through observing master works and imitating.
Practicing good composition in the field helps develop creative sensibility and even
unique styling. Especially for amateur photographers, well-composed photographs
can be valuable learning resources. By retrieving high-quality similarly composed
photographs, our approach can provide users with practical assistance in improving
photography composition.

In the enhancement module, tonal adjustment can be made to achieve better
composition. We explore the concept of Notan, a crucial factor in composition
regarding the arrangement of dark and light masses in an image. A new tonal
transformation method is developed to achieve the desired Notan design with
minimal required user interactions.

The rest of the chapter is organized as follows. The categorization of spatial
design is presented in Section 2, with corresponding evaluation results in Section
3. We describe our Notan-guided tonal transform in Section 4. Experiments on the
tonal transform method are provided in Section 5. We summarize in Section 6.

2 Spatial Design Categorization

After studying many guiding principles in photography,we find that there are several
typical spatial designs. Our goal is to automatically classify major types of spatial
designs. In our work, we consider the following typical composition categories:
horizontal, vertical, centered, diagonal, and textured.
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According to long-existing photography principles, lines formed by linear
elements are important because they lead the eye through the image and contribute
to the mood of the photograph. Horizontal, vertical, and diagonal lines are associated
with serenity, strength, and dynamism respectively (Krages, 2005). We thus include
horizontal, vertical, and diagonal in the composition categories. Photographs with a
centered main subject and a clear background fall into the category called centered.
The photos in the textured category appear like a patch of texture or a relatively
homogeneous pattern, for example, a brick wall.

The five categories of composition are not mutually exclusive. We apply
several classifiers sequentially to an image: textured versus non-textured, diagonal
versus non-diagonal, and finally a possibly overlapping classification of horizontal,
vertical, and centered compositions. For example, an image can be classified as
non-textured, diagonal, and horizontal. We use a method in (Wang et al., 2001) to
classify textured images. It has been demonstrated that retrieval performance can be
improved for both textured and non-textured images by first classifying them (Wang
et al., 2001). The last two classifiers are developed in the current work, with details
to be presented later.

A conventional image retrieval system returns images according to visual
similarity. However, photographers often need to search for pictures based on
composition rather than visual details. To accomodate this, we integrate composition
classification with the SIMPLIcity image retrieval system (Wang et al., 2001).
Furthermore, we provide the option to rank retrieved images by their aesthetic
ratings so that the user can focus on highly-rated photos.

2.1 The Dataset

The spatial composition classification method is tested on a dataset crawled from
photo.net, a photography community where peers can share, rate, and critique
photos. These photographs are mostly general-purpose pictures and have a wide
range of aesthetic quality. Among the crawled photos, a large proportion have
frames which can distort the visual content in image processing and impact analysis
results. We remove frames from the original images in a semi-automatic fashion.
The images containing frames are picked manually and a program is used to remove
simple frames with flat tones. Frames embedded with pattern or text usually cannot
be correctly removed. These photos are simply removed from the dataset when
we re-check the cropped images in order to make sure the program has correctly
removed the frames from images. We construct a dataset with 13,302 unframed
pictures. Those pictures are then rescaled so that the long side of the image has at
most 256 pixels. We manually labeled 222 photos, among which 50 are horizontally
composed, 51 are vertically composed, 50 are centered, and 71 are diagonally
composed. Our classification algorithms are developed and evaluated based on
this manually-labeled dataset. The entire dataset are used in system performance
evaluation.
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2.2 Textured vs. Non-textured Classifier

We use the textured vs. non-textured classifier in SIMPLIcity to separate textured
images from the rest. The algorithm is motivated by the observation that if pixels
in a textured area are clustered using local features, each cluster of pixels yielded
are scattered across the area due to the homogeneity appearance of texture. For
non-textured images, on the other hand, the clusters tend to be clumped. An image
is divided evenly into 4× 4 = 16 large blocks. The algorithm thus calculates the
proportion of pixels in each cluster that belong to any of the 16 blocks. If the cluster
of pixels is scattered over the whole image, the proportions over the 16 blocks are
expected to be roughly uniform. For each cluster, the χ2 statistic is computed to
measure the disparity between the proportions and the uniform distribution over
the 16 blocks. The average value of the χ2 statistics for all the clusters is then
thresholded to determine whether an image is textured or not.

2.3 Diagonal Design Element Detection

Diagonal elements are strong compositional constituents. The diagonal rule in
photography states that a picture appears more dynamic if the objects fall or follow a
diagonal line. Photographers often use diagonal elements as the visual path to draw
viewers’ eyes through the image.1 The visual path is the path of eye movement
when viewing a photograph (Warren, 2002). When such a visual path stands out in
the picture, it also has the effect of uniting individual parts in a picture. The power
of the diagonal lines in composition was exploited very early on by artists. For
instance, Speed (1972) discussed in great details how Velazquez used the diagonal
lines to unite a picture in his painting “The Surrender of Breda”.

Because of the importance of diagonal visual paths for composition, we create a
spatial composition category for diagonally composed pictures. More specifically,
there are two subcategories, diagonal from upper left to bottom right (\) and from
upper right to bottom left (/). We declare the composition of a photo as diagonal if
diagonal visual paths can be detected.

Detecting the exact diagonal visual paths is challenging. Typically, segmented
regions or edges provided by image processing techniques can only be viewed as
ingredients, aka local patterns, either because of the nature of the picture or the
limitation of the processing algorithms. In contrast, an element refers to a global
pattern, e.g., a broken curve (multiple detectable edges) that is present in a large
area of the image plane.

There has been literature on the general principles regarding visual elements, to
be briefly described below. We designed our algorithm for detecting diagonal visual
paths according to these principles. While we present these principles using the

1 http://www.digital-photography-school.com/using-diagonal-lines-in-photography
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diagonal category as an example, they apply in a similar way to other directional
visual paths.

Fig. 1 Photographs of diagonal composition.

1. Principle of multiple visual types: Lines are effective design elements in
creating compositions, but perfectly straight lines rarely exist in the natural
world. Lines we perceive in photographs usually belong to one of these types:
outlines of forms, narrow forms, lines of arrangement, and lines of motion or
force (Feininger, 1973). We do not restrict diagonal elements to actual diagonal
lines of an image plane. They can be the boundary of a region, a linear object, or
even an imaginary line along which different objects align. Linear objects, such
as pathways, waterways, and the contour of a building, can all create visual paths
in photographs. When placed diagonally, they are generally perceived as more
dynamic and interesting than other compositions. Figure 1 shows examples of
using diagonal compositions in photography.

2. Principle of wholes, or Gestalt Law: Gestalt psychologists studied early on the
phenomenon of human eyes perceiving visual components as organized patterns
or wholes, known as the Gestalt law of organization. According to the Gestalt
Law, the factors that aid in human visual perception of forms include proximity,
similarity, continuity, closure, and symmetry (Sternberg et al., 2008).

