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Abstract In this paper we describe a comprehensive

system to enhance the aesthetic quality of the pho-

tographs captured by the mobile consumers. The sys-

tem, named OSCAR, has been designed to provide on-

site composition and aesthetics feedback through re-

trieved examples. We introduce three novel interactive

feedback components. The first is the composition feed-

back which is qualitative in nature and responds by re-

trieving highly aesthetic exemplar images from the cor-

pus which are similar in content and composition to the

snapshot. The second is the color combination feedback

which provides confidence on the snapshot to contain

good color combinations. The third component is the

overall aesthetics feedback which predicts the aesthetic

ratings for both color and monochromatic images. An

existing algorithm is used to provide ratings for color
images, while new features and a new model are de-

veloped to treat monochromatic images. This system

was designed keeping the next generation photography

needs in mind and is the first of its kind. The feedback

rendered is guiding and intuitive in nature. It is com-
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puted in situ while requiring minimal input from the

user.
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1 Introduction

Interest in the research community on the plausibil-

ity of predicting the aesthetic quality of images has in-

creased dramatically over the past few years. It was

established in Datta et al. (2006) that photo aesthetics

though being subjective can be estimated using a set

of images with a general consensus on their aesthetic

quality. Mathematical models could be learnt which can

predict the aesthetics of any image.

Understanding aesthetics can aid many of the appli-

cations like summarization of photo collections (Obrador

et al. 2010), selection of high quality images for dis-

play (Fogarty et al. 2001) and extraction of aestheti-

cally pleasing images for image retrieval (Obrador et

al. 2009). It can also be used to render feedback to the

photographer on the aesthetics of his/her photographs.

Many other applications have been built around sug-

gesting improvisations to the image composition (Bhat-

tacharya et al. 2010; Liu et al. 2001) through image re-

targeting, and color harmony (Cohen-Or et al. 2006) to

enhance image aesthetics. These applications are more

off-line in nature. Although they are able to provide

useful feedback, it is not on the spot, and requires con-

siderable input from the user. There is no scope for

any improvement on the images captured once the user

moves away from the location which a professional feed-

back on-site can accomplish.

In order to make image aesthetic quality assessment

more dynamic and to reach out for the general pub-
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lic with a practical perspective, we developed a system

which can provide on-site feedback to the user. Aesthet-

ics of an image is the result of a complex interplay of

many factors like the lighting, the subject form, compo-

sition, color harmony, etc. We realized the importance

of providing feedback on each of the aesthetic primitives

separately by which the user infers what aspect of the

photograph needs improvement and acts accordingly.

We render feedback on the overall quality of the image

through aesthetic ratings, the composition of the image

through examples of similar images not just in terms of

content but also in composition, and finally we suggest

the possible good color triplets and a confidence mea-

sure on whether the image contains good combinations

of colors.

There are three novel contributions in our compo-

sition and aesthetics feedback system. We will briefly

introduce the concepts below and elaborate them in

the subsequent sections.

The first contribution in this paper is the attempt to

understand the image aesthetics from a very high-level

composition perspective. We discovered that providing

feedback on the composition style can help users to re-

frame the subject leading to an aesthetically composed

image. We recognized that the abstraction of composi-

tion can be done by analyzing the arrangement of the

objects in the image. This led us to identify five different

forms of compositions namely, textured images, diago-

nally, vertically, horizontally, and center composed im-

ages. These composition types are recognized by three

classifiers, i.e. the “textured” vs “non-textured” classi-

fier, the diagonal element detector, and the k-NN clas-

sifier for “horizontal”, “vertical” and “centered”. Un-

derstanding the composition layout of the query image

facilitates the retrieval of images which are similar in

composition and content.

The second contribution is providing feedback on

the good color triplets present in the image. Earlier

works on color harmony (Gill 2000; Sutton and Whe-

lan 2004) were mainly driven by psychoanalysis, but

we approached this problem in a data driven fashion.

We analyze images from photo.net which received very

high and very low ratings and learn a consensus on the

color combinations which are predominantly found in

top rated images and hence we are able to provide a

confident color feedback on the major color combina-

tions present in the image and their aesthetic compli-

ance.

Thirdly, our contribution to this paper also includes

the addition of a component to our pre-existing aes-

thetic quality inferencing system, ACQUINE (Datta

and Wang 2010), which automatically provides aesthetic

ratings for color images. This novel component instead

emphasizes on analyzing the aesthetics of black and

white images, highly differ from their colored counter-

parts. We proposed several new promising features for

indicating the aesthetic quality and trained a model

based on the aesthetic rules customized to monochro-

matic images extracted from dpchallenge.com.

Casting all of these components together we have an

integrated system, named OSCAR (On-Site Composi-

tion and Aesthetics feedback through exemplars).The

system can be easily ported onto a mobile device which

travels with the user or can be seen as a remote server

which can be accessed through the 3G or 4G networks,

bringing the research closer to the user. This system

can further be customized into creating personal tutor,

which is able to provide feedback based on the user’s

past photo-taking behavior.

The rest of the paper is organized as follows. The

system architecture is introduced in Section 1.1. We dis-

cuss the spatial composition classification in Section 2.

Color combination feedback is discussed in Section 3.

We then describe, in Section 4, the aesthetic feedback

on both color and monochromatic images. Experimen-

tal results and user studies are presented in Section 5

and Section 6. Time analysis is reported in Section 7.

Finally, we conclude and discuss future work in Sec-

tion 8.

1.1 System Architecture

Figure 1 shows the architecture of our proposed system.

Future generations of digital cameras can access the 3G

or 4G network and have substantial internal computa-

tional power, the same way as today’s smart phones.

Some current camera phones, e.g., the iPhone and the

Nokia N73 phone, can send photos to a remote server

on the Internet and receive feedback from the server.1

As a photographer shoots, the photo is sent via the net-

work to a cloud server. Our system on the server side

will provide immediate aesthetic quality assessment on

the visual characteristics of the submitted photos, an-

alyze their composition and color properties, and send

on-site feedback to photographers. As shown in Figure

1, the system comprises of several modules.

The image archive is used to store all the sub-

mitted images, which are labeled as “color images” and

“monochromatic images”. Given an input image, the

composition analyzer will analyze its composition

properties from different perspectives. For example, vi-

sual elements with great compositional potential, such

as diagonals and curves, will be detected. Photographs

1 http://www.wired.com/gadgetlab/2010/07/nadia-
camera-offers-opinion-of-your-terrible-photos/
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Fig. 1 The architecture of our composition and aesthetics feedback system.

will be categorized by high-level composition proper-
ties. Specifically, the composition analyzer performs spa-

tial composition categorization. Currently, we consider

five categories, namely, “textured”, “diagonal”, “hori-

zontal”, “centered”, and “vertical”. Composition-related

qualities, e.g., visual balance and simplicity of back-

ground, can also be evaluated. Images similar in com-

position as well as content can be retrieved from a

database of photos with high aesthetic ratings so that

the photographer can learn through examples. In addi-

tion to detecting compositional characteristics, a more

constructive feedback to users can be provided in the fu-

ture through automatic composition correction, where

the image is either cropped or tilted to attain better

composition. In the current work, we have not ventured

far in this direction, and our focus will be on retrieving

exemplar images.

The color combination feedback module will

find the most aesthetically pleasing color combination

from that image, with a score indicating the confidence

of having high quality. At the same time, some aes-

thetics related visual features are extracted. For in-

stance, we extract from color images such features as

light, colorfulness, size, and aspect ratio, which are pro-

vided to ACQUINE for aesthetic quality assessment.

We have also developed a similar assessment module for

monochromatic images, which incorporates some other

features like contrast, details, shapes, saliency, etc.

In the retrieval module, a ranking schema is de-

signed to integrate the composition properties and aes-

thetic rating into SIMPLIcity, an image retrieval sys-

tem based on color, texture and shape features (Wang

et al. 2001). Images with high aesthetic ratings, as well

as similar composition properties and visual features,

are retrieved. An effective way to learn photography is

through observing master works and imitating. Prac-

ticing good compositions in the field helps develop cre-

ative sensibility and unique styling. Especially for be-

ginners, well-composed photographs are valuable learn-

ing resources. By retrieving high quality, similarly com-
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posed photographs, our system can provide users with

practical assistance in improving photography compo-

sition.

Fig. 2 User interface of OSCAR mobile application. Left:
photo submitted to the server, best color triplets and its con-
fidence score, aesthetics score of the photo (scores are indi-
cated by bar). Right: similarly composed exemplars retrieved
from the database.

1.2 User Interaction with the System

Figure 2 shows an interface of the mobile application

under development. User interaction and the ease of

usage are among the main concerns for the mobile ap-

plication to be successful. Our present system requires

very little user input and is minimalistic in nature.

Once the user takes a snapshot he/she can choose to

send the image to our cloud server for feedback on

composition and aesthetics. Based on the feedback the

user can go on to improve the composition of image

by taking newer snaps of the subject and at the same

time understand the characteristics in which the photo-

graph might need improvement. A Web-based demon-

stration of the proposed system is made available at

http://acquine.alipr.com/oscar/.

2 Spatial Composition Categorization

Composition is the art of putting things together with

conscious thoughts. In photography, it concerns the ar-

rangement of various visual elements, such as line, color,

space, etc. Composition is closely related to the aes-

thetic qualities of photographs. To the best of our knowl-

edge, very few works have been done on photography

composition in image processing and computer vision.

Here we study photography composition from the per-

spective of spatial layout, which is about how visual

elements are geometrically arranged in a picture.

After studying many guiding principles in photog-

raphy, we find that there are several typical spatial lay-

outs. Our goal is to automatically classify major types

of spatial layouts. In this paper, we will consider the

following typical spatial composition categories: “hor-

izontal”, “vertical”, “centered”, “diagonal”, and “tex-

tured”.

According to long-existing photography principles,

lines formed by linear elements are important because

they lead the eye through the image and contribute to

the mood of the photograph. Horizontal, vertical, and

diagonal lines are associated with serenity, strength,

and dynamism respectively (Krages 2005). We thus in-

clude “horizontal”, “vertical”, and “diagonal” as three

composition categories. Photographs with a centered

main subject and a clear background fall into the cat-

egory “centered”. By “textured”, we mean that the

whole image appears like a patch of texture or a rel-

atively homogeneous pattern, for example, an image of

a brick wall.

The five categories of composition are not mutu-

ally exclusive. We apply several classifiers sequentially

to an image: “textured” versus “non-textured”, “diago-

nal” versus “non-diagonal”, and finally a possibly over-

lapping classification of “horizontal”, “vertical”, and

“centered”. For example, an image can be classified as

“non-textured”, “diagonal”, and “horizontal”. We use

a method in Wang et al. (2001) to classify “textured”

images. It has been demonstrated that retrieval per-

formance can be improved for both textured and non-

textured images by first classifying them (Wang et al.

2001). The last two classifiers are developed in the cur-

rent work, with details to be presented in a short while.

A conventional image retrieval system returns im-

ages according to visual similarity. However a photog-

rapher’s intention is more likely to search for pictures by

composition rather than by visual details. We therefore

integrate composition classification into the SIMPLIc-

ity image retrieval system (Wang et al. 2001) so that

retrieved images will tend to have similar composition.

Furthermore, we provide the option to rank retrieved

images by their aesthetic ratings.

