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Abstract—The emergence of artificial emotional intelligence
technology is revolutionizing the fields of computers and robotics,
allowing for a new level of communication and understanding
of human behavior that was once thought impossible. Whereas
recent advancements in deep learning have transformed the
field of computer vision, automated understanding of evoked or
expressed emotions in visual media remains in its infancy. This
foundering stems from the absence of a universally accepted
definition of “emotion,” coupled with the inherently subjective
nature of emotions and their intricate nuances. In this paper, we
provide a comprehensive, multidisciplinary overview of the field
of emotion analysis in visual media, drawing on insights from
psychology, engineering, and the arts. We begin by exploring
the psychological foundations of emotion and the computational
principles that underpin the understanding of emotions from
images and videos. We then review the latest research and systems
within the field, accentuating the most promising approaches. We
also discuss the current technological challenges and limitations
of emotion analysis, underscoring the necessity for continued
investigation and innovation. We contend that this represents
a “Holy Grail” research problem in computing and delineate
pivotal directions for future inquiry. Finally, we examine the
ethical ramifications of emotion-understanding technologies and
contemplate their potential societal impacts. Overall, this article
endeavors to equip readers with a deeper understanding of the
domain of emotion analysis in visual media and to inspire further
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research and development in this captivating and rapidly evolving
field.

Index Terms—Evoked emotion; expressed emotion; bodily ex-
pressed emotion understanding; psychology; movement analysis;
artificial emotional intelligence; intelligent robots; deep learning;
human behavior; ethics.

I. INTRODUCTION

As Artificial Intelligence (AI) technology becomes more

prevalent and capable of performing a wide range of tasks,

the need for effective communication between humans and

AI systems is becoming increasingly important. The adoption

of smart home products and services is projected to reach

400 million worldwide, with smart devices such as Alexa and

Astro becoming increasingly common in households [1]. How-

ever, these devices are currently limited to executing specific

commands and do not possess the capability to understand

or respond to human emotions [2]. This lack of emotional

intelligence (EQ) limits their potential applications, and this

constraint is particularly relevant for future robotic applica-

tions, such as personal assistant robots, social robots, service

robots, factory/warehouse robots, and police robots, which

require close collaboration and a comprehensive understanding

of human behavior and emotions.
The ability to impart EQ to AI when dealing with visual

information is a topic of growing interest. This article aims

to address the fundamental question of how to “teach” AI
to understand and respond to human emotions based on
images and videos. The potential technical solutions to these

questions have far-reaching implications for various applica-

tion domains, including human-AI interaction, autonomous

driving, social media, entertainment, information management

and retrieval, design, industrial safety, and education.
To provide a comprehensive and well-balanced view of this

complex subject, it is essential to draw on the expertise of

various fields, including computer and information science

and engineering, psychology, data science, movement analysis,

and performing arts. The interdisciplinary nature of this topic

highlights the need for collaboration and cooperation among

researchers from different fields in order to achieve a deeper

understanding of the subject.
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In this article, we focus on the topic of affective visual infor-

mation analysis as it represents a highly nuanced and complex

area of study with strong connections to well-established

scholarly fields such as computer vision, multimedia, and

image and video processing. However, it is important to note

that the techniques presented here can be integrated with other

data modalities, such as speech, sensor-generated streaming

data, and text, in order to enhance the performance of real-

world applications.

The primary objective of this article is to introduce the

technical communities to the emerging field of affective visual

information analysis. Recognizing the breadth and dynamic

nature of this field, we do not aim to provide a comprehensive

survey of all sub-areas. Instead, our discussion focuses on

the fundamental psychological and computational principles

(Sections II and III), recent advancements and developments

(Section IV), core challenges and open issues (Section V),

connections to other areas of research and development (Sec-

tion VI), and ethical considerations related to this new technol-

ogy (Section VII). We apologize in advance for any important

publications that may have been omitted in our discussion.