3. Principle of tolerance: Putting details along diagonals creates more interesting
compositions. Visual elements such as lines and regions slightly off the ideal
diagonal direction can still be perceived as diagonal and are usually more natural
and interesting.2

4. Principle of prominence: A photograph can contain many lines, but dominant
lines are the most important in regard to the effect of the picture (Folts, 2005).3

Visual elements need sufficient span along the diagonal direction in order to
strike a clear impression.

Following the above principles, we first find diagonal ingredients from low-
level visual cues using both regions obtained by segmentation and connected lines
obtained by edge detection. Then, we apply the Gestalt Law to merge the ingredients
into elements, i.e., more global patterns. The prominence of each merged entity is

2 http://www.picture-thoughts.com/photography/compos-ition/angle/
3 http://www.great-landscape-photography.com/photography-composition.html
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then assessed. We now describe the algorithms for detecting diagonal visual paths
using segmented regions and edges, respectively.

Diagonal Segment Detection: Image segmentation is often used to simplify the
image representation. It can generate semantically meaningful regions that are easier
for analysis. We describe below our approach to detecting diagonal visual paths
based on segmented regions. We use a recent image segmentation algorithm (Li,
2011) because it achieves state-of-the-art accuracy at a speed sufficiently fast for
real-time applications. The algorithm also ensures that the segmented regions are
spatially connected, a desirable trait many algorithms do not possess.

After image segmentation, we find the orientation of each segment, defined as
the orientation of the moment axis of the segment. The moment axis is the direction
along which the spatial locations of the pixels in the segment have maximum
variation. It is the first principal component direction for the set of pixel coordinates.
For instance, if the segment is an ellipse (possibly tilted), the moment axis is simply
the long axis of the ellipse. The orientation of the moment axis of a segmented
region measured in degrees is computed according to Russ (2006).

Next, we apply the Gestalt Law to merge certain segmented regions in order to
form visual elements. Currently, we only deal with a simple case of disconnected
visual path, where the orientations of all the disconnected segments are diagonal.

Let us introduce a few notations before describing the rules for merging. We
denote the normalized column vector of the diagonal direction by vd and that of
its orthogonal direction by vc

d . We denote a segmented region by S, which is a set
of pixel coordinates x = (xh,xv)

t . The projection of a pixel with coordinate x onto
any direction characterized by its normalized vector v is the inner product x · v.
The projection of S onto v, denoted by P(S,v), is a set containing the projected
coordinates of all the pixels in S. That is, P(S,v) = {x ·v : x ∈ S}. The length (also
called spread) of the projection |P(S,v)|= maxxi,x j∈S |xi ·v− x j ·v| is the range of
values in the projected set.

The rules for merging, i.e., similarity, proximity, and continuity, are listed below.
Two segments satisfying all of the rules are merged.

• Similarity: Two segments Si, i = 1,2, with orientations ei, i = 1,2, are similar if
the following criteria are satisfied:

1. Let [ϕ̌ , ϕ̂ ] be the range for nearly diagonal orientations. ϕ̌ ≤ ei ≤ ϕ̂ , i = 1,2.
That is, both S1 and S2 are nearly diagonal.

2. The orientations of Si, i = 1,2, are close:

|e1 − e2| ≤ β ,where β is a predefined threshold.

3. The lengths of P(Si,vd), i = 1,2, are close:

r =
|P(S1,vd)|
|P(S2,vd)| , r1 ≤ r ≤ r2 ,

where r1 < 1 and r2 > 1 are predefined thresholds.
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• Proximity: Segments Si, i= 1,2, are proximate if their projections on the diagonal
direction, P(Si,vd), i= 1,2, are separated by less than p, and the overlap of their
projections is less than q.

• Continuity: Segments Si, i = 1,2, are continuous if their projections on the
direction orthogonal to the diagonal, P(Si,vc

d), i = 1,2, are overlapped.

We select the thresholds according to the following:

1. β = 10◦.
2. r1 = 0.8, r2 = 1.25.
3. The values of p and q are decided adaptively according to the sizes of Si,

i = 1,2. Let the spread of Si along the diagonal line be λi = |P(Si,vd)|. Then
p = kp min(λ1,λ2) and q = kq min(λ1,λ2), where kp = 0.5 and kq = 0.8.
The value of p determines the maximum gap allowed between two disconnected
segments to continue a visual path. The wider the segments spread over
the diagonal line, the more continuity they present to the viewer. Therefore,
heuristically, a larger gap is allowed, which is why p increases with the spreads
of the segments. On the other hand, q determines the extent of overlap allowed
for the two projections. By a similar rationale, q also increases with the spreads.
If the projections of the two segments overlap too much, the segments are not
merged because the combined spread of the two differs little from the individual
spreads.

4. The angular range [ϕ̌ , ϕ̂ ] for nearly diagonal orientations is determined
adaptively according to the geometry of the rectangle bounding the image.

(a) Single stripe (b) 1
6 → 1

3 stripes (c) Angular range

Fig. 2 Diagonal orientation bounding conditions.

As stated in (Lamb et al., 2010), one practical extension of the diagonal rule is
to have the objects fall within two boundary lines parallel to the diagonal. These
boundary lines are one-third of the perpendicular distance from the diagonal to the
opposite vertex of the rectangular photograph. This diagonal stripe area is shown
in Figure 2(a). A similar suggestion is made in an online article,2 where boundary
lines are drawn using the so-called sixth points on the borders of the image plane.
A sixth point along the horizontal border from the upper left corner locates on the
upper border and is away from the corner by one-sixth of the image width. Similarly,
we can find other sixth (or third) points from any corner and either horizontally or
vertically.
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Suppose we look for an approximate range for the diagonal direction going from
the upper left corner to the bottom right. The sixth and third points with respect to
the two corners are found. As shown in Figure 2(b), these special points are used to
create two stripes marked by lime and blue colors respectively. Let the orientations
of the lime stripe and the blue stripe in Figure 2(b) be ϕ1 and ϕ2. Then we set
ϕ̌ = min(ϕ1,ϕ2), and ϕ̂ = max(ϕ1,ϕ2). A direction v ∈ [ϕ̌ , ϕ̂ ] is claimed nearly
diagonal. Similarly, we can obtain the angular range for the diagonal direction from
the upper right corner to the bottom left. The orientations of the stripes is used,
instead of nearly diagonal bounding lines, because when the width and the height of
an image are not equal, the orientation of a stripe twists toward the elongated side
to some extent.

From now on, a “segment” can be a merged entity of several segments originally
provided by the segmentation algorithm. For brevity, we still call the merged entity a
segment. Applying the principle of tolerance, we filter out a segment from diagonal
if its orientation is outside the range [ϕ̌ , ϕ̂ ], the same rule that was applied to the
smaller segments before merging.

After removing non-diagonal segments, at last, we apply the principle of
prominence to retain only segments with a significant spread along the diagonal
direction. For segment S, if |P(S,vd)| ≥ kl × l, where l is the length of the diagonal
line and kl =

2
3 is a threshold, the segment is declared a diagonal visual path. It is

observed that a diagonal visual path is often a merged entity of several small and not
prominent individual segments originally produced by the segmentation algorithm.