2.1 Dataset

The spatial composition classification method is tested

on a dataset crawled from photo.net, a photography

community where peers can share, rate, and critique

photos. These photographs are mostly general-purpose
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pictures and have a wide range of aesthetic quality.

Among the crawled photos, a large proportion have

frames which will distort the visual content in image

processing and impact analysis results. Therefore we re-

move frames from the original images in a semi-automatic

fashion. The images which contain frames are picked

manually and a program is used to remove simple frames

with flat tones. Frames embedded with pattern or text

usually cannot be correctly removed, and these photos

are simply removed from the dataset when we re-check

the cropped images in order to make sure the program

has correctly removed the frames from images. We con-

struct a dataset with 13, 302 unframed pictures. Those

pictures are then rescaled so that the long dimension of

the image has at most 256 pixels. We manually labeled

222 photos, among which 50 are horizontally composed,

51 are vertically composed, 50 are centered, and 71 are

diagonally composed. Our classification algorithms are

developed and evaluated based on the manually labeled

dataset. The entire dataset will be used in system per-

formance evaluation.

2.2 “Textured” vs “Non-textured” Classifier

We use the “textured” vs “non-textured” classifier in

SIMPLIcity to separate textured images from the rest.

The algorithm is motivated by the observation that if

pixels in a textured area are clustered using local fea-

tures, each cluster of pixels yielded will be scattered

across the area due to the homogeneity appearance of

texture. While for non-textured images, the clusters

tend to be clumped. An image is divided evenly into

4 × 4 = 16 large blocks. The algorithm thus calculates

the proportion of pixels in each cluster that belong to

any of the 16 blocks. If the cluster of pixels is scattered

over the whole image, the proportions over the 16 blocks

are expected to be roughly uniform. For each cluster,

the χ2 statistic is computed to measure the disparity

between the proportions and the uniform distribution

over the 16 blocks. The average value of the χ2 statis-

tics for all the clusters is then thresholded to decide

whether an image is textured or not.

2.3 Diagonal Element Detection

Diagonal elements are strong compositional constituents.

The diagonal rule in photography states that a picture

will appear more dynamic if the objects fall or follow

a diagonal line. Photographers often use diagonal ele-

ments as the visual path to draw viewers’ eyes through

the image.2 By visual path, we mean the path of eye

movement when viewing a photograph (Warren 2002).

When such a visual path stands out in the picture, it

also has the effect of uniting individual parts in a pic-

ture. The power of the diagonal lines for composition

was exploited very early on by artists. Speed (1972) dis-

cussed in great details how Velazquez used the diagonal

lines to unite a picture in his painting “The Surrender

of Breda”.

Because of the importance of diagonal visual paths

for composition, we create a spatial composition cat-

egory for diagonally composed pictures. More specifi-

cally, there are two subcategories, diagonal from upper

left to bottom right and from upper right to bottom

left. We declare the composition of a photo as diagonal

if diagonal visual paths exist.

Detecting the exact diagonal visual paths is difficult.

Segmented regions or edges provided by the usual im-

age processing techniques often can only serve as ingre-

dients, aka, local patterns, either because of the nature

of the picture or the limitation of the processing algo-

rithms. In contrast, an element refers to a global pat-

tern, e.g., a broken straight line (multiple edges) that

has presence in a large area of the image plane.

We learned from tutorials and textbooks the follow-

ing principles, and design accordingly our algorithm for

detecting diagonal visual paths. We present some of the

principles in the diagonal case, but they apply similarly

to other directional visual paths.

1. Principle of multiple visual types: Lines are ef-

fective design elements in creating compositions, but

“true” lines rarely exist in real world. Lines we per-

ceive in photographs usually belong to one of these
types: outlines of forms; narrow forms; lines of ar-

rangement; and lines of motion or force (Feininger

1973). We do not restrict diagonal elements to ac-

tual diagonal lines of an image plane. They could

be the boundary of a region, a linear object, and

even an imaginary line along which different objects

align. Linear objects, such as pathways, waterways,

and the contour of a building, can all create visual

paths in photographs. When placed diagonally, they

are generally perceived as more dynamic and inter-

esting than other compositions. Figure 3 shows ex-

amples of using diagonal compositions in photogra-

phy.

2. Principle of wholes/Gestalt Law: Gestalt psy-

chologists studied early on the phenomenon of hu-

man eyes perceiving visual components as organized

patterns or wholes, known as the Gestalt law of or-

2 http://www.digital-photography-school.com/using-
diagonal-lines-in-photography
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ganization. According to the Gestalt Law, the fac-

tors that aid in human visual perception of forms

include Proximity, Similarity, Continuity, Closure,

and Symmetry (Sternberg et al. 2008).

3. Principle of tolerance: Putting details along di-

agonals creates more interesting compositions. Vi-

sual elements such as lines and regions slightly off

the ideal diagonal direction can still be perceived as

diagonal and are usually more natural and interest-

ing. 3

4. Principle of prominence: A photograph can con-

tain many lines, but dominant lines are the most im-

portant in regard to the effect of the picture (Folts

2005).4 Visual elements need sufficient span along

the diagonal direction in order to strike a clear im-

pression.

Following the above principles, we first find diag-

onal ingredients from low-level visual cues using both

regions obtained by segmentation and connected lines

obtained by edge detection. Then, we apply the Gestalt

Law to merge the ingredients into elements, i.e., more

global patterns. The prominence of each merged entity

is then assessed. Next, we describe the algorithms for

detecting diagonal visual paths using segmented regions

and edges respectively.

2.3.1 Diagonal Segment Detection

Image segmentation is often used to simplify the image

representation. It can generate semantically meaning-

ful regions that are easier for analysis. This section de-

scribes our approach to detecting diagonal visual paths

based on segmented regions. We use the recently de-

veloped image segmentation algorithm (Li 2011) for it

achieves state-of-the-art accuracy at a speed sufficiently

fast for real-time systems. The algorithm also ensures

that the segmented regions are spatially connected, a

desirable trait many algorithms do not possess.

After image segmentation, we find the orientation of

each segment, defined as the orientation of the moment

axis of the segment. The moment axis is the direction

along which the spatial locations of the pixels in the

segment have maximum variation. It is the first princi-

pal component direction for the data set containing the

coordinates of the pixels. For instance, if the segment is

an ellipse (possibly tilted), the moment axis is simply

the long axis of the ellipse. The orientation of the mo-

ment axis of a segmented region measured in degrees is

computed according to Russ (2006).

3 http://www.picture-thoughts.com/photography/compos-
ition/angle/
4 http://www.great-landscape-

photography.com/photography-composition.html

Next, we apply the Gestalt Law to merge certain

segmented regions in order to form visual elements.

Currently, we only deal with a simple case of discon-

nected visual path, where the orientations of all the

disconnected segments are diagonal.

Let us introduce a few notations before describing

the rules for merging. We denote the normalized column

vector of the diagonal direction by vd and that of its or-

thogonal direction by vcd. We denote a segmented region

by S, which is a set of pixel coordinates x = (xh, xv)
t.

The projection of a pixel with coordinate x onto any di-

rection characterized by its normalized vector v is the

inner product x ·v. The projection of S onto v, denoted

by P(S,v), is a set containing the projected coordinates

of all the pixels in S. That is, P(S,v) = {x · v : x ∈
S}. The length (also called spread) of the projection

|P(S,v)| = maxxi,xj∈S |xi · v − xj · v| is the range of

values in the projected set.

The rules for merging, called “Similarity”, “Proxim-

ity”, and “Continuity”, are listed below. Two segments

satisfying all of the rules are merged.

– Similarity: Two segments Si, i = 1, 2, with orienta-

tions ei, i = 1, 2, are similar if the following criteria

are satisfied:

1. Let [ϕ̌, ϕ̂] be the range for nearly diagonal ori-

entations. ϕ̌ ≤ ei ≤ ϕ̂, i = 1, 2. That is, both S1

and S2 are nearly diagonal.

2. The orientations of Si, i = 1, 2, are close:

|e1−e2| ≤ β ,where β is a pre-chosen threshold.

3. The lengths of P(Si,vd), i = 1, 2, are close:

r =
|P(S1,vd)|
|P(S2,vd)|

, r1 ≤ r ≤ r2 ,

where r1 < 1 and r2 > 1 are pre-chosen thresh-

olds.

– Proximity: Segments Si, i = 1, 2, are proximate if

their projections on the diagonal direction, P(Si,vd),

i = 1, 2, are separated by less than p, and the over-

lap of their projections is less than q.

– Continuity: Segments Si, i = 1, 2, are continuous

if their projections on the direction orthogonal to

the diagonal, P(Si,v
c
d), i = 1, 2, are overlapped.

We now describe how we choose the various thresh-

olds.

1. β = 10◦.

2. r1 = 0.8, r2 = 1.25.

3. The values of p and q are decided adaptively accord-

ing to the sizes of Si, i = 1, 2. Let the spread of Si
along the diagonal line be λi = |P(Si,vd)|. Then

p = kp min(λ1, λ2) and q = kq min(λ1, λ2), where

kp = 0.5 and kq = 0.8.
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Fig. 3 Photographs of diagonal composition.

The value of p determines the maximum gap allowed

between two disconnected segments to continue a vi-

sual path. The wider the segments spread over the

diagonal line, the more continuity they present to

the viewer. Therefore, heuristically, a larger gap is

allowed, which is why p increases with the spreads

of the segments. On the other hand, q determines

the extent of overlap allowed for the two projec-

tions. By a similar rationale, q also increases with

the spreads. If the projections of the two segments

overlap too much, the segments are not merged be-

cause the combined spread of the two differs little

from the individual spreads.

4. The angular range [ϕ̌, ϕ̂] for nearly diagonal orien-

tations is determined adaptively according to the

geometry of the rectangle bounding the image.

As stated in Lamb et al. (2010), one practical exten-

sion of the diagonal rule is to have the objects fall within

two boundary lines parallel to the diagonal. These bound-

ary lines are one-third of the perpendicular distance

from the diagonal to the opposite vertex of the rectan-

gular photograph. This diagonal stripe area is shown in

Figure 4(b). A similar suggestion is made in an online

article,3 where boundary lines are drawn using the so-

called sixth points on the borders of the image plane.

A sixth point along the horizontal border from the up-

per left corner locates on the upper border and is away

from the corner by one-sixth of the image width. Simi-

larly, we can find other sixth (or third) points from any

corner and either horizontally or vertically.

Suppose we look for an approximate range for the

diagonal direction going from the upper left corner to

the bottom right. The sixth and third points with re-

spect to the two corners are found. As shown in Fig-

ure 4(a), these special points are used to create two

stripes marked by lime and blue colors respectively. Let

the orientations of the lime stripe and the blue stripe in

Figure 4(a) be ϕ1 and ϕ2. Then we set ϕ̌ = min(ϕ1, ϕ2),

and ϕ̂ = max(ϕ1, ϕ2). A direction v ∈ [ϕ̌, ϕ̂] is claimed

nearly diagonal. Similarly, we can obtain the angular

range for the diagonal direction from the upper right

corner to the bottom left. The reason to use the orienta-

tions of the stripes instead of nearly diagonal bounding

lines is that when the width and the height of an im-

age are not equal, the orientation of a stripe will twist

toward the elongated side to some extent.