Recently, there have been some other surveys and reviews

on artificial emotional intelligence, such as facial expression

recognition [3, 4, 5, 6], microexpression recognition [7, 8, 9],

textual sentiment classification [10, 11, 12], music and speech

emotion recognition [13, 14, 15], affective image content

analysis [16], emotional body gesture recognition [17], bodily

expressed emotion recognition [18], emotion recognition from

physiological signals [19, 20], multimodal emotion recogni-

tion [21, 22], and affective theory use [23]. These articles

mainly focus on emotion and sentiment analysis for a specific

modality from the perspective of machine learning and pattern

recognition or focus on the psychological emotion theories.

Cambria [24] summarized the common tasks of affective com-

puting and sentiment analysis and classified existing methods

into three main categories: knowledge-based, statistical, and

hybrid approaches. Poria et al. [25] and Wang et al. [26]

reviewed both unimodal and multimodal emotion recognition

before the year of 2017 and between the years of 2017 and

2020, respectively. As opposed to those reviews, the current

paper aims to provide a comprehensive overview of emotion

analysis from visual media (e.g., both images and videos) with

insights drawn from multiple disciplines.

II. EMOTION: THE PSYCHOLOGICAL FOUNDATION

How we define emotion largely descends from the the-

oretical framework used to study it. In this section, we

provide an overview of the most prominent emotion theories,

beginning with Darwin, and underscore how contemporary

dimensional approaches to understanding emotion align with

both the processing of emotion by the human brain and

current computer vision approaches for modeling emotion to

make predictions about human perception (Section II-A). In

addition, we examine the intrinsic link between emotion and

adaptive behavior, a contention that is largely shared across

different emotion theories (Section II-B).

A. Definitions and Models of Emotion

One of the first emotion theories put forth was Charles Dar-

win’s in his seminal book, “On the Expression of the Emotions

in Man and Animals” [32]. This book proposed that humans

possess a finite set of biologically privileged emotions that

evolved to confer upon us survival-related behavior. William

James [33] later added to this arguing that the experience of

emotion is ultimately our experience of distinct patterns of

physiological arousal and physical behaviors associated with

each emotion [34]. Building upon these assumptions, Ekman’s

Neurocultural Theory of Emotion [35] further perpetuated the

notion that there exists a “universal affect program” that under-

lies the experience and expression of several discrete emotions,

such as anger, fear, sadness, and happiness. According to this

theory, basic emotional experiences and emotional displays

evolved as adaptive responses to specific environmental con-

tingencies, and thus felt, expressed, and recognized emotions

are uniform across all people and cultures, and are marked by

specific patterns of physiological and neural responsivity.

Considerable research has since questioned the utility of this

approach. This includes findings that people: 1) are often ill-

equipped to describe their own emotions in discrete emotion

terms, both in research and clinical settings [36], 2) show low

consensus in their ability to categorize both facial and vocal

expressions of emotions in discrete emotion terms [37], and 3)

show high intercorrelations across the emotional experiences

they do report [38]. Such findings have prompted many re-

searchers to explore alternative approaches to conceptualizing

and measuring emotional experience that necessarily involve

a cognitive component.

Magda Arnold’s cognitive appraisal theory of emotion was

the first to introduce the necessity of cognition in emotion

elicitation [39]. Although she did not disagree with Darwin

and James that emotions are adaptive states spurring on

survival-related behavior, she nonetheless took them to task

for not considering vast individual variation in emotional

experiences. Arnold rightly underscored the capacity for the

same emotion-evoking events to lead to different emotional

experiences in different people. This becomes readily apparent

when considering one’s own emotional experiences. For exam-

ple, diving off a cliff may generate an aversive fear state in one

person but an enjoyable thrill state in another. The difference

in how an event is evaluated, therefore, shapes the emotion that

results. Central to her theory was the importance of cognitive

appraisal in initially eliciting an emotion. Once elicited, she

largely agreed with Darwin’s functional assumptions regard-

ing the survival benefits of emotion-related behavior. Later,

Schachter and Singer [40] drew on these insights to help

resolve ongoing debates regarding James’ theory of embodied

emotional experience. Their research demonstrated that the

emotion we experience when adrenaline is released in our

body depends on our cognitive framing and context. Those

injected with adrenaline reported feeling happier when in a

fun context and more irritated when in an angering context.