Diagonal Edge Detection: According to the principle of multiple visual types,
besides segmented regions, lines and edges can also form visual paths. Moreover,
segmentation can be unreliable sometimes because over-segmentation and under-
segmentation often cause diagonal elements to be missed. We observe that among
photographs showing diagonal composition, many contain linear diagonal elements.
Those linear diagonal elements usually have salient boundary lines along the
diagonal direction, which can be found through edge detection. Therefore, we use
edges as another visual cue, and combine the results obtained based on both edges
and segments to increase the sensitivity of detecting diagonal visual paths.

We use the Edison algorithm for edge detection (Meer and Georgescu, 2001). It
has been experimentally demonstrated that the edge detection can generate cleaner
edge maps than many other methods. We examine all the edges to find those oriented
diagonally and significant enough to be a visual path.

Based on the same set of principles, the whole process of finding diagonal visual
paths based on edges is similar to the detection of diagonal segments. The major
steps are described below. We denote an edge by E , which is a set of coordinates of
pixels located on the edge. As with segments, we use the notation P(E,v) for the
projection of E on a direction v.

1. Remove non-diagonal edges: First, edges outside the diagonal stripe area, as
shown in Figure 2(a), are excluded. Second, for every edge E , compute the spread
of the projections sd = |P(E,vd)| and so = |P(E,vc

d)|. Recall that vd is the
diagonal direction and vc

d is its orthogonal direction. Based on the ratio sd/so, we
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compute an approximation for the orientation of edge E . Edges well aligned with
the diagonal line yield a large value of sd/so, while edges well off the diagonal
line have a small value. We filter out non-diagonal edges by requiring sd/so ≥ ζ .
The choice of ζ will be discussed later.

2. Merge edges: After removing non-diagonal edges, short edges along the diagonal
direction are merged into longer edges. The merging criterion is similar to
the proximity rule used for diagonal segments. Two edges are merged if their
projections onto the diagonal line are close to each other but not excessively
overlapped.

3. Examine prominence: For edges formed after the merging step, we check their
spread along the diagonal direction. An edge E is taken as a diagonal visual
element if |P(E,vd)| ≥ ξ , where ξ is a threshold to be described next.

The values of thresholds ζ and ξ are determined by the size of a given image. ζ
is used to filter out edges whose orientations are not quite diagonal, and ξ is used to
select edges that spread widely along the diagonal line. We use the third points on
the borders of the image plane to set bounding conditions. Figure 2(c) shows two
lines marking the angular range allowed for a nearly diagonal direction from the
upper left corner to the lower right corner. Both lines in the figure are off the ideal
diagonal direction to some extent. Let ζ1 and ζ2 be their ratios of sd to so, and ξ1
and ξ2 be their spreads over the diagonal line. The width and height of the image are
denoted by w and h. By basic geometry, we can calculate ζi and ξi, i = 1,2, using
the formulas:

ζ1 =
h2 + 3w2

2hw
, ζ2 =

3h2 +w2

2hw
, ξ1 =

h2 + 3w2

3
√

h2 +w2
, ξ2 =

3h2 +w2

3
√

h2 +w2
.

The thresholds are then set by ζ = min(ζ1,ζ2) and ξ = min(ξ1,ξ2).

2.4 Horizontal, Vertical and Centered Compositions

Now we present our method for differentiating the remaining three composition
categories: horizontal, vertical, and centered. Photographs belonging to each of
these categories have distinctive spatial layouts. For instance, a landscape with
blue sky at the top and a grass field at the bottom conveys a strong impression
of horizontal layout. Images from a particular category usually have some segments
that are characteristic of that category, e.g., a segment lying laterally right to left for
horizontal photographs, and a homogeneous background for centered photographs.

In order to quantitatively characterize spatial layout, we define the spatial
relational vector (SRV) of a region to specify the geometric relationship between
the region and the rest of the image. The spatial layout of the entire image is
then represented by the set of SRVs of all the segmented regions. The dissimilarity
between spatial layouts of images is computed by the IRM distance (Li et al., 2000).
Ideally, we want to describe the spatial relationship between each semantically
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meaningful object and its surrounding space. However, object extraction is
inefficient and extremely difficult for photographs in general domain, regions
obtained by image segmentation algorithms are used instead as a reasonable
approximation.

The SRV is proposed to characterize the geometric position and the peripheral
information about a pixel or a region in the image plane. It is defined at both the pixel
level and the region level. When computing the pixel-level SRV, the pixel is regarded
as the reference point, and all the other pixels are divided into eight zones by their
relative positions to the reference point. If the region that contains the pixel is taken
into consideration, SRV is further differentiated into two modified forms, inner SRV
and outer SRV. The region-level inner (outer) SRV is obtained by averaging pixel-
level inner (outer) SRVs over the region. Details about SRV implementation are
given below. SRV is scale-invariant, and depends on the spatial position and the
shape of the segment.

(a) (b)

Fig. 3 Division of the image into eight angular areas with respect to a reference pixel.

At a pixel with coordinates (x,y), four lines passing through it are drawn.
As shown in Figure 3(a), the angles between adjacent lines are equal and stride
symmetrically over the vertical, horizontal, 45◦ and 135◦ lines. We call the eight
angular areas of the plane upper, upper-left, left, bottom-left, bottom, bottom-right,
right, and upper-left zones. The SRV of the pixel (x,y) summarizes the angular
positions of all the other pixels with respect to (x,y). Specifically, we calculate the
area percentage vi of each zone, i = 0, ...,7, with respect to the whole image and
construct the pixel-level SRV Vx,y by Vx,y = (v0,v1, ...,v7)

t .
The region-level SRV is defined in two forms, called inner SRV, denoted by V ′,

and outer SRV, denoted by V ′′, respectively. At any pixel in a region, we can divide
the image plane into eight zones by the above scheme. As shown in Figure 3(b),
for each of the eight zones, some pixels are inside the region and some are outside.
Depending on whether a pixel belongs to the region, the eight zones are further
divided into 16 zones. We call those zones within the region as inner pieces and
those outside as outer pieces. Area percentages of the inner (or outer) pieces with
respect to the area inside (or outside) the region form the inner SRV V ′

x,y (or outer
SRV V ′′

x,y) for pixel (x,y).
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The region-level SRV is defined as the average of pixel-level SRVs for pixels
in that region. The outer SRV VR

′′ of a region R is VR
′′ = ∑(x,y)∈R Vx,y

′′/m, where
m is the number of pixels in region R. In practice, to speed up the calculation,
we may subsample the pixels (x,y) in R and compute VR

′′ by averaging over only
the sampled pixels. If a region is too small to occupy at least one sampled pixel
according to a fixed sampling rate, we compute VR

′′ using the pixel at the center of
the region.