(a) (b) (c)

Fig. 4 Diagonal orientation bounding conditions.

From now on, a segment can be a merged entity of

several segments originally given by the segmentation

algorithm. For brevity, we still call the merged entity a

segment. Applying the principle of tolerance, we filter

out a segment from diagonal if its orientation is outside

the range [ϕ̌, ϕ̂], the same rule applied to the smaller

segments before merging.

After removing non-diagonal segments, at last, we

apply the principle of prominence to retain only seg-

ments with a significant spread along the diagonal di-

rection. For segment S, if |P(S,vd)| ≥ kl× l, where l is

the length of the diagonal line and kl = 2
3 is a thresh-

old, the segment is declared a diagonal visual path. It is

observed that a diagonal visual path is often a merged

entity of several small segments originally produced by

the segmentation algorithm, which are not prominent

individually.

2.3.2 Diagonal Edge Detection

According to the principle of multiple visual types, be-

sides segmented regions, lines and edges can also form

visual paths. Moreover, segmentation can be unreli-

able sometimes because over-segmentation and under-

segmentation often cause diagonal elements to be missed.

We observe that among photographs showing diagonal

composition, many contain linear diagonal elements.

Those linear diagonal elements usually have salient bound-

ary lines along the diagonal direction, which can be

found through edge detection. Therefore we use edges

as another visual cue, and combine the results obtained
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based on both edges and segments to increase the sen-

sitivity of detecting diagonal visual path.

We use the Edison edge detection algorithm (Meer

and Georgescu 2001). It has been experimentally demon-

strated that Edison edge detection can generate cleaner

edge maps than many other methods (Meer and Georgescu

2001). We examine all the edges to find those oriented

diagonally and significant enough to be a visual path.

Based on the same set of principles, the whole pro-

cess of finding diagonal visual paths based on edges is

similar to the detection of diagonal segments. The ma-

jor steps are described below. We denote an edge by E,

which is a set of coordinates of pixels located on the

edge. As with segments, we use the notation P(E,v)

for the projection of E on a direction v.

1. Remove non-diagonal edges: First, edges out-

side the diagonal stripe area, as shown in Figure 4(b),

are excluded. Secondly, for every edge E, compute

the spread of the projections sd = |P(E,vd)| and

so = |P(E,vcd)|. Recall that vd is the diagonal di-

rection and vcd is its orthogonal direction. Based on

the ratio sd/so, we compute an approximation for

the orientation of edge E. Edges well aligned with

the diagonal line will yield a large value of sd/so,

while edges well off the diagonal line will have a

small value. We filter out non-diagonal edges by re-

quiring sd/so ≥ ζ. The choice of ζ will be discussed

later.

2. Merge edges: After removing non-diagonal edges,

short edges along the diagonal direction are merged

into longer edges. The merging criterion is similar to

the proximity rule used for diagonal segments. Two

edges are merged if their projections onto the diag-

onal line are close to each other but not excessively

overlapped.

3. Examine prominence: For edges formed after the

merging step, we check their spread along the diago-

nal direction. An edge E is taken as a diagonal visual

element if |P(E,vd)| ≥ ξ, where ξ is a threshold to

be described next.

The values of thresholds ζ and ξ are determined

by the size of a given image. ζ is used to filter out

edges whose orientations are not quite diagonal, and

ξ is used to select edges that spread widely along the

diagonal line. We use the third points on the borders of

the image plane to set bounding conditions. Figure 4(c)

shows two lines marking the angular range allowed for

a nearly diagonal direction from the upper left corner

to the lower right corner. Both lines in the figure are

off the ideal diagonal direction to some extent. Let ζ1
and ζ2 be their ratios of sd to so, and ξ1 and ξ2 be their

spreads over the diagonal line. The width and height of

the image are denoted by w and h. By basic geometry,

we can calculate ζi and ξi, i = 1, 2, using the formulas:

ζ1 =
h2 + 3w2

2hw
, ζ2 =

3h2 + w2

2hw

ξ1 =
h2 + 3w2

3
√
h2 + w2

, ξ2 =
3h2 + w2

3
√
h2 + w2

.

The thresholds are then set by ζ = min(ζ1, ζ2), ξ =

min(ξ1, ξ2).

2.4 “Horizontal”, “Vertical” and “Centered”

Composition Types

Now we present our method for differentiating the last

three composition categories: “horizontal”, “vertical”

and “centered”. Photographs belonging to each of these

categories have distinctive spatial layouts. For instance,

a landscape with blue sky at the top and field at the

bottom conveys a strong impression of horizontal lay-

out. Images from a particular category usually have

some segments that are characteristic of that category,

e.g., a segment lying laterally right to left for “horizon-

tal” photographs, and a homogeneous background for

“centered” photographs.

In order to quantitatively characterize spatial lay-

out, we define the spatial relational vector (SRV) of a

region to specify the geometric relationship between the

region and the rest of the image. The spatial layout of

the entire image is then represented by the set of SRVs

of all the segmented regions. The dissimilarity between

spatial layouts of images is computed by the IRM dis-

tance (Li et al. 2000). Ideally we want to describe the

spatial relationship between each semantically mean-
ingnful object and its surrounding space. However, ob-

ject extraction is inefficient and extremely difficult for

photographs in general domain, regions obtained by im-

age segmentation algorithms are used instead as a rea-

sonable approximation. Moreover, for painters, reduc-

ing the complicated appearance into simple masses is

a necessary step in her composion, and expresses the

“essense” of a painting’s structure (Speed 1972).

2.4.1 Spatial Relational Vectors (SRV)

The SRV is proposed to characterize the geometric po-

sition and the peripheral information about a pixel or

a region in the image plane. It is defined at both pixel-

level and region-level. When computing the pixel-level

SRV, the pixel is regarded as the reference point, and

all the other pixels are divided into 8 zones by their

relative positions to the reference point. If the region

that contains the pixel is taken into consideration, SRV
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is further differentiated into two modified versions, in-

ner SRV and outer SRV. The region-level inner (outer)

SRV is obtained by averaging pixel-level inner (outer)

SRVs over the region. Details about SRV implementa-

tion will be given immediately. As we will see, SRV is

scale-invariant, and depends on the spatial position and

the shape of the segment.

At a pixel with coordinates (x, y), 4 lines passing

through it are drawn. As shown in Figure 5(a), the an-

gles between adjacent lines are equal and stride sym-

metrically over the vertical, horizontal, 45◦ and 135◦

lines. We call the 8 angular areas of the plane “UP-

PER”, “UPPER-LEFT”, “LEFT”, “BOTTOM-LEFT”,

“BOTTOM”, “BOTTOM-RIGHT”, “RIGHT”, and

“UPPER-RIGHT” zones. The SRV of pixel (x, y) sum-

marizes the angular positions of all the other pixels with

respect to (x, y). Specifically, we calculate the area per-

centage vi of each zone, i = 0, ..., 7, with respect to the

whole image and construct the pixel-level SRV Vx,y by

Vx,y = (v0, v1, ..., v7)t.

The region-level SRV is defined in two versions called

respectively inner SRV, denoted by V ′, and outer SRV,

denoted by V ′′. At any pixel in a region, we can di-

vide the image plane into 8 zones by the above scheme.

As shown in Figure 5(b), for each of the 8 zones, some

pixels are inside the region and some are outside. De-

pending on whether a pixel belongs to the region, the

8 zones are further divided into 16 zones. We call those

zones within the region as inner pieces and those out-

side as outer pieces. Area percentages of the inner (or

outer) pieces with respect to the area inside (or outside)

the region form the inner SRV V ′x,y (or outer SRV V ′′x,y)

for pixel (x, y).

The region-level SRV is defined as the average of

pixel-level SRVs for pixels in that region. The outer

SRV VR
′′ of a region R is VR

′′ =
∑

(x,y)∈R Vx,y
′′/m,

where m is the number of pixels in region R. In prac-

tice, to speed up the calculation, we may subsample

the pixels (x, y) in R and compute VR
′′ by averaging

over only the sampled pixels. If a region is too small to

occupy at least one sampled pixel according to a fixed

sampling rate, we will compute VR
′′ using the pixel at

the center of the region.

We use the outer SRV to characterize the spatial

relationship of a region with respect to the rest of the

image. Then an image withN segmentsRi, i = 1, ...,N ,

can be described by N region-level outer SRVs, V ′′Ri , i =

1, ..., N , together with the area percentages of Ri, de-

noted by wi. In summary, an image-level SRV descrip-

tor is a set of weighted SRVs: {(V ′′Ri , wi), i = 1, ..., N}.
We call this descriptor the spatial layout signature.

(a) (b)

Fig. 5 Division of the image into 8 angular areas with respect
to a reference pixel.

2.4.2 “Horizontal”, “Vertical” and “Centered”

Composition Classification

We use k-NN to classify the three composition cate-

gories: “horizontal”, “vertical” and “centered”. Inputs

to the k-NN algorithm are the spatial layout signatures

of images. The training dataset includes equal num-

ber of manually labeled examples in each category. In

our experiment, the sample size for each category is 30.

The distance between the spatial layout signatures of

two images is computed using the IRM distance. The

IRM distance is a weighted average of the distances

between any pair of SRVs, one in each signature. The

weights are assigned in a greedy fashion so that the fi-

nal weighted average is minimal. Details about IRM are

referred to Li et al. (2000); Wang et al. (2001).

2.5 Composition Sensitive Image Retrieval

The classic approach taken by many image retrieval sys-

tems is to measure the visual similarity based on low-

level features. A large family of visual descriptors have

been proposed in the past to characterize images from

the perspectives of color, texture, shape, etc. However,

due to the fact that many visual descriptors are gen-

erated by local feature extraction processes, the over-

all spatial composition of the image is usually lost. In

semantic content oriented applications, spatial layout

information of an image may not be critical, but for

photography, the overall spatial composition can be a

major factor affecting how an image is perceived. For

photographers, it can be more interesting to search for

photos with similar composition style rather than vi-

sual details. We develop algorithms to capture strong

compositional elements in photos and classify them into

six composition categories, with five main categories

namely “textured”, “horizontal”, “vertical”, “centered”,

and “diagonal”, and the “diagonal” category is further

subdivided into two categories “diagonal ulbr”(upper

left to bottom right) and “diagonal urbl”(upper right

to bottom left). The composition classification is used
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in the retrieval system to return images with similar

composition.

We use the SIMPLIcity system to retrieve images

with similar visual content, and then re-rank the top

K images by considering their spatial composition and

aesthetic scores. SIMPLIcity is a semantic-sensitive re-

gion based image retrieval system. IRM is used to mea-

sure visual similarity between images. For a thorough

description of algorithms used in SIMPLIcity, readers

are referred to Wang et al. (2001). In our system, the

rank of an image is determined by three factors: visual

similarity, spatial composition categorization, and aes-

thetic score. Since these factors are of different modal-

ity, we use a ranking schema rather than a complicated

scoring equation.

Given a query, we first retrieve K images through

SIMPLIcity, which gives us an initial ranking. When

composition is taken into consideration, images with

the same composition categorization as the query will

be moved to the top of the ranking list.

The composition classification is non-exclusive in

the context of image retrieval. For instance, a “tex-

tured” image can still be classified into “horizontal”,

“vertical” or “centered”. We code the classification re-

sults obtained from the classifiers by a six-dimensional

vector c, corresponding to six categories(“diagonal” has

two subcategories “diagonal ulrb” and “diagonal urbl”).