The only difference was the cognitive appraisal that framed

the experience of that arousal.

Building upon these ideas further, Mehrabian and Rus-
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(a) Russell, 1980 (b) Watson and Tellegen, 1985 (c) Thayer, 1989

(d) Larsen and Diener, 1992 (e) Knutson, 1996

Fig. 1. Five influential circumplex emotion models developed in the psychology literature [27, 28, 29, 30, 31].

sell [41] proposed the Pleasure, Arousal, and Dominance

(PAD) Emotional State Model, which suggests a dimen-

sional account of emotion, one in which PAD constitutes the

fundamental dimensions that represent all emotions. Later,

Russell dropped dominance as a key dimension and focused

on what he refers to as “core affect,” suggesting that all

emotions can be reduced to the fundamental psychological

and biological dimensions of pleasantness and arousal [42].

Dimensional approaches offer a way of conceptualizing and

assessing emotion that closely approximates how the human

brain processes emotion (see Fig. 1 for a comparison of

different dimensional/circumplex models).

Notably, some early attempts to use computational methods

to predict human emotions elicited by visual scenes employed

the discrete emotion approach described at the outset of this

section. For example, Mikels et al. [43] and Machajdik and

Hanbury [44] used categorical approaches to assess the visual

properties of stimuli taken from the International Affective

Picture System (IAPS) [45], a widely used set of emotionally

evocative photographs in the emotion literature. However,

such approaches resulted in high levels of multicollinearity

between emotions, making it difficult to disentangle emotions

using traditional regression models. In contrast, adopting a

dimensional approach not only aligns well with emerging

theoretical accounts of emotion, but has been validated by

James Wang and his colleagues in the successful assessment

of human aesthetics and emotions evoked by visual scenes, as

well as bodily expressed emotion [46, 47, 48, 49, 50, 51, 52].

This offers a methodological approach that is consistent with

dimensional theories of emotion.

B. The Interplay Between Emotion and Behavior

Fridlund’s behavioral ecology perspective of emotion argues

that emotional expression evolved primarily as a means of sig-

naling behavioral intent [53]. The view that facial expression

evolved specifically as a way to forecast behavioral intentions

and consequences to others drew from Darwin’s seminal writ-

ings on expression [32], even though Darwin himself argued

that expressions did not evolve for social communication per

se. Fridlund’s argument is based on the idea that perceiving

behavioral intentions is adaptive. From this perspective, anger

may primarily convey to an observer a readiness to attack,

whereas fear may primarily convey a readiness to submit or

retreat (see [54]). From this perspective behavioral intentions

are considered “syndromes of correlated components” [53]

(p. 151). Fridlund is not alone in these assumptions. Some

researchers have gone so far as to suggest that feeling states

associated with emotions are merely conscious perceptions of

underlying behavioral intentions, or action tendencies, which

implies that emotional feeling is simply the experience of

behavioral intention, similar to William James’s theory [55].

It is worth noting that empirical research has provided sup-

port for the idea that behavioral intention is conveyed through

emotional expression. For example, one study demonstrated

that action tendencies and emotion labels are attributed to faces

at comparable levels of consistency [55]. Similarly, in forced-

choice paradigms [54], cross-cultural evidence indicates that

participants assign behavioral intention descriptors with about

equal consistency as they do with emotion descriptors.

A focus on approach-avoidance tendencies has been high-

lighted in most of the research conducted to date. The abil-

ity to detect another’s intention to approach or avoid us is

thought of as a principal factor governing social exchange.

However, much of the work on approach-avoidance behavioral
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motivations has also tended to concentrate on the experience

or response of an observer to a stimulus event [56]. One

common method of operationalizing approach and avoidance

then stems from traditional behavioral learning paradigms

that link behavioral motivation and emotion through reward

versus punishment contingencies [57]. Approach motivation is

defined by appetitive, reward-related behavior, while avoidance

motivation is defined by aversive, punishment-related behavior,

where appetitive behavior is movement toward a reward and

aversive behavior is movement away from a punishment.