We use the outer SRV to characterize the spatial relationship of a region with
respect to the rest of the image. Then an image with N segments Ri, i = 1, ..., N,
can be described by N region-level outer SRVs, V ′′

Ri
, i = 1, ..., N, together with the

area percentages of Ri, denoted by wi. In summary, an image-level SRV descriptor
is a set of weighted SRVs: {(V ′′

Ri
,wi), i = 1, ...,N}. We call this descriptor the spatial

layout signature.
We use k-NN to classify the three composition categories: horizontal, vertical,

and centered. Inputs to the k-NN algorithm are the spatial layout signatures of
images. The training dataset includes equal number of manually-labeled examples
in each category. In our experiment, the sample size for each category is 30. The
distance between the spatial layout signatures of two images is computed using the
IRM distance. The IRM distance is a weighted average of the distances between any
pair of SRVs, one in each signature. The weights are assigned in a greedy fashion
so that the final weighted average is minimal. Details about IRM are referred to (Li
et al., 2000; Wang et al., 2001).

We conducted our experiments on a single compute node with two quadcore Intel
processors running at 2.66 GHz and 24 GB of RAM. For the composition analysis
process, the average time to process a 256× 256 image is three seconds, including
image segmentation (Li, 2011), edge detection (Meer and Georgescu, 2001), and
the composition classification as described.

2.5 Composition-sensitive Photo Retrieval

The classic approach taken by many image retrieval systems (Datta et al., 2008)
is to measure the visual similarity based on low-level features. A large family
of visual descriptors have been proposed in the past to characterize images from
the perspectives of color, texture, shape, interesting points, etc. However, due to
the fact that many visual descriptors are generated by local feature extraction
processes, the overall spatial composition of the image is usually lost. In semantic
content oriented applications, spatial layout information of an image may not
be critical. But for photography applications, the overall spatial composition can
be a critical factor affecting how an image is perceived. For photographers,
it is often more interesting to search for photos with similar composition or
design style rather than visual details. As described above, our algorithms capture
strong compositional elements in photos and classify them into six composition
categories, with five main categories named textured, horizontal, vertical, centered,
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and diagonal, and the diagonal category is further divided into two categories
diagonalulbr (upper left to bottom right) and diagonalurbl (upper right to bottom
left). The composition classification is used in the retrieval system to return images
with similar composition.

We use the SIMPLIcity system to retrieve images with similar visual content,
and then re-rank the top K images by considering their spatial composition
and aesthetic ratings. SIMPLIcity is a semantic-sensitive region-based image
retrieval system. IRM is used to measure visual similarity between images. For a
thorough description of algorithms used in SIMPLIcity, readers are referred to the
original publication (Wang et al., 2001). In our system, the rank of an image is
determined by three factors: its visual similarity to the query, the spatial composition
categorization, and the aesthetic rating. Since these factors are of different modality,
we use a ranking scheme rather than a complicated scoring equation.

Given a query, we first retrieve K images through SIMPLIcity, which gives us an
initial ranking. When composition is taken into consideration, images with the same
composition categorization as the query are moved to the top of the ranking list.

(a) | and \
(b) − and / (c) | and / (d) | and /

Fig. 4 Photographs classified into multiple categories. Categories are shown with symbols.

The composition classification is non-exclusive in the context of image retrieval.
For instance, a textured image can be classified concurrently into horizontal,
vertical, or centered categories. We code the classification results obtained from
the classifiers by a six-dimensional vector c, corresponding to six categories (recall
that the diagonal category has two subcategories diagonalulrb and diagonalurbl).
Each dimension records whether the image belongs to a particular category,
with 1 being yes and 0 no. Note that an image can belong to multiple classes
generated by different classifiers. The image can also be assigned to one or more
categories among horizontal, vertical, and centered, if neighbors belonging to the
category found by k-NN reach a substantial number (in our experiments k/3 is
used). Non-exclusive classification is more robust than exclusive classification in
practice because a photograph may be reasonably assigned to more than one
composition category. Non-exclusive classification can also reduce the negative
effect of misclassification into one class. Figure 4 shows example pictures that are
classified as more than one category.

The compositional similarity between the query image and another image can be
defined as
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si =
3

∑
k=0

I(cqk = cik and cqk = 1)+ 2
5

∑
k=4

I(cqk = cik and cqk = 1),

where cq and ci are categorization vectors for the query image and the other image,
and I is the indicator function returning 1 when the input condition is true, 0
otherwise. The last two dimensions of the categorization vector correspond to the
two diagonal categories. We multiply the matching function by 2 to encourage
matching of diagonal categories in practice. Note that the value of si is between
0 and 6, because one image can at most be classified into five categories, which
are textured, diagonalulbr, diagonalurbl and two of the other three. Therefore by
adding composition classification results, we divide the K images into 8 groups
corresponding to compositional similarity from 0 to 7. The original ranking based
on visual similarity remains within each group. Although the composition analysis
is performed on the results returned by SIMPLIcity, we can modify the influence
of this component in the retrieval process by adjusting the number of images K
returned by SIMPLIcity. The larger K is, the stronger factor composition is to overall
retrieval.

3 Evaluation Results on Composition Feedback

The spatial design categorization process was incorporated as a component into
our OSCAR (On-Site Composition and Aesthetics feedback through exemplars)
system (Yao et al., 2012). User evaluation was conducted on composition layout
classification, similarity and aesthetics quality of retrieved images, and the
helpfulness of the feedback for improving photography. We only present results
for the study on composition classification here. Interested readers are referred
to that paper for comprehensive evaluation results. Professional photographers or
enthusiasts would have been ideal subjects for such studies. However, due to time
constraints, we were unable to recruit professionals. Instead, we recruited around
30 students, most of whom were graduate students at Penn State with practical
knowledge of digital images and photography. All photos used in these studies are
from photo.net.

A collection of around 1,000 images were randomly picked to form the dataset
for the study on composition. Each participant is provided with a set of 160
randomly-chosen images and is asked to describe the composition layout of each
image. At an online site, the participants can view pages of test images, next to
each of which are seven selection buttons: “Horizontal”, “Vertical”, “Centered”,
“Diagonal (upper left, bottom right)”, “Diagonal (upper right, bottom left)”,
“Patterned”, and “None of the above”. Multiple choices are allowed. We used
“Patterned” for the class of photos with homogeneous texture (or the textured class
in our earlier description). We added the “none of the above” choice to allow more
flexibility for the user’s perception. A total of 924 images were voted each by three
or more users.
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In order to understand compositional clarity, we examine the variation in
users’ votes on composition layout. We quantify the ambiguity in the choices of
composition layout using entropy. The larger the entropy in the votes, the higher
the ambiguity is in the composition layout of the image. The entropy is calculated
by the formula ∑ pi log1/pi, where pi, i = 0, ...,6, is the percentage of votes for
each category. The entropy was calculated for all 924 photos and its value was
found to range between 0 and 2.5 . We divided the range of entropy into five bins.
The photos are divided into seven groups according to the composition category
receiving the most votes. In each category, we compute the proportion of photos
yielding a value of entropy belonging to any of the five bins. These proportions are
reported in Table 1. We observe that among the seven categories, horizontal and
centered categories have the strongest consensus among users, while “none of the
above” is the most ambiguous category.