Each dimension records whether the image belongs to

a particular category, with 1 being yes and 0 no. Note

that an image can belong to multiple classes generated

by different classifiers. The image can also be assigned

to one or more categories among “horizontal”, “verti-

cal” and “centered” if neighbors belonging to the cat-

egory found by k-NN reach a substantial number (cur-

rently k/3 is used). Non-exclusive classification is more

robust than exclusive classification in practice because

a photograph may be reasonably assigned to more than

one compositional category. Non-exclusive classification

can also reduce the negative effect of misclassification

into one class. Figure 6 shows example pictures that are

classified as more than one category.

The compositional similarity between the query im-

age and another image can be defined as

si =

3∑
k=0

I(cqk = cik and cqk = 1)

+ 2×
5∑
k=4

I(cqk = cik and cqk = 1),

where cq and ci are categorization vectors for the query

image and the other image, and I is the indicator func-

tion returning 1 when the input condition is true, 0

otherwise. The last two dimensions of the categoriza-

tion vector correspond to the two diagonal categories.

We multiply the matching function by 2 to encourage

matching of diagonal categories in practice. Note that

the value of si is between 0 and 6, because one image

can at most be classified into 5 categories, which are

“textured”, “diagonal ulbr”, “diagonal urbl” and two

of the other three. Therefore by adding composition

classification results, we divide the K images into 8

groups corresponding to compositional similarity from

0 to 7. The original ranking based on visual similar-

ity remains within each group. When aesthetic rating

is further introduced into the ranking schema, images

within each group are reordered by aesthetic ratings.

Let ri, si and qi denote the rank, compositional similar-

ity, and aesthetic score of image i. The ranking schema

can be expressed as:

ri ≺ rj if
{

si > sj
qi > qj , si = sj .

The reason we use such a ranking scheme is that

we need to incorporate three perspectives of different

modalities and it is difficult to put these distinct mea-

surements in the same space. Although the composi-

tion analysis is performed on the results returned by a

CBIR system SIMPLIcity, we can modify the influence

of this component in the retrieval process by adjust-

ing the number of images K returned by SIMPLIcity.

This provides flexibility for the user to vary her focus

on either composition or visual similarity. For example,

a large K will retrieve more compositionally relevant

photographs, and meanwhile reduce the importance of

content similarity. In our experiment, we found that in

most cases the retrieved results become stable for our
dataset when K > 300, a value expected to vary with

the size of dataset. In Figure 7 we provide some exam-

ples showing how different values of K can affect the

retrieved results.

3 Color Feedback

Most of the time what people view and perceive from

photos is through colors. Although people’s feeling about

colors may depend on many factors such as context,

emotion, culture background, etc., there are some color

combinations or arrangements considered to be percep-

tively stable (Manav 2007; Gao et al. 2007). Experi-

enced photographers can choose specific color combina-

tions to enhance viewers’ emotion and to achieve an aes-

thetically pleasing perception. The study of color and

light can be traced back to as early as seventeenth cen-

tury when Isaac Newton invented the first color wheel.

The foundations of modern color theory were laid at the
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(a) “vertical” &
“diagonal ulbr”

(b) “horizontal” &
“diagonal urbl”

(c) “vertical” &
“diagonal urbl”

(d) “vertical” &
“diagonal urbl”

Fig. 6 Photographs classified into multiple categories. “diagonal ulbr” represents the diagonal from the upper left corner to
the bottom right corner, and “diagonal urbl” represents the other.

beginning of the twentieth century. Itten (1960) intro-

duced a new color wheel with emphasis on hue informa-

tion. He proposed several color harmony schemes, such

as complementary color harmony, three-color harmony

of hues forming an equilateral triangle, four-color har-

mony of a square, etc., which have been widely adopted

by artists and designers. Tokumaru et al. (2002) used 80

color schemes for harmony evaluation and color design

and proposed an approach to quantify human’s percep-

tion and understanding about color combinations. Re-

cently, research efforts have been devoted to improving

the visual appeal of an image by enhancing the harmony

among colors under an optimization framework (Cohen-

Or et al. 2006). In this paper, we propose a data driven

approach to assess the qualities of color combinations.

Our color feedback module can quickly extract the color

palette of a photo and tell photographers if these color

combinations are aesthetically appealing. The colors are

specified completely with hue, saturation intensity, and

luminance value rather than only by hue.

We first segment each image by a recently devel-

oped clustering technique, i.e., hierarchical mode asso-

ciation clustering (HMAC) (Li et al. 2007). Our image

segmentation approach consists of the following steps:

(a) Apply k-center algorithm to cluster pixels into a

fixed number of groups. This number is significantly

larger than the desired number of segments. In partic-

ular, we set it to 100. (b) Form a data set {x1, ..., xn},
n = 100, where xi is the mean of the vectors assigned

to group i by k-center clustering. Assign weight wi to

each group i, where wi is the percentage of pixels as-

signed to that group. (c) Apply HMAC to the data

set. Specifically, the kernel density estimator of modal

clustering is f(x) =
∑n
i=1 wiφ(x|xi, D(σ2)), where σ

is the bandwidth of the Gaussian kernel and D(σ2) =

diag(σ2, σ2, ..., σ2). All the data points that ascend to

the same local maximum (mode) of the kernel density

function form a cluster. (d) In the dendrogram formed

by HMAC, we apply the cluster merging algorithm de-

scribed in Li et al. (2007). If the number of clusters

after merging is smaller than or equal to the given tar-

get number of segments, stop and output the clustering

results at this level. Otherwise, repeat the merging pro-

cess at the next higher level of the dendrogram. Finally,

all the pixels in the same cluster are labeled as one seg-

ment.

After segmentation, all the modal vectors are ex-

tracted as the representative colors of that image. K-

means clustering is another widely used image segmen-

tation method, which clusters the pixels and computes

the centroid vectors by minimizing the mean squared

distance between the original vectors and the centroid

vectors. HMAC, however, uses the modal vectors, at

which the kernel density estimator achieves a local max-

imum. These vectors are peaks of the density function.

The representative colors extracted by k-means are of-

ten “muddy” due to averaging, while those by modal

clustering better retain the true colors. When the num-

ber of segments is set to a higher value, the represen-

tative colors obtained by modal clustering tend to be

more saturated. In particular, we set the target num-

ber of clusters to 15, a fairly large value, so that the

modal color vectors will not miss any local maximum

of the density. If some segment only occupies a small

percentage of all the pixels, specifically, less than 5%,

its color will be ignored. After the representative col-

ors are obtained by HMAC, we form color triplets by

combining every three distinct colors from that image.

For instance, if one image contains n representative col-

ors, there will be n(n − 1)(n − 2)/6 color triplets (aka

combinations). In practice, if there are many colors in

one image, we will only consider the representative col-

ors of the five largest segments. We provide feedback in

the form of color triplets because the triplet is a good

balance for capturing the diversity in color combina-

tion and maintaining manageable complexity for hu-

man cognition. In fact, in many photography or paint-

ing books about color composition, good color schemes

are often described by no more than three major hues (a

variation range allowed for each hue). Technically, the
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K=50

K=100

K=300

(a)

K=50

K=100

K=200

(b)

Fig. 7 Images retrieved by different values of K, using composition categorization to rerank results returned by SIMPLIcity.
(a) The query image is at the top center and top 8 re-ranked images retrieved when K = 50, K = 100 and K = 300 are shown
in three rows; (b) A second example with the query image at the top center and the top 8 re-ranked images retrieved when
K = 50, K = 100 and K = 200 are shown in three rows.



OSCAR: On-Site Composition and Aesthetics Feedback through Exemplars for Photographers 13

probability of finding a combination of frequent color

quadruplet is lower than finding a frequent color triplet

among the highly rated images. To gain high confidence

level for a quadruplet, if necessary, a much larger set of

high aesthetic quality images are needed.

Let us denote a color triplet βi by (v
(1)
i , v

(2)
i , v

(3)
i ),

where v
(j)
i is a color vector, j = 1, 2, 3. Let q

(j)
i be the

weight of each color vector v
(j)
i , i.e., the percentage of

occupied pixels by a particular color. q
(j)
i is normalized

so that
∑3
j=1 q

(j)
i = 1.The Kantorovich-Mallows dis-

tance (Mallows 1972; Levina and Bickel 2001), which

takes into account the relative area size covered by each

color, is used to compute the distance D(β1, β2) be-

tween two color triplets β1 and β2:

D2(β1, β2) = min
wi,j

3∑
i=1

3∑
j=1

wi,j‖v(i)1 − v
(j)
2 ‖2 (1)

subject to

3∑
j=1

wi,j = q
(i)
1 , i = 1, 2, 3;

3∑
i=1

wi,j = q
(j)
2 , j = 1, 2, 3; (2)

wi,j ≥ 0, i = 1, 2, 3, j = 1, 2, 3 .

The Kantorovich-Mallows distance has been used in

content-based image retrieval, mostly under the name

of Earth Mover’s Distance(EMD) (Rubner et al. 2000).

It was proved by Levina and Bickel (2001) that EMD

is equivalent to the Kantorovich-Mallows distance on

probability distributions. When measuring texture and

color similarities for image retrieval, EMD is more ro-

bust than norm distances since it can be applied to

variable-length representations of distributions (Rub-

ner et al. 2000).

We use k-NN to evaluate the aesthetic qualities of

color combinations. Specifically, we form the training

data by collecting all the valid color triplets described

above from images with high aesthetic ratings as well

as those with low aesthetic ratings. We assume that all

the color triplets from high rating images are aestheti-

cally pleasing, which are called highly aesthetic triplets.

Given a color triplet from a test image, we first find

the top k nearest color triplets in the training data.

Then, the percentage of highly aesthetic color triplets

are calculated. We refer to this percentage as the ratio

statistic of a color triplet, denoted by γ. A p-value is de-

fined on the ratio statistics, indicating our confidence

about the goodness of a color triplet. Specifically, we

first obtain the ratio statistics of all the high aesthet-

ics color triplets from the training data, denoted by

{γ1, γ2, ..., γn}, where n is the total number of highly

aesthetic triplets. Suppose the ratio statistic of a par-

ticular color triplet from a test image is γ. Its p-value

is defined as the percentage of highly aesthetic triplets

in the training set whose γi’s are larger than γ, i.e.,∑n
i=1 I(γi > γ)/n, where I is an indicator function. If

a color triplet’s p-value is small, we have strong con-

fidence that it is of high aesthetic quality. To make

p-value more straightforward to use, we define a confi-

dence score as 100(1− p).
The underlying assumption that all the color com-

binations from photos with high aesthetic ratings are

aesthetically pleasing is debatable. One may argue that

a photo may be appealing due to visual qualities other

than colors. This concern can be addressed effectively

in the future because we are employing the ACQUINE

system to collect users’ opinions on why a photo is

aesthetically appealing; and one choice among many is

color scheme. After we have collected sufficient amount

of data, we can choose images with high aesthetic scores

resulting from colors as our training data. On the other

hand, we should be cautious that doing so may restrict

our findings about good color schemes to the common

knowledge the general public holds. A viewer may be

subconsciously attracted to some color combinations.