Much research has focused on the relationship between

approach and avoidance tendencies and emotional experi-

ence [58]. However, there has been less attention paid to

whether approach and avoidance tendencies are fundamentally

signaled by the external expression of emotion. It stands to

reason that if the experience of emotion is associated with

approach and avoidance tendencies, these tendencies should

be signaled to others when expressed. This distinction is im-

portant as the approach-avoidance tendencies attributed to ex-

pressive faces may not always match the approach-avoidance

reactions elicited by them. For example, the expression of joy

arguably conveys a heightened likelihood of approach by the

expressor and a reaction of approach from the observer [56]. In

contrast, anger expressions signal approach by the expressor,

but tend to elicit avoidance by the observer.

Recent insights from the embodiment literature also provide

evidence that emotional experiences are grounded in specific

action tendencies [34]. This means that emotional experiences

can be expressed through stored action tendencies in the

body, rather than through semantic cues. For example, studies

have examined the coherence between emotional experience

(positive or negative) and approach (arm flexion, i.e., pulling

toward) versus avoidance behavior (arm extension, i.e., push-

ing away) [59]. In one study, participants were randomly

assigned to an arm flexion (approach behavior) or arm exten-

sion (avoidance behavior) condition, either during the reading

of a story about a fictional character or during a positive

versus negative semantic priming task before reading the story.

Participants in the congruent conditions (happy prime and

arm flexion, and sad prime and arm extension) were able to

remember more items from the story.

Although important for explaining behavioral responding,

these studies did not address whether basic tendencies to

approach or avoid were also fundamentally signaled by emo-

tional expressions. If they were, expressions coupled with

approach and avoidant behaviors should impact the efficiency

of emotion recognition. In one set of studies, anger expres-

sions were found to facilitate judgments of approach versus

withdrawing faces compared with fear expressions [60]. Sim-

ilarly, perceived movement of a face toward or away from

an observer likewise facilitated angry or fearful expression

perception [61]. Thus, approach and avoidance movement

are associated in a fundamental way with the recognition of

anger and fear displays, respectively, supporting the conclusion

that basic action tendencies are inherently associated with the

perception of emotion.

In sum, despite widely debatable assumptions about the

nature of emotion and emotional expression across various

theories, most tend to agree that emotion expression conveys

fundamental information regarding basic behavioral tenden-

cies [60].

III. EMOTION: COMPUTATIONAL PRINCIPLES AND

FOUNDATIONS

In this section, we aim to establish computational foun-

dations for analyzing and recognizing emotions from visual

media. Emotion recognition systems typically involve sev-

eral fundamental data-related stages, including data collection

(Section III-A), data reliability assessment (Section III-B), and

data representation (Sections III-D, III-E, and III-F for general

computer vision-based representation, movement coding, and

context and function purpose detection, respectively). As we

present specific examples at each stage, we will emphasize

the underlying principles they adhere to. We provide a list of

representative datasets in Section III-C. We will also intro-

duce the factors of acted portrayals (Section III-G), cultural

and gender dialects (Section III-H), structure (Section III-I),

personality (Section III-J), and affective style (Section III-K)

in inferring emotion, based on prior research.

A. Data Collection

Because the categories of emotions are not well-defined, it is

not possible to program a computer to recognize all emotion

categories based on a set of predefined logic rules, compu-

tational instructions, or procedures. Thus, researchers must

take a data-driven approach in which computers learn from

a large quantity of labeled, partially labeled, and/or unlabeled

examples. To enable such research and subsequent real-world

applications, it is essential to collect large-scale, high-quality,

ecologically valid datasets. To highlight the complexity of the

data collection problem as well as to introduce best practices,

we describe a few data collection approaches that incorporate

psychological principles in their design.

1) Evoked Emotion – Immediate Response: In the field of

modeling evoked emotion, earlier researchers utilized the IAPS

dataset, which consisted