Table 1 Distribution of the entropy for the votes of users. For each composition category, the
percentage of photos yielding a value of entropy in any bin is shown. h: horizontal, v: vertical,
c: centered, ulbr: diagonal (upper left, bottom right), urbl: diagonal (upper right, bottom left), t:
textured, none: none of the above.

[0,0.5] (0.5,1.0] (1.0,1.5] (1.5,2.0] (2.0, 2.5]
h 36.12 29.96 17.18 15.42 1.32
v 12.98 45.67 19.71 20.19 1.44
c 25.36 45.48 13.12 14.87 1.17

ulbr 12.99 44.16 19.48 19.48 3.90
urbl 16.87 43.37 18.07 20.48 1.20

t 10.77 36.92 10.77 36.92 4.62
none 6.59 39.56 17.58 34.07 2.20

We evaluate our composition classification method in the case of both exclusive
classification and non-exclusive classification. The users’ votes on composition are
used to form the ground truth, with specifics to be explained shortly. We consider
only six categories, i.e. horizontal, vertical, centered, diagonalulbr, diagonalurbl and
textured for this analysis. The “none of the above” category was excluded for the
following reasons.

• The “none of the above” category is of great ambiguity among users, as shown
by the above analysis.

• Only a very small portion of images is predominantly labeled as “none of the
above”. Among the 924 photos, 17 have three or more votes for “none of the
above”.

• We notice that these 17 “none of the above” photos vary greatly in visual
appearance; and hence it is not meaningful to treat such a category as a
compositionally-coherentgroup. It is difficult to define such a category. A portion
of images in this category shows noisy or complex scenes without clear centers
of attention. This can be a separate category for consideration in future work.
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We conducted exclusive classification only on photos of little ambiguity
according to users’ choices of composition. The number of votes a category can
receive ranges from zero to five. To be included in this analysis, a photo has to
receive three or more votes for one category (that is, the ground-truth category) and
no more than one vote for any other category. With this constraint, 494 out of the 924
images were selected. Table 2 is the confusion matrix based on this set of photos.

Table 2 The confusion matrix for exclusive classification of 494 images into six composition
categories. Each row corresponds to a ground truth class. h: horizontal, v: vertical, c: centered,
ulbr: diagonal (upper left, bottom right), urbl: diagonal (upper right, bottom left), t: textured, none:
none of the above.

h v c ulbr urbl t

h 107 0 20 3 8 4

v 1 32 39 3 2 10

c 10 7 132 8 11 12

ulbr 4 0 5 18 0 2

urbl 2 1 13 0 22 1

t 0 2 6 0 0 9

We see that the most confusing category pairs are vertical vs. centered and
diagonalurbl vs. centered. Figure 5(a) shows some examples labeled as vertical
by users while classified as centered by our algorithm. We observe that the
misclassification is mainly caused by the following: (1) vertical images in the
training dataset cannot sufficiently represent this category; (2) users are prone to
label images with vertically elongated objects as vertical although such images
may be classified as centered in the training data; and (3) the vertical elements
fail to be captured by image segmentation. Figure 5(b) gives diagonalurbl examples
mistakenly classified as centered. The failure to detect diagonal elements results
mainly from: (1) diagonal elements located beyond the diagonal tolerance set by
our algorithm; and (2) imaginary diagonal visual paths, e.g., the direction of an
object’s movement.

In non-exclusive classification, the criterion for a photo being assigned to one
category is less strict than in the exclusive case. A photo is labeled as a particular
category if it gets two or more votes on that category. In total there are 849 out of
the 924 photos with at least one category voted twice or more. The results reported
below is based on these 849 photos.

The composition categorization of a photo is represented by a six-dimensional
binary vector, with 1 indicating the presence of a composition type, and 0 the
absence. Let M = (m0, ...,m5) and U = (u0, ...,u5) denote the categorization vector
generated by our algorithm and by users respectively. The value m0 is set to 1 if and
only if there are 10 or more nearest neighbors (among 30) labeled as horizontal. The
values of m1 and m2, corresponding to the vertical and centered categories, are set
similarly. For the diagonal categories, mi, where i = 3,4, is set to 1 if any diagonal
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(a)

(b)

Fig. 5 Photo examples mistakenly classified as centered by our algorithm. (a) Photos labeled as
vertical by users. (b) Photos labeled diagonalurbl by users.

element is detected by our algorithm. Finally, m5 is set to 1 if the textured versus
non-textured classifier labels the image as textured. Three ratios are computed to
assess the accuracy of the non-exclusive classification.

• Ratio of partial detection r1: the percentage of photos for which at least one of
the user labeled categories is declared by the algorithm. Based on the 849 photos,
r1 = 80.31%.

• Detection ratio r2: the percentage of photos for which all the user labeled
categories are captured by the algorithm. Define M 	 U if m j ≥ u j for any j ∈
[0,5]. So r2 is the percentage of images for which M 	U . We have r2 = 66.00%.

• Ratio of perfect match r3: the percentage of photos for which M = U . We have
r3 = 33.11%.

4 Notan-guided Tonal Transform

The tonal value, i.e. the luminance, in a picture is a major factor for the visual
impression conveyed by the picture. In art, the luminance at a location is simply
called the value. Artists have remarked on the prominent role of values even for
color paintings. Speed (1972) wrote:

“By drawing is here meant the expression of form upon a plane surface. Art probably owes
more to form for its range of expression than to color. Many of the noblest things it is
capable of conveying are expressed by form more directly than by anything else. And it is
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interesting to notice how some of the world’s greatest artists have been very restricted in
their use of color, preferring to depend on form for their chief appeal.”

While recognizing the importance of color, Payne (2005) remarked “Perhaps color
might be called a non-essential factor in composition, since unity may be created
without it.” Regarding values, Payne (2005) wrote:

“Dark and light usually refers to the range of values in the entire design while light and
shade generally denote the lighted and shaded parts of single items. Both light and dark and
light and shade are active factors in composition.”

The use of light and shade to create the sense of solidity or relief on a plane surface, a
technique called chiaroscuro, is an invention in the West. The giants in art, Leonardo
Da Vinci, Raphael, Michelangelo, and Titian, are masters of this technique. The
art of the East has a very different tradition, emphasizing the arrangement of dark
and light in the overall design. Speed (1972) called this approach of the East mass
drawing. Again quoting from (Speed, 1972),

“The reducing of a complicated appearance to a few simple masses is the first necessity of
the painter. . . . The art of China and Japan appears to have been more influenced by this
view of natural appearances than that of the West has been, until quite lately. . . . Light
and shade, which suggest solidity, are never used, a wide light where there is no shadow
pervades everything, their drawing being done with the brush in masses. (referring to the
East art)”

Until fairly modern time, Chinese paintings were mostly done in black ink,
and even the colored ones have very limited range in chroma. In Chinese ink
painting, a graceful juxtaposition of dark and light is a preeminent principle for
aesthetics, called Nong-Dan. “Nong” literally means high concentration in liquid
solution, while “Dan” means thin concentration. For ink, Nong-Dan refers to the
concentration of black pigment. Hence, “Nong” leads to dark, and “Dan” leads to
light. The same concept is used in Japanese painting and the Japanese imported
directly the two Chinese characters in Kanji. The English translation from Kanji is
Notan.