As a result, she may give the photo high aesthetic rating

but not realizing that the colors have played a role. For

instance, even painters often do not realize the beauty

brought by neutral (aka grays of various hues) colors

and the importance of using neutral colors to the ad-

vantage. According to Robert Henri, a renowned artist

and art educator (Henri 1923), “But even so, there is

a power in the palette which is composed of both pure

and grave colors that makes it wonderfully practical and

which presents possibilities unique to itself. In paintings

made with such a palette, if used with great success, we

find an astounding result. It is the grave colors, which

were so dull on the palette that become the living col-

ors in the picture. The brilliant colors are their foil.”

Further, Henri mentioned that grave colors “seem to

move—rise and fall in their intensity, are in perpetual

motion—at least, so affect the eye. They are not fixed.

They are indefinable and mysterious.”

4 Aesthetic Feedback

In this section we introduce the component of aesthetic

quality feedback on both color and monochromatic im-

ages. We assign aesthetic ratings to images on a scale

of 0 to 100 based on the models learnt using previously

rated images. An on-line demo-version of this compo-

nent can be found at acquine.alipr.com which de-

rives visual features to quantify the general photog-

raphy principles and has been discussed in detail by
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Datta et al. (2006). Our main contribution to this com-

ponent lies in the addition of a model specific to ana-

lyze the aesthetics of monochromatic images. Though

the demo is one of its kind to predict the aesthetic rat-

ings reliably in real-time, its accuracy falters in the case

of black and white images. This is due to the primary

differences in the aesthetic rules of color and monochro-

matic images.

Unlike the color images whose aesthetics are highly

influenced by their color distribution, the black and

white images are subtle in their appearance. The black

and white images are less distracting than their colored

counterparts, they are very simplistic in nature and lay

emphasis on the subject. The photographer needs to

provide great attention to the image composition and

develop emotions though careful manipulation of the

tonality in the image. It becomes essential to imply

color through contrasts making black and white im-

ages more artistic as well as challenging at the same

time (Davis 2010; Taylor et al. 2000). The shape (the

two dimensional outline of an object), design and form

(the perceived rendering of a three dimensional object

in two dimensional space) of the subject gains promi-

nence in black and white images. The subject of the

photograph needs to be located on the salient regions in

order to attract immediate attention of the viewer. The

lighting of the subject, the balance of elements within

the image becomes an integral part of its composition.

Some of the well known famous photographs are actu-

ally taken in black and white showing its superiority in

aesthetics. To draw the comparison between color and

gray scale image aesthetics the Figure 8 shows a color

image of a red tulip, the saturated red of the tulip and

its contrasting background makes the image look at-

tractive while the grayscale representation of the same

looks much more drab since it lacks contrast and its

corresponding aesthetic rating would be low. This is a

perfect example which shows the importance of contrast

manipulation, choosing a good subject, its lighting, the

background color (negative spaces) for a grayscale im-

age. A detailed analysis of aesthetic primitives and their

influence can be found in Peters (2007).

Previous works (Datta et al. 2006; Ke 2006; Luo and

Tang 2008; Wong and Low 2009) on image aesthetics

have developed generic models by using images rated on

photo.net, dpchallenge.com or Flickr. Black and white

images formed a very small fraction of these datasets.

The general population prefers to take photographs in

color leaving the black and white images to profession-

als who take aesthetically pleasing images. The models

learnt on such a dataset using data driven approaches

will be biased towards assigning black and white images

a very high score. This is due to the lack of a uniformly

(a) Color Image (b) Grayscale Image

Fig. 8 Comparison between Color and Grayscale Image Aes-
thetics.

sampled dataset as well as the over simplification of

composition rules which plays a very important role in

the aesthetics of black and white images. This led us

to seek better datasets which show consensus on the

ratings and provide wider score range.

We evaluate the visual features extracted to quan-

tify the aesthetics and photo quality by doing a simple

classification between images which have high and low

ratings using Support Vector Machines (SVM). Having

verified our hypothesis on aesthetic rules, we go on to

build a regression model using linear regression which

can provide a machine generated aesthetic quality rat-

ing for any black and white image. We briefly describe

the dataset below and go on to provide detailed descrip-

tion of the visual features.

4.1 Dataset

To understand the general consensus of general popu-

lation on the aesthetics of black and white images, we

crawled the website of www.dpchallenge.com, a digital

photography contest website for the purpose of data col-

lection. Dpchallenge.com hosts contests with specific

themes which are open for a limited number of days.

The members of this community are expected to vote

on at least 20% of the images on the scale of 1-10 for

their votes to be counted. This inadvertently leads to

a large number of votes per image and the same time

introduces noise due to the fatigue of voting a large

number of images continuously and due to the users

tendency to assign similar scores to images.

We collected images totaling 8, 470 of which 5, 790

had ratings. It is observed from our dataset that on an

average each image has been rated 262 times with the

score range and variance of 5.34 and 0.486 respectively.

Some of the sample images from the dataset as well as

the score distribution against the number of votes are

shown in Figure 9.
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(a) Avg. Rating:
2.562

(b) Avg. Rating:
5.720

(c) Avg. Rating:
7.041
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Fig. 9 Sample images and score distribution of images from
dpchallenge.com.

4.2 Visual Features for Black and White Images

In addition to adopting a few features from Datta et

al. (2006), we developed newer features focused on ex-

tracting local contrast, details, shapes and saliency.

4.3 Global and Local Sharpness

Sharpness of the image is an indicator of its clarity and

detail, in professional photographs one would expect

the subject of the photograph to be sharp and most

often there is a contrast between the sharpness of the

subject and its background leading the viewer’s eye on

to the subject. Computationally the sharp segments can

be detected by the density of the edges and texture con-

tent. In order to extract this information we quantify

both the local and global sharpness of the image. If

the focal length is set to maximum, the entire image

will be in focus while setting the focal length to mini-

mum causes the entire image to be out of focus and is

aesthetically displeasing which can be captured by the

global sharpness measure (Sg). High frequency compo-

nents indicate the presence of edges and in turn the

sharpness. We perform three level Haar Wavelet Trans-

form to extract the high frequency components in each

level namely LHi, HLi, HHi where i = 1, 2, 3. We store

the global sharpness information as

Sgi =
1

Si

 ∑
(x,y)

∥∥∥whhi ∥∥∥+
∑

(x,y)

∥∥∥whli ∥∥∥+
∑

(x,y)

∥∥∥wlhi ∥∥∥
 ,

where Si = |whhi |+|whli |+|wlhi | as implemented in Datta

et al. (2006).

However in low depth of field images, the subject

of the photograph might occupy a very small fraction

of the image and the global sharpness measure might

mislead us to conclude that the image is entirely out of

focus. In order to prevent this, we devised a local sharp-

ness measure (Sl) which calculates sharpness within the

image segments {s1, s2, s3, . . .} of areas {a1, a2, a3, . . .},
generated by the agglomerative segmentation algorithm

(Li 2011). Since the number of segments generated by

the unsupervised algorithm is uneven, we store the area

of the image which has at least 80% of the total sharp-

ness in level three of Haar Wavelet Co-efficients as a

feature. We also store the ratio of minimum number of

segments which results in 80% of the sharpness in the

image, i.e. {Min no. of segments with cumulative sharp-

ness of 80% / total no. segments in the image}. The

normalized area and its centroid of the segment with

the maximum sharpness are also stored as features.

In addition to these features, we implement another

global blur detection algorithm from Tong et al. (2006)

and store the blur confidence co-efficient of the image.

4.4 Image Tonality and Contrast

As opposed to color images, black and white images do

not possess vibrant colors and the photographer must

induce various levels of tonality and contrast to the im-

age in order to bring strong emotions, detail and per-

spective into the picture. In a high key image, the light

tones predominate which depicts emotions of energy,

happiness and life while in a low key image the dark

tones predominate portraying lifelessness, dullness and

a general negativity. Dark blacks, bright whites, subtle
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shadows, smooth tonal transitions without posteriza-

tion or noise, highlights that are not blown out are some

of the good tonal characteristics of Black and White

Images (Suess 1995).

The above characteristics can be captured by care-

fully studying the image histogram, we split the im-

age histogram into three regions defining low-key re-

gion between 0-85 , mid-key region between 86-170 and

high-key region between 170-256. We analyze these sub-

histograms and store their corresponding means and

variances which can capture the contrast as well as de-

tect the tonality of the image. Figure 10 shows examples

of low, mid and high key images.

We also store the shortest range and the mean of

the histogram which accounts for the 90% of the mass

of the image. This feature helps in defining the contrast

across the image.

(a) Low key (b) Mid key (c) High key

Fig. 10 Variation in image tonality.

4.5 Convex hull and Normalized Inertia

The shapes and forms are some of the primary composi-

tion elements of black and white photographs. Though

it is easier to understand and represent shapes, identi-

fying the forms of objects is a very hard problem com-

putationally. We try to approach this problem with the

assumption that careful positioning of convex and cir-

cular shapes in the image can generate higher aesthetic

impact. In order to find the convex shapes in the images

we use the feature derived from Datta et al. (2006).

The convexity of the image is represented as the ra-

tio of the area of the convex segments to that of the

image area. A segment can be considered convex if its

convex hull is closer to its area on the image. Hence the

convex Area =
∑
i I [ai/convexHull(si) > 0.8] ai where

si, ai and I are the image segment i, segment area and

the indicator function respectively. The convexity fea-

ture is limited by the segmentation algorithm. One of

the many reasons we use connectivity constrained ag-

glomerative clustering is to prevent over segmentation

of objects in the image. The results presented in Li

(2011) shows that the algorithm is able to generate

clear segmentation generally without breaking up the

object in which case the convexity of the object holds

true. On the other hand a convex object could be over

segmented into many non-convex and convex segments

in which case the convexity of the individual segments

do not add up to the convexity of the object, which is

an artifact of this feature.

We also describe the circularity of shapes using nor-

malized inertia (Gersho 1979). The discrete form of nor-

malized inertia of order γ for the segment si is repre-

sented as

N(si, γ) =

∑
x∈si ‖x− x̄i‖

γ

a
1+ γ

2
i

. (3)

Since normalized inertia is invariant to scale and

rotational changes, it can be considered as a robust de-

scriptor. Circular shapes achieve the minimum normal-

ized inertia, and hence by calculating the ratio of the

normalized inertia of segment to that of a circle, we

can infer how close the shape of the segment is to a

circle. Let L(si, γ) be the ratio N(si, γ)/Nc(γ) for the

segment si, where Nc(γ) is the normalized inertia of

a circle for the parameter γ. We calculate L(si, γ) for

γ = 1, 2, 3, 4, 5 and store the value
∑
si
L(si, γ) for each

order γ as a feature.

4.6 Image Salience

Salient regions in the image are the ones which stand

apart from the rest due to their contrast, sharpness and

edges. It is highly likely that the viewer would focus

his/her attention on the salient region before moving

on to other parts of the image. Positioning the subject

on salient regions and at the same time positioning the

salient regions on the thirds of the image leads to better

composition.

To capture this information, we extracted the saliency

map of the image using the graph based visual saliency

(Harel et al. 2007) which generates a soft saliency map,

assigning its confidence on each pixel to be salient. We

threshold this saliency map at three levels, 75%, 50%

and 25% to extract the image regions which are salient

and store the normalized area of these regions as well

as their centroids to check the rule of thirds. Figure 11

shows the salient section of the image thresholded at 3

different level.

4.7 Photo Quality - Aspect Ratio and Noise Level

It is known that bad image quality leads to bad aesthet-

ics. We used very intuitive features like the size, aspect
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(a) Original Image (b) Threhsold: 75%

(c) Threshold: 50% (d) Threshold: 25%

Fig. 11 Salient regions using different threshold levels.

ratio of the image and the noise level in the image to

quantify photo quality. The size of the image should

add to the beauty of the subject in the picture. A well

centered symmetric subject is better framed in a square

than in a standard rectangular 4:3 frame.

In order to detect sensor noise and noise added by

using high ISO settings which leads to grainy images, we

use the noise estimation technique developed by Kisilev

et al. (2007). The image is divided into blocks of 10×10

and the median absolute deviation from the mean is

used to quantize the variance in each of the block.

The logic behind this method is to detect the blocks

which have the least amount of texture but are inher-

ently noisy at the same time. The mean variance of the

top 30 blocks with minimum median absolute deviation

is stored as the average noise of the image. Figure 12

shows the variation in the noise level of low and high

rated images.

5 Experiments

In this section we evaluate individual modules and demon-

strate the functions of the OSCAR system. Experimen-

tal results for each module will be presented separately.

Feedback for example photographs will be shown later.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Images

N
o

is
e 

L
ev

el

 

 

Good Images
Bad Images

Fig. 12 Noise level comparison between high and low rated
images.

5.1 Evaluation of Modules

Our system consists of three modules, namely the com-

position, color feedback, and aesthetics rating modules.

Experiments and discussion for each module are pre-

sented below.

5.1.1 Composition Module

The composition module analyzes the compositional

properties of a photograph. We apply three classifiers to

each image, namely the “textured” vs “non-textured”

classifier, the diagonal element detector, and the k-NN

classifier for “horizontal”, “vertical” and “centered” com-

positions. The classification can be either exclusive or

non-exclusive. We use exclusive classification to evalu-

ate the performance of classifiers, but chose to use non-

exclusive classification in the retrieval system. Next we

will discuss experimental results in diagonal element de-

tection, and k-NN classification for “horizontal”, “ver-

tical”, and “centered” classes.

Diagonal Element Detection Algorithms for detecting

diagonal element are provided in Section 2.3. We use

both segments and edges as visual cues. After segmenta-

tion and edge detection, small segments or edges align-

ing along the same diagonal direction are merged. These

merged segments or edges with wide spread along either

of the diagonal lines are marked as diagonal elements.

The images which contain diagonal elements are classi-

fied into the “diagonal” category.

Figure 13 shows some examples for merging seg-

ments or edges. Images in the second column show

edges and segments generated by edge detection and

image segmentation, where disconnected edges or seg-

ments are marked by different colors. The third column

contains images displaying the detected diagonal ele-

ments after merging. In our experiment, we find that
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merging occurs more frequently with edges than seg-

ments. This might be caused due to the fact that the

long lines are more likely to be broken into disconnected

edges (gaps in edge detection) than elongated regions

being divided into several segments.

The current algorithm has some of the following lim-

itations. Firstly, diagonally oriented edges in a noisy

context (many other edges in the neighborhood) do not

emerge as salient visual elements. Merging edges in a

noisy context will lead to false identification of diagonal

composition. Secondly, the algorithm only merges di-

agonally oriented edges or segments. Therefore, it can-

not detect more subtle diagonal visual paths formed by

edges or segments that are not individually oriented in

a diagonal fashion.

Some examples of diagonal element detection are

given in Figure 14. Images in the first column are the

original pictures. The second column and the third col-

umn contain image segmentation and diagonal segment

detection results, while the last two columns show the

edge detection and diagonal edge detection results. Cur-

rently, we only provide information about whether a

photograph is diagonally composed or not. The system

can be enhanced to take requests as to whether a pho-

tograph contains near-diagonal elements so that users

can be alerted to adjust the frame to achieve a stronger

diagonal composition while taking photographs.

Classification of Spatial Composition Categories “Hor-

izontal”, “Vertical” and “Centered” We apply k-NN

classification algorithm (k = 30) on the spatial layout

signatures of images using the IRM distance. In the

training dataset, the sample size for each category is

30. Figure 15 shows example photos classified as “hor-

izontal”, “vertical” and “centered” by the k-NN classi-

fier. Misclassification can be caused by a biased train-

ing dataset because the image samples in the training

dataset may not represent sufficiently the correspond-

ing category. Poor segmentation can also lead to mis-

classification, since the spatial layout signature is sen-

sitive to the image segmentation results. For example,

“centered” photographs can be misclassified if the back-

ground is incorrectly broken into multiple segments. We

notice that the spatial layout signature of a “centered”

photo distinguishes itself clearly from “horizontal” and

“vertical” signatures when the centered segment, usu-

ally the subject, fills a major portion of the image plane.

It can also occur when the background segment takes

up a major portion of the image plane or when the seg-

ments on the boundary region are evenly distributed.

Confusion Table In order to evaluate the performance

of our composition classification algorithms, we apply

Table 1 Confusion table for composition classification on
222 images from five categories

h v c ulbr urbl
h 44 0 0 3 3
v 0 34 7 8 2
c 6 3 29 5 7
ulbr 0 1 2 30 2
urbl 0 3 0 0 33

the three classifiers on 222 manually labeled photographs,

among which 50 are horizontally composed, 51 are ver-

tically composed, 50 are centered, and 71 are diagonally

composed (35 have visual elements along the diagonal

line from the upper left corner to the bottom right cor-

ner, and 36 have diagonal elements in the other direc-

tion). Images in the testing dataset are pictures which

have composition clarity and fit into single category.

In this experiment, we will perform an exclusive

classification. The classifiers are applied on an image

sequentially. That is, we first use the “textured” vs

“non-textured” classifier to determine whether the im-

age looks “textured”. If this classifier labels it “non-

textured”, the diagonal element detector is then ap-

plied. Provided any diagonal element is detected, the

image is assigned to one of the diagonal categories ac-

cording to its orientation. If the category of the image

is still undetermined, the k-NN classifier finally decides

its composition type by classifying it under the cate-

gory which gets the most votes. We only evaluate the

diagonal detector and k-NN classifier for “horizontal”,

“vertical” and “centered”, since “textured” vs “non-

textured” classifier is not newly developed in this pa-

per. Hence the first step of the above process is skipped

in this experiment. We denote these categories by “h”

for “horizontal”, “v” for “vertical”, “c” for “centered”,

“ulbr” for diagonal direction from the upper left corner

to the bottom right corner, and “urbl” for the other. Ta-

ble 1 gives the confusion table for this testing dataset.

More results and discussion on composition classifica-

tion are provided in Section 6.

5.1.2 Color Feedback Evaluation

Our color feedback module is evaluated on the same

dataset used in Section 5.1.1 except with all the gray

scale images removed. In total, there are 11,241 images,

with ratings between 2.33 and 6.90 (out of 7.00). The

distribution of these ratings is shown in Figure 16(a).

Images with high aesthetic ratings are generally of high

quality. For training, we randomly select half of the im-

ages with top 5% ratings and half of the images with

bottom 5% ratings. HMAC (Li et al. 2007) is used to

segment these images. As mentioned in Section 3, the



OSCAR: On-Site Composition and Aesthetics Feedback through Exemplars for Photographers 19

Fig. 13 Merging edges or segments to form more prominent diagonal elements. First column: original images; Second column:
edge detection or segmentation results; Third column: edges or segments that are merged and identified as diagonal elements.

target number of clusters in HMAC is set to 15, and

we extract the 5 most dominant colors from that im-

age if it has more than 5 colors. Then in each image,

every three distinct colors form a color triplet, or color

combination. The images with fewer than 3 colors will

be excluded. All the color triplets from images with top

ratings are supposed to have good aesthetics, and are

called the highly aesthetic triplets. At the end, we ob-

tain a training dataset containing 1,794 highly aesthetic

color triplets and 1,890 triplets from low rating images.

K-NN is used to calculate the ratio statistics of color

triplets, with k equal to 120.

We first obtain all the ratio statistics of highly aes-

thetic color triplets as well as the triplets from low rat-

ing images, the histograms of which are shown in Figure

16(b) and 16(c). Note that the distribution in Figure

16(c) has two modes, which may indicate that though

low rating images are more likely to have color triplets

of low aesthetic quality, they may also contain certain

good color triplets. Then we calculate all the confidence

scores of the color triplets from high quality images in

the training data. The larger the score, the more confi-

dence we have to claim a particular color triplet to be

aesthetically pleasing. The color triplet with the largest

confidence score within each image is selected, i.e., the

one with the highest aesthetics. Then we rank these se-

lected color triplets based on their confidence scores, the

one with the largest score on the top. Figure 17 shows

the top 20 highly ranked color triplets. Among those

color triplets, a few contain colors that have nearly the

same hue. The majority of the color triplets contain

colors similar in hue. And yet a few triplets contain

complementary colors with one hue occupying two col-

ors with different luminance. There is a possibility that

a region with smooth while large tone transition in the

image is over segmented. On the other hand, purely

from the perspective of studying color, it can be use-

ful to divide colors of similar hues but very different

tones (i.e. light intensity) into separate regions. Vari-

ation in tone but not hue impacts human perception

deeply. In art books, artists are often reminded that

getting the tone right is more important than getting



20 Lei Yao et al.

Fig. 14 Diagonal element detection. First column: original images. Second column: segmentation result. Third column: seg-
ments detected as diagonal. The white area covers non-diagonal segments. Fourth column: edge detection result. Fifth column:
detected diagonal edges.

the color hue right because the viewer’s impression of

the three dimensional world relies largely on the correct

relationship in tone rather than in hue. A picture that

conveys a strong sense of three dimensions, let it be a

painting or a photograph, is usually appealing. In the

case of paintings, such works are often marveled at. Ad-

ditionally, the color triplets found in Figure 17 are not

highly saturated, which may be a reflection of Robert

Henri’s remarks about the attractiveness of grave colors

in pictures (Henri 1923).

We randomly select several images with high, mid-

dle, and low ratings, and evaluate the aesthetic qual-

ities of their color combinations using our color feed-

back module. The color triplet from each image with

the largest confidence scores, presumably most aesthet-

ically pleasing color combination, are shown in Figure

18. The number under each image is the corresponding

confidence score of the best color triplet chosen. Im-

ages with high, middle, and low ratings are shown in

the first, second and third row, respectively. As we can

see, the most aesthetically pleasing color triplets from

images with high and middle ratings usually have larger

confidence scores. This indicates that we are more confi-

dent about the aesthetic appeal of these color combina-

tions. However, note that the largest confidence scores

of color triplets from Figure 18(d) and Figure 18(k) are

68.5 and 5.4, although these two images receive good

ratings. This may indicate that viewers are attracted to

these photos by aspects other than color. On the other

hand, even though Figure 18(m) has a low rating, it

includes a color combination with confidence score as

large as 87.7.