Relatively recently, Notan has been used in the West as a compact word meaning
the overall design in black and white, or a small number of tonal scales. Mass Notan
study focuses on the organization of simplified tonal structure rather than details. For
example, a scene is reduced to an arrangement of major shapes (mass) with different
levels of tonal values. The goal of a mass Notan study is to create a harmonious
and balanced design (or “big picture”). Raybould (2014) recommends strongly the
practice of mass Notan study as an initial step in painting to secure balanced and
pleasing composition.

The essence of Notan is also well recognized in photography. Due to the
difficulty in controlling light, especially in outdoor environments, photographers
use dodging and burning techniques to achieve desired exposures for regions that
cannot be reached by a single shot. Traditionally, dodging and burning are darkroom
techniques applied during the film-to-paper printing process to alter the exposure of
certain areas without affecting the rest of the photo. Specifically, dodging brightens
an area, and burning darkens. Ansel Adams extensively used dodging-and-burning
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techniques in developing many of his famous prints. He mentioned in his book The
Print (Adams, 1995) that most of his prints are not the reproduction of the scenes but
instead his visualization of the scenes. As Ansel Adams put it, “dodging and burning
are steps to take care of mistakes God made in establishing tonal relationships.”

In the digital era, to realize one’s personal visualization, a photographer can
modify the tonal structure using photo editing software. However, applying dodging
and burning digitally can be time-consuming and requires a considerable level of
mastery in photography, both technically and artistically.

In our work, we aim at developing a system that performs dodging and burning
kind of adjustments on the tonal values of photographs with minimum user
involvement. This is motivated by the need to enhance photos on mobile devices
and to reach a broader set of users. The restrictive interface of the mobile device
prohibits extensive manual photo editing. Moreover, an average user may not have
sufficient art understanding and professional patience to improve the composition
effectively, as the process can be much more sophisticated than a mere change of
dynamic range or contrast. Although most people are clear about whether they find
a photo aesthetically pleasing, it is a different matter when it comes to creating an
aesthetically pleasing picture. This is the gap between an amateur and an artist.

Our system, targeting an average user, makes photo composition editing nearly
automatic. In fact, the only involvement of a user is to input his/her judgment
on whether a picture or a design is appealing or desired. It is a small step to
turn the system fully automatic, but we feel that it is actually beneficial to inject
some personal taste as allowed by the amount of interaction on the mobile device.
Specifically, two strategies are exploited. First, to enhance a picture, a collection
of Notan structures are created based on the original picture. A user can select
a favorite Notan or the system chooses one closest to the Notan structure of an
exemplar picture. This helps the user pinpoint easily a favored design. Second, in
order to make the altered picture convey such a design, tonal transform is applied.
This step is automatic by matching the tonal value distributions with those of the
exemplar picture. The differences between our system and some existing tonal
transform methods will be discussed at a more technical level in a short moment.
In the current work, we assume a given exemplar picture. As an extension to the
work, we can invoke a search engine using text and/or images to suggest exemplar
pictures. A plethora of highly-aesthetic online photo collections exist.

Prior research most relevant to ours includes style transfer and tone reproduction.
As a particular type of style, color transfer studies the problem of applying the
color palette of a target image to a source image, essentially reshaping the color
distribution of the source image to accord with the target at some cost. The
histogram matching algorithm derives a tone-mapping function from the cumulative
density functions of the source and the target. Various techniques have been
developed (Reinhard et al., 2001; Abadpour and Kasaei, 2006; Xiao and Ma, 2006;
Pitie and Kokaram, 2007; Pitie and Dahyot, 2007; Xiao and Ma, 2009; Papadakis et
al., 2011; Pouli and Reinhard, 2011). These methods process the color distribution
globally and do not consider spatial information. Pixels of the same color are subject
to the same transformation regardless of whether they are in dark or light regions.
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Artifacts can be easily brought in when the source histogram is very different from
the target. Wen et al. (2008) conducted color transfer between corresponding regions
chosen by the user in the source image and the target image. Tai et al. (2005)
formed correspondence between segmented regions in the source image and the
target before color transfer.

4.1 Method Overview

Let us first define a few terminologies. Source image is the image to be altered, while
the exemplar image serves as a good example for the luminance distribution and
possibly the Notan as well. The Notan we intended to obtain for the source image
is source Notan, while the Notan of the exemplar image is called exemplar Notan.
The tonal value or luminance will also be referred to as intensity in the sequel.

The outline of the Notan-guided tonal transform is as follows.

• Identify the source Notan and exemplar Notan.
• Perform Notan-guided region-wise histogram matching between the source

image and the exemplar image.
• Postprocess the transformed image to remove possible artifacts at region

boundaries.

The source and exemplar images are subject to segmentation by the algorithm
in (Li, 2011). The average luminance of each segment is computed. To obtain the
exemplar Notan, we first obtain a binarization threshold for the luminance using
Otsu’s method (Otsu, 1979) which assumes a bimodal distribution and calculates
the optimum threshold such that the two classes separated by the threshold have
minimal intra-class variance. This threshold decides whether any segmented region
in the exemplar image is either dark (below threshold) or light (above). The source
Notan can be obtained by different schemes. When the luminance threshold slides
from small to large, more segmented regions in the source image are marked as dark.
Because there are only finitely many segments, there are only finitely many possible
Notans by thresholding at different values. With n segments, there are at most n+1
Notans. We can either let the algorithm choose a Notan automatically for the source
image or let the user select his favorite Notan from the candidates. In the fully
automatic setting, we have tested two schemes. We can either use Otsu’s method to
decide the threshold between dark and light (Automatic Scheme 1) or choose the
source Notan with the proportion of dark area closest to that of the exemplar Notan
(Automatic Scheme 2).

The algorithm for Notan-guided region-wise histogram matching will be
presented later. The proposed approach differs from existing work in several ways.
Instead of deriving a global tone-mapping function from two intensity distributions,
a mapping function is obtained for each region in the source image. The mapping
function is parameterized by the generalized logistic function. Although the regions
are subject to different transforms, the parameters in the region-wise mapping
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functions are optimized simultaneously to minimize an overall matching criterion
between the source and the exemplar images. The approach does not require a
correspondence established between regions in the two images. Furthermore, as
elaborated in the next subsection, the spatial arrangement of dark and light, as
embedded in Notan, plays an important role in determining the transform. In another
word, the tonal transform is not just for matching two intensity histograms, but also
an attempt to reach certain spatial patterns of dark and light.

Compared with traditional histogram-manipulation algorithms, one advantage of
applying transformation functions in a region-wise fashion is to avoid noisy artifacts
within regions. However, its performance depends on region segmentation to some
extent. If the same object is mistakenly segmented into several regions, different
transformation functions applied on its parts may cause artifacts. In real dodging
and burning practice, a similar situation can be remedied by careful localized motion
of the covering material during the darkroom exposure development or applying a
subtle dodging/burning brush over a large area in digital photo editing software.
We use fuzzy region maps to cope with this problem. Bilateral filter is employed
to generate fuzzy maps for regions. Bilateral filter is well known for its edge-
preserving property. It considers both spatial adjacency and intensity similarity. We
use the fast implementation in (Paris and Durand, 2009).

4.2 Region-wise Histogram Matching

The intensity histogram records the proportion of pixels at a series of tonal scales,
but not where the tonal values locate in the image. In this subsection, we describe
the method for region-wise histogram matching between the source and exemplar
images. A certain level of spatial coherence is obtained by the region-wise approach
in comparison to the existing methods of global histogram matching. In the next
subsection, we will revise the histogram-matching criterion to take into account
Notan, thereby attempting directly to achieve a favored spatial design.

A sub-histogram is defined as the intensity histogram of a region. The image
segmentation algorithm in (Li, 2011) is used to divide an image into semantically
meaningful regions. The image is converted into the CIELab color space and the
luminance channel is extracted to build the per region sub-histogram. The range
of the intensity values is [0,1]. In the discussion below, the histogram is in fact a
probability density function. We use the terminology “histogram” loosely here to be
consistent with the often-used term “histogram matching.”

Let Hi(x), x ∈ [0,1] be the sub-histogram for the ith region and n be the number
of regions. Let H(x) be the histogram for the entire image. We parameterize Hi(x)
by a single Gaussian or a two component Gaussian mixture. The main reason to use
a Gaussian mixture instead of the usual histogram obtained by discretization is to
ensure smoothness of H, a necessity for applying an optimization software package
used in the region-wise histogram-matching algorithm. Although Hi(x) should have
finite support, we ignore the tail of the Gaussian distribution because the variance of
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X is usually small in a single region obtained by similarity-based segmentation. The
two-component option is provided to accommodate intensity distributions of clearly
textured regions. Suppose the number of components for Hi(x) is Ki ∈ {1,2}. We
have

H(x) =
n

∑
i=1

Hi(x) =
n

∑
i=1

Ki

∑
j=1

pi j
1√

2πσi j
exp− (x− ui j)

2

2σ2
i j

.

We use an unsupervised clustering algorithm (Bouman, 1997) to estimate Ki and
the mean μi j and the variance σi j of each component. Similarly, the intensity
distribution of the exemplar image H̃ is also approximated by GMM. Instead
of summing over sub-histograms, a single GMM with K̃ components is used to
represent the entire image. K̃ is also estimated by the algorithm in (Bouman, 1997).

To measure the distance between two distributions with support on [0,1], we use
the integrated difference between their cumulative density functions (Werman and
Rosenfeld, 1985):

D(H, H̃) =

∫ 1

0

(∫ λ

0
H(x)dx−

∫ λ

0
H̃(x)dx

)2

dλ . (1)

We adopt a special case of the generalized logistic function as the tone-mapping
function. The generalized logistic function is defined as

Y (x) = A+
K −A

(1+Qe−B(x−M))1/v
.

The general expression above provides a high degree of flexibility. We retain only
two parameters b and m to allow changes in curvature and translation of the
inflection point (Verhulst, 1838).

Y (x) =
1

1+ e−b(x−m)
. (2)

The reason for choosing the above function is that it can accomplish different types
of tonal adjustment by setting different parameters, allowing a unified expression for
the transformation functions. Moreover, the logistic curve tends to preserve contrast.
Figure 6 illustrates some tone-mapping curves generated by (2) with different values
of b and m.

We constrain the parameter space of b and m such that Y (x) in Equation (2)
is monotonically increasing and the intensity range after transformation is not
compressed too much. The first condition can be met provided b> 0. For the second
condition, we set two thresholds t0 and t1 such that:

Y (0) =
1

1+ ebm ≤ t0 , Y (1) =
1

1+ e−b(1−m)
≥ t1 . (3)

A right (left) translation of the inflection point, i.e. m >> 0.5 (m << 0.5), will
darken (brighten) the region, causing a burning (dodging) effect.
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Fig. 6 Tone-mapping curves with various parameters.

Let the parameters of the transform Y (x) for the ith region be bi and mi.
For the overall image, the tonal transformation is then parameterized by T =
{m1,b1, ...,mn,bn}. After we apply the transformation functions on individual
regions, the intensity distribution of the modified image becomes

H(y;T ) =
n

∑
i=1

dXi(y)
dy

Hi(Xi(y);T ) ,

where Xi(y) = Y−1
i (y) . (4)

We cast region-wise histogram matching as an optimization problem. The
objective function F(T ) measures the distance between the intensity distributions
of the transformed source image and the exemplar image. Suppose the source image
contains n regions with average intensities μi, i = 1, ..., n, and the average intensities
of the regions after tone mapping become μ ′

i , i = 1, ..., n. The optimization problem
for the region-wise histogram matching is:

F(T ) = min
T

D(H(y;T ), H̃(y)) ,

s.t. (μi − μ j)(μ ′
i − μ ′

j)≥ 0 ,

∀1 ≤ i ≤ n, 1 ≤ j ≤ n . (5)

Recall D is the distance defined in (1). The optimization is constrained so that the
original order of region intensities is retained (the relative brightness of the regions
will not be reversed). We use the package called CFSQP developed at the University
of Maryland (Lawrence et al., 1994) to solve the optimization.

The major problem with the global tone-mapping function is the complete loss
of the spatial information. The approach of transferring color between matched
regions is intuitive but requires correspondence between regions, which is only
meaningful for images very similar in content. For example, Figure 7 (a) shows
a pair of images taken as the source image and the exemplar image. Their intensity
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(a) Left to right: the source image, the exemplar image, the intensity histograms
(gray for the source image and blue for the exemplar).

(b) First three images from left to right: the modified image by histogram matching,
by color normalization, and by region-wise adjustment. Last image: the segmented regions.
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(c) Tone-mapping curves. Left: histogram matching (blue) and color normalization (red).
Right: Transformation functions for different regions (red curve for black region;

green for gray region; and blue for white region).

(d) Left to right: histograms for the segmented region shown in black, region in gray, region in
white, and the entire image before and after matching. The histograms in gray are for the original

image before matching; red for the modified image; and blue for the exemplar image.
Row 1: results for global histogram matching. Row 2: color normalization.

Row 3: region-wise histogram matching.

Fig. 7 Comparison between global and region-wise tone mapping.

distributions are very different from each other. Figure 7 compares two global
approaches, global histogram matching and color normalization (Reinhard et al.,
2001), with the proposed region-wise approach. When the source image is low-
keyed and the exemplar is high-keyed, a global mapping function tends to remove
too many details in the dark areas and overexpose the light areas. With region-
wise adjustments, however, each transformation function contributes to the overall
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histogram matching while its transformed range is not severely constrained by other
regions. For example, the tone-mapping curve of a dark region can have a higher
growth rate than light regions (Figure 7 (b)).