5.1.3 Black and White Aesthetics Rating

In order to verify the discriminative power of our fea-

tures we performed classification between images with

high and low aesthetic ratings. In order to clearly de-

marcate the images which have higher aesthetics from

the ones with lower aesthetics, we group images above
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(a) “horizontal”

(b) “vertical”

(c) “centered”

Fig. 15 Example photos classified as “horizontal”, “vertical”, and “centered”. First row: original images. Second row: seg-
mentation result.

a given threshold as good images and the images below

a threshold as bad images. These thresholds are varied

to check for classifier performance and robustness. We

grouped images with average aesthetic ratings above

two thresholds 6 and 6.5 as pleasing while the images

with average ratings lower than 5 and 4 as images with

bad aesthetic quality.

We extract features detailed in Section 4 from im-

ages conforming to the thresholds mentioned above and

perform classification using Support Vector Machines.

The R implementation of “kernlab” (Karatzoglou 2004)

which has an in-built automatic kernel parameter op-

timizer was used. The table 2 shows the classification

results, the average accuracy with and without dimen-

sionality reduction using Principal Component Analysis
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Fig. 16 (a) Distribution of image ratings; (b) Distribution of ratio statistics for all the high aesthetics color triplets in the
training data; (c) Distribution of ratio statistics for color triplets from low rating images in the training data.

Fig. 17 Top 20 highly ranked color triplets and the corresponding images they come from.

(PCA) over five-fold cross validation. The results shown

utilize the best regularization parameter in each experi-

ment. Since the PCA resulted in a significant reduction

in accuracy, we chose to performed all the experiments

with the entire feature set.

Knowing the features are fairly discriminative a re-

gression analysis was performed. The regression model

is likely to be unbiased when the data is uniformly dis-

tributed across ratings on the contrary a skewed distri-

Table 2 Classification accuracy of images with high aes-
thetic ratings and low aesthetic ratings obtained by various
thresholds

Thresholds No. of images
Without With

PCA PCA
4 ≥ & ≤ 6.5 452 0.812 0.768

4 ≥& ≤ 6 1143 0.891 0.889
5 ≥& ≤ 6 2638 0.703 0.702
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(a) 96.5 (b) 83.4 (c) 83.4 (d) 68.5 (e) 83.4 (f) 89.4

(g) 96.0 (h) 59.0 (i) 83.4 (j) 87.7 (k) 5.4 (l) 55.5

(m) 87.7 (n) 30.8 (o) 39.2 (p) 65.1 (q) 46.5 (r) 6.5

Fig. 18 The most aesthetically pleasing color triplets and their confidence scores from images of different ratings: (a) to (f)
have ratings between 89.71 and 97.29 (high), (g) to (l) between 70.00 and 84.86 (middle), and (m) to (r) between 20.00 and
55.14 (low). The ratings are scaled from (0, 7)(ratings from photo.net) to (0, 100).

(a) 18.7 ± 11.8 (b) 43.0 ± 22.2 (c) 81.0 ± 18.0

(d) 23.1 ± 16.2 (e) 84.2 ± 6.7 (f) 73.2 ± 6.4

(g) 21.1 ± 20.1 (h) 64.6 ± 7.1 (i) 85.6 ± 21.3

Fig. 19 Exemplar images with aesthetic ratings and confi-
dence levels predicted by our system.

bution might bias it assign mean scores very frequently.

We divided the dataset into separate test and training

set, the training set was created by uniformly sampling

1800 images across the ratings and the rest was used as

a test set. A regression model using independent poly-

nomials f, f
1
3 , f

2
3 , f2 was constructed, each polynomial

represents the features. Linear regression was preferred

to Support Vector Regression in order to avoid over

fitting. The Mean of Squared Error (MSE) for the pre-

dicted ratings was found to be 0.5916. The co-efficient

of determination R2 determined by Equation 4 where

ŷ is the predicted value from the regression and ȳ, the

average score of the training images was found to be

0.4272. R2 determines the amount of variability in the

data which the model is able to predict, representing

the goodness of fit. In order to provide ratings which

are consistent with our previous system ACQUINE,

the model was later retrained with the average ratings

scaled between 1 − 100. Some of the images with aes-

thetic quality ratings along with their confidence inter-

vals with 95% confidence level are shown in Figure 19.

The confidence interval of the predicted value is given

by ŷ± t∗sŷ, where t∗ is the upper 0.025 p-value for the

t-distribution of the dataset. We have used the linear

regression toolbox in R to generate the confidence in-
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terval. We can infer that a wider confidence interval

implies higher uncertainty in the aesthetic quality of

the image.

R2 = 1−
∑
i(yi − ŷ)2∑
i(yi − ȳ)2

(4)

Any literature so far has dealt with generic mod-

els of image aesthetics alone. Due to the absence of

previous works on gray scale image aesthetics or any

standard dataset which can be used for evaluation and

comparison we have evaluated our model over a sepa-

rate test set extracted from dpchallenge.com. The test

set consisted of about 4500 images. The Scatter plot in

Figure 20 shows the predicted ratings provided by our

gray scale model with the actual ratings obtained from

the website. The mean squared error for the test set

was found to be 0.5583.
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Fig. 20 Scatter plot of predicted ratings by our model and
the actual ratings.

5.2 Composition Feedback Examples

The above modules are integrated into the OSCAR sys-

tem to provide users with feedback on each aesthet-

ics component. Feedback is provided in the form of re-

trieved photographs, most aesthetically pleasing color

triples and their confidence values(only for color im-

ages), and aesthetic scores for both color and gray-scale

images. Similar photographs can be retrieved from the

server based on visual similarity, composition catego-

rization and aesthetic scores. The system is able to

assist users with automatic composition analysis and

color evaluation. The aesthetic ratings give an assess-

ment of the photo quality in terms of general features.

We use the SIMPLIcity system to obtain the orig-

inal ranking of images according to their visual simi-

larity with the query image, and return K = 100 top

ranked pictures. When users choose to re-rank the im-

ages by composition or rating, the system re-ranks these

K images using the schema provided in section 2.5. Fig-

ure 21 presents 6 query examples including 4 color im-

ages and 2 gray-scale image. The photographs retrieved

from the database are re-ranked by composition cate-

gories and aesthetic scores. The feedback also includes

the best color triplets and their confidence scores, the

composition categorization result, and machine gener-

ated aesthetic scores. ACQUINE system provides aes-

thetic scores for color images and the black and white

aesthetics model introduced in this paper estimates aes-

thetic scores for gray scale images. Composition sensi-

tive retrieval results and the original image ranking by

SIMPLIcity for the same set of images are provided

in Figure 22. We can see that introducing composition

categorization lowers the ranks of compositionally irrel-

evant images, and returns more interesting pictures.

6 User Study and Evaluation

In this section, we investigate the usefulness of OSCAR

for the users to take better photographs. Professional

photographers would be ideal subjects for our user stud-

ies. However, due to time constraints, we could not in-

vite sufficient number of professionals to participate.

We finally recruited around 30 students, most of whom

are graduate students at Penn State with a fair knowl-

edge of digital images and photography. We expect to

collect more feedbacks from skilled photographers in the

future to improve the system. The entire demo system

will be made available for public use when this work

has been published. In total, three user studies have

been conducted. All the photos used in these studies

are from photo.net, the same collection used in our

experiments. The detailed design and the evaluation of

each user study are reported in the following sections.

6.1 User Perception on Composition Layout

A collection of around 1000 images were randomly picked

to form the dataset for the study on composition. Each

participant is provided with a set of 160 randomly cho-

sen images and is asked to describe the composition lay-

out of each image. At an online site, the participants can

view pages of test images, beside each of which are se-

lection buttons for seven composition categories: “Hor-

izontal”, “Vertical”, “Centered”, “Diagonal (upper left,

bottom right)”, “Diagonal (upper right, bottom left)”,

“Patterned”, and “None of Above”. Multiple choices

are allowed. We used “Patterned” for the class of pho-

tos with homogeneous texture(the so called “Textured”
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 21 Composition feedback. Above: photographs re-ranked by composition categorization and aesthetic score. Below: the
most aesthetically pleasing color triplet(only for color images) and its confidence score, composition categorization result and
aesthetic score.
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(a)

(b)

(c)

(d)

Fig. 22 Photographs retrieved from the database. Above: ranking by visual similarity. Below: re-ranking by composition
categorization.
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Table 3 Distribution of the entropy for the votes of users.
For each composition category, the percentage of photos
yielding a value of entropy in any bin is shown.

[0,0.5] (0.5,1.0] (1.0,1.5] (1.5,2.0] (2.0, 2.5]
h 36.12 29.96 17.18 15.42 1.32
v 12.98 45.67 19.71 20.19 1.44
c 25.36 45.48 13.12 14.87 1.17
ulbr 12.99 44.16 19.48 19.48 3.90
urbl 16.87 43.37 18.07 20.48 1.20
t 10.77 36.92 10.77 36.92 4.62
none 6.59 39.56 17.58 34.07 2.20

class). We added the “None of Above” category to al-

low more flexibility for the user perception. At the end,

we were able to collect 924 images that were voted by

three or more users.

6.1.1 Variation in Users’ Choices of Composition

In order to understand compositional clarity, we exam-

ine the variation in users’ votes on composition layout.

We quantify the ambiguity in the choices of compo-

sition layout using entropy. The larger the entropy in

the votes, the higher is the ambiguity in the composi-

tional layout of the image. The entropy is calculated by

the formula
∑
pi log 1/pi, where pi, i = 0, ..., 6, is the

percentage of votes for each category. The entropy was

calculated for all 924 photos and its value was found to

range between 0 and 2.5. We divided the range of en-

tropy into five bins. The photos are divided into seven

groups according to the composition category receiving

the most votes. In each category, we compute the pro-

portion of photos yielding a value of entropy belonging

to any of the five bins. These proportions are reported in

Table 3. We observe that among the seven categories,

“Horizontal” and “Centered” have the strongest con-

sensus among users, while “None of above” is the most

ambiguous category.

6.1.2 Composition Classification Results

We evaluate our composition classification method in

the case of both exclusive classification and non-exclusive

classification. The users’ votes on composition are used

to form ground truth, with specifics to be explained

shortly. We consider only six categories, i.e. “Horizon-

tal”, “Vertical”, “Centered”, “Diagonal ulbr”, “Diago-

nal urbl” and “Textured” for this analysis. The “None

of above” category was excluded for the following rea-

sons.

– The “None of above” category is of great ambiguity

among users, as shown by the above analysis.

Table 4 Confusion table for exclusive classification of 494
images into six composition categories. Each row corresponds
to a ground truth class.

h v c ulbr urbl t
h 107 0 20 3 8 4
v 1 32 39 3 2 10
c 10 7 132 8 11 12
ulbr 4 0 5 18 0 2
urbl 2 1 13 0 22 1
t 0 2 6 0 0 9

– Only a very small portion of images are predomi-

nantly labeled as “None of above”. Among the 924

photos, 17 have three or more votes on “None of

above”.

– We notice that these 17 “None of above” photos

vary greatly in visual appearance; and hence it is

not meaningful to treat such a category as a com-

positionally coherent group. It is difficult to define

such a category. A portion of images in this category

show noisy scenes without focused objects, which

may become a new category to be considered in our

future work.

We conducted exclusive classification only on photos

of little ambiguity according to users’ choices of com-

position. The number of votes a category can receive

ranges from zero to five. To be included in this analy-

sis, a photo has to receive three or more votes for one

category (that is, the ground-truth category) and no

more than one vote for any other category. With this

constraint, 494 images out of the 924 are selected. Ta-

ble 4 is the confusion table based on this set of photos.