4.3 Notan-guided Matching

(a) Example 1

(b) Example 2

Fig. 8 Modification by different Notan patterns for two example images. Top row in each example:
the source image (left) and the exemplar image (right). Bottom row in each example: two source
Notan patterns and the modified images (on the right of the corresponding Notan).

The objective function for region-wise histogram matching provided in (5)
ignores the spatial arrangement of dark and light. We thus introduce a new objective
function dependent on the Notan. Consequently, the revised image tends to yield a
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Notan appearance close to the specified source Notan. Let Hdark and Hlight be the
intensity distributions for the dark and light areas of the source image respectively,
where the dark and light areas are decided by the source Notan. Similarly, let H̃dark
and H̃light be the intensity distributions for the dark and light areas of the exemplar
image respectively. The new optimization problem is

Fn(T ) = min
T

(
D(Hdark(y;T ), H̃dark(y))+D(Hlight(y;T ), H̃light(y))

)
,

s.t. (μi − μ j)(μ ′
i − μ ′

j)≥ 0 , for any 1 ≤ i ≤ n,1 ≤ j ≤ n . (6)

Comparing optimization (6) with (5), we see that the new objective function is the
sum of two separate distribution distances, one involving only the dark areas in the
two images and the other only the light areas. However, because of the constraints
to retain the intensity ordering of the regions, the optimization problem cannot be
decoupled into one for the dark areas and one for the light areas.

Figure 8 illustrates the impact of the chosen source Notan on the modified image
under the same exemplar image and exemplar Notan. Two different Notans are
shown for each source image in Figure 8. The Notans are accompanied by their
corresponding modified images. By imposing different Notans, the modified images
generated by optimization (6) present quite different dark-light compositions. On a
mobile device, we can potentially show users a few options of source Notans and let
them pick what they find most appealing.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Contrast comparison. (a) Source image. (b) Exemplar image. (c) Notan-guided region-wise
histogram matching (optimization (6)). (d) Modified image generated by region-wise histogram
matching (optimization (5)). (e) Global histogram matching. (f) Color normalization.

A side benefit of Notan-guided matching is to better keep contrast. When the
proportions of dark and light areas differ substantially between the source image
and the exemplar, matching without Notan often results in over reduced contrast
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(an overall whitened or blackened look). The effect of large disparity in dark-
light proportion is mitigated by the Notan, which enforces matching the dark areas
and light areas separately. For example, the exemplar image in Figure 9 (b) has
a proportionally small dark area (rocks) which contrasts with a large light area,
while the source image has a relatively large dark area. In this example, we used
the threshold given by Otsu’s method to generate the source Notan. The modified
image obtained by region-wise histogram matching without Notan (optimization
(5)), shown in Figure 9 (d), seems to be overexposed with much reduced contrast.
This issue is more serious with modified images obtained by global histogram
matching in (e) and color normalization in (f). The result of Notan guided matching
in (c) keeps the best contrast.

Fig. 10 Modifying images by choosing a favored Notan without using an exemplar image. Left
to right: original image (serving as both source and exemplar), exemplar Notan, source Notan
(manually selected), modified image.

Considering the stringent interface on a mobile device, we explore a scenario
when an exemplar image is not available. Interestingly, we may enhance the
composition of an image by just specifying a desired Notan. In Figure 10, the source
image itself serves as the exemplar image. The exemplar Notan is obtained using
the threshold of Otsu’s method. The source Notan is manually chosen, supposedly
more appealing than the automatically picked Notan. The results demonstrate that
the modified images indeed seem better composed. This self-boosting method may
seem surprising at first glance. To better understand this, note that the exemplar
Notan will have a more contrasted dark and light because of the way the threshold
is chosen. It should also be closer to what the Notan of the source image without
modification appears to be. However, the spatial arrangement of the dark and light
is not as pleasant as what is specified by the manually chosen Notan. What is
essentially done by our algorithm is to make the manually set dark and light areas
appear better divided and hence more obvious to the eye. This is achieved by
histogram matching with the exemplar dark and light areas, which by set up are
well contrasted.
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This experiment of self-boosting composition enhancement hints that choosing a
source Notan is more important than an exemplar image. Here, we used the source
image as the exemplar image. We may also generate artificial intensity distributions
for dark and light and plug them into optimization (6), thereby bypassing completely
exemplar image and exemplar Notan. This can be interesting to investigate.

As explained in Section 4.1, we allow a fully automatic setting where the Notan
of the source image is chosen among a set of possible Notans generated by different
thresholds between dark and light. This is motivated by the need of mobile devices
where minimal user interaction is desired. In this setting, we exploit the exemplar
image not only for histogram matching but also for selecting a source Notan. The
underlying assumption is that the exemplar image is well composed in the two tonal
scales of dark and light. The source Notan closest to the exemplar Notan in terms
of dark and light proportions is used. This is no doubt a rather simple similarity
defined for two Notans. In future work, we can employ a more sophisticated
similarity measure between two Notans. For the experimental results in Section 5,
this automatic setting is employed.

5 Experimental Results in the Automatic Setting

In Figure 11, we show results by our Notan-guided region-wise histogram-matching
algorithm and compare with global histogram matching and color normalization.
The source Notan is automatically chosen (see description in the previous section).
Our new method tends to generate smoother histograms and better-controlled
dynamic range. The other methods more often yield burned out areas.

Figure 12 presents more examples. In the experiments, the number of segments is
set to 3 for simple scenes and 6 for complex scenes. Note that more segments require
more parameters to be estimated and therefore more computation. We observe that
the global histogram matching often yields the artifact of abrupt changes in intensity.
The color normalization method uses a linear mapping function whose growth rate is
determined by the variances of the source and the exemplar distributions. A high (or
low) growth rate can burn out (or flatten) the final image. Our new method controls
better the extreme cases by regulating the transformation parameters.

6 Summary

This chapter presented two computerized approaches to provide photographers with
on-site composition feedback and enhancement suggestions. The first approach is
based on spatial design categorization that places a photo into one or more categories
including horizontal, vertical, diagonal, textured, and centered. Such categorization
enables retrieval of exemplar photos with similar composition. The second approach
utilizes the concept of Notan in visual art for tonal adjustment. A user can improve
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(a) (b) (c) (d)

Fig. 11 Comparison of algorithms by modified images and their histograms. (a) Exemplar image.
(b) Modified source image by global histogram matching. (c) Color normalization. (d) Notan-
guided region-wise histogram matching.
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(a) (b) (c) (d) (e)

Fig. 12 Additional experimental results. (a) The source image. (b) The exemplar. (c) Global
histogram matching. (d) Color normalization. (e) Notan-guided region-wise histogram matching.

the aesthetics of a given photo through transforming the dark-light configuration
toward that of a target photo. We view this work as just the beginning of a new
direction under which principles of composition in visual art are used to guide the
development of computational photography techniques.
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