We see that the most confusing category pairs are

“Vertical” vs “Centered” and “Diagonal urbl” vs “Cen-

tered”. Figure 23(a) shows some examples labeled “Ver-

tical” by users while classified as “Centered” by our al-

gorithm. We observe that the misclassification is mainly

caused by the following: 1) “Vertical” images in the

training dataset cannot sufficiently represent this cate-

gory; 2) users are prone to label images with vertically

elongated objects “Vertical” although such images may

be “Centered” in the training data; 3) the vertical ele-

ments fail to be captured by image segmentation. Fig-

ure 23(b) gives “Diagonal urbl” examples mistakenly

classified as “Centered”. The failure to detect diago-

nal elements results mainly from: 1) diagonal elements

which are beyond the diagonal tolerance set by our algo-

rithm; 2) imaginary diagonal visual paths, for example,

the direction of an object’s movement.

In non-exclusive classification, the criterion for a

photo being assigned to one category is less strict than

in the exclusive case. A photo is labeled as a particular

category if it gets two or more votes on that category.
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(a)

(b)

Fig. 23 Photo examples mistakenly classified as “Centered” by our algorithm. (a) Photos labeled “Vertical” by users;
(b)Photos labeled “Diagonal urbl” by users.

In total there are 849 out of the 924 photos with at least

one category voted twice or more. The results reported

below is based on these 849 photos.

The composition categorization of a photo is repre-

sented by a six-dimensional binary vector, with 1 indi-

cating the presence of a composition type, and 0 the

absence. Let M = (m0, ...,m5) and U = (u0, ..., u5)

denote the categorization vector generated by our al-

gorithm and by users respectively. The value m0 is set

to 1 if and only if there are 10 or more nearest neigh-

bors (among 30) labeled as “Horizontal”. The values of

m1 and m2, corresponding to the “Vertical” and “Cen-

tered” categories, are set similarly. For the diagonal
categories, mi, where i = 3, 4, is set to 1 if any di-

agonal element is detected by our algorithm. Finally,

m5 is set to 1 if the “Textured” versus “Non-textured”

classifier labels the image “Textured”. Three ratios are

computed to assess the accuracy of the non-exclusive

classification.

– Ratio of partial detection r1: the percentage of pho-

tos for which at least one of the user labeled cat-

egories is declared by the algorithm. Based on the

849 photos, r1 = 80.31%.

– Detection ratio r2: the percentage of photos for which

all the user labeled categories are captured by the al-

gorithm. Define M � U if mj ≥ uj for any j ∈ [0, 5].

So r2 is the percentage of images for which M � U .

We have r2 = 66.00%.

– Ratio of perfect match r3: the percentage of photos

for which M = U . We have r3 = 33.11%.

The precision of the algorithm can also be measured

by the number of mismatches between M and U . We

say a mismatch occurs if mj 6= uj , j = 0, ..., 5. We

count the number of mismatches for every image and

plot the histogram of these counts in Figure 24.
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Fig. 24 Histogram of the number of mismatches between
classification by our algorithm and by the users. The hori-
zontal axis corresponds to the number of mismatches. The
vertical axis corresponds to the percentage of photos.

6.2 Evaluation of Retrieved Exemplars

Every user study participant was provided with 15 ran-

domly chosen query images. For each query, we show

the participant the combined set of photos retrieved

in the top eight images by each of the three ranking

schemes based respectively on visual similarity, compo-

sition relevance, and aesthetic appeal. We removed the

duplicates and shuffled the photos to avoid any redun-

dancy and biases. For each photo, the participants were

asked the following “yes/no” questions:



OSCAR: On-Site Composition and Aesthetics Feedback through Exemplars for Photographers 29

1. Is this photo semantically similar to the query im-

age?

2. Is this photo compositionally relevant to the query

image?

3. Is this photo aesthetically appealing?

For each ranking scheme, the percentages of retrieved

photos that users indicated as semantically similar/

compositionally relevant/ aesthetically appealing were

calculated. Figure 25 compares the performance of the

three different ranking schemes. For the top four re-

trieved images, the re-ranking scheme based on compo-

sition yields the best result on all the three accounts;

and the re-ranking based on both composition and aes-

thetics yields the second best. The margin of improve-

ment over the baseline scheme (no re-ranking) is sub-

stantial. For the top eight retrieved images, the two

re-ranking schemes are still consistently better than

without re-ranking. In terms of semantic similarity and

compositional relevance, the re-ranking by composition

alone is better than re-ranking by both composition and

aesthetics; while in terms of aesthetic appeal, the latter

is slightly better. The fact that re-ranking by composi-

tion improves semantic similarity reflects a positive as-

sociation between composition and semantics. Images

that are composed similarly tend to agree more seman-

tically.

6.3 User Perception on Feedbacks

Each user study participant is shown with Web pages

displaying the feedbacks OSCAR provides for ten ran-

domly assigned photos. For each photo, the feedbacks

include:

– Best color triplet: the most aesthetically appealing

color combination found in the query photo.

– Confidence score of the color triplet: a floating num-

ber from 0-100, indicating a triplet’s aesthetic qual-

ity (100 indicates the best quality), shown beside

the triplet.

– Aesthetic score: a score profiling the aesthetic qual-

ity of the query photo in general, shown as stars

(five stars indicate the best quality).

– Photo exemplars: high quality photographs used for

reference in terms of composition, coloring, etc. We

use the re-ranking scheme based on both composi-

tion and aesthetics.

Participants are asked to assume that they are the pho-

tographers who have taken these photos and to evaluate

whether the feedbacks can help improve their photogra-

phy skills, in terms of composition, coloring, in a general

sense. Each participant is requested to indicate her/his

level of agreement with the following five statements.

1. The color combination score reflects your impression

about the color triplet.

2. The aesthetic score is consistent with your assess-

ment of the photo’s aesthetic quality.

3. Some of the photo exemplars can potentially help

improve your photography composition.

4. The color triplets can potentially help improve your

coloring scheme.

5. The overall feedback can potentially help improve

your photography skills in general.

The response preference for each statement is based on

a 5-point likert scale, i.e., “strongly agree”, “agree”,

“neither agree nor disagree”, “disagree” and “strongly

disagree”. A screen shot of the user study interface is

shown in Figure 26.

For each statement,we calculated the percentage of

votes for every agreement level. For a clearer graph-

ical presentation, we combine the two positive levels

“strongly agree” and “agree”, and similarly the two

negative levels “disagree” and “strongly disagree”. Fig-

ure 27 shows the distribution of votes on “agree”, “nei-

ther agree nor disagree”, and “disagree” for the five

statements listed above. In the figure, every group of

bars is the result for one statement, arranged from left

to right in the same order as in the list above. A major-

ity of votes support the value of the individual modules

in the feedback as well as the usefulness of the over-

all system. For the individual modules, users are most

positive about the exemplar photos.

Fig. 26 A screen shot of the web interface for analyzing user
perceptions on feedbacks.
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Fig. 25 Retrieval accuracy in terms of “semantically similar”, “composition relevant” and “aesthetically appealing” for
different ranking schemes. Left: results based on top 4 retrieved images. Right: results based on top 8 retrieved images.

0% 

10%

20%

30%

40%

50%

60%

70%

80%

          Triplet             Aesthetics         Exemplars            Color               Overall          
   Score                  Score                                          Triplets            Feedback

P
er

ce
nt

ag
e 

of
 P

ho
to

s

 

 

Agree
Neither agree nor disagree
Disagree

Fig. 27 Distribution of user votes in response to the five
statements we made on module feedback and overall feedback.

7 Running Time

We hereby report the running time of OSCAR. The

modules of OSCAR are tested on a single compute node

with 2 quadcore Intel processors running at 2.66 GHz

and 24 GB of RAM. For the composition analysis mod-

ule, the average time to process a 256 × 256 image is

3.15 seconds, including image segmentation (Li 2011),

edge detection (Meer and Georgescu 2001), and com-

position classification proposed in this paper. For the

color combination feedback module, the average time

of segmenting an image and obtaining its color triplets

with hierarchical mode association clustering (HMAC)

algorithm (Li et al. 2007) is 0.58 second while comput-

ing the confidence score of the best color triplet takes

0.53 second. Computing aesthetic scores for gray-scale

images takes an average of 1.89 seconds including im-

age segmentation, feature extraction and score gener-

ation. Initializing retrieval results by SIMPLIcity in-

curres very low overhead which can be further reduced

when running in parrarel with other modules. There-

fore, for a given image, all the feedback can be provided

within a few seconds.

8 Conclusions and Future Work

We have presented a next generation aesthetic assess-

ment system which is able to provide substantially re-

liable feedback to the users on improving the aesthetic

quality of their photographs as well as providing an

assessment on the quality of the images. We bring to-

gether various characteristics of a highly aesthetic pho-

tograph in order to provide comprehensive feedback on

the feature chosen by the user.

Motivated by an old adage, “I hear, I know. I see,

I remember. I do, I understand,” we believe that prac-

ticing is the best way of learning. We try to provide

feedback which lets the user learn and infer aesthetic

composition characteristics through high quality exem-

plars. In order to accomplish this we have been able to

successfully classify five categories of spatial image com-

position with reliable accuracy leading us to retrieve

images of similar composition with a good precision.

We also assist the user in choosing better color com-

bination by providing a quantitative feedback on the

presence of aesthetically pleasing color triplets in the

photograph. These color triplets are learnt through a

data driven approach, with quantitative values indicat-

ing the confidence about their aesthetics.

Last but not the least we have also demonstrated

the usefulness of a newer module to assign aesthetic

ratings to monochromatic images by evaluating the dis-

criminative power of the visual features. The regression

model learnt is able to predict 75.33% of the variabil-

ity in the noisy ratings. This provides a completion to

our pre-existing ACQUINE system which can predict

reliable aesthetic ratings of color images. This form of

a feedback can be considered both quantitative as well

as collective in nature.
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8.1 Future Work

Our composition and aesthetics feedback system is a

prototype. Because of the inherent complexity of aes-

thetics and the multifaceted nature of picture compo-

sition, there is ample room for extension and enhance-

ment in the future.

The five categories of composition can be refined

further to include more classes. Our current usage of

the spatial signature of an image is quite restrictive,

only to classify the composition. We can employ the

spatial signature more quantitatively so that the differ-

ence in composition is not just categorical agreement

or disagreement. For instance, a new pairwise distance

between images can be defined to incorporate the spa-

tial signature with the conventional color and texture

signature.

A significant step beyond the present analysis of

composition is to make on-site automatic suggestions

about placement of objects in a photo, which can be

achieved by zooming, expanding, tilting, etc. Principles

of good composition can be applied based on composi-

tion characteristics extracted by the computer. For in-

stance, the diagonal spatial structure provides a sense

of dynamism in the image and is highly pleasing. Ad-

justment made to the image frame to diagonalize the

not-so diagonal element can increase the image aesthet-

ics.

New functions can be added in color feedback mod-

ule to make suggestions about the color temperature,

white balance and lighting of the subject, etc. Our color

feedback framework can be tested on more color models

in order to find the best one for real applications.

The aesthetic feedback system can be improvised by

the addition of complex features which can reflect upon

the symmetry and forms of the objects present in the

image.

Finally, the system improvement lies in making it

distributive which can increase the speed of computa-

tion by allocating modules to different servers.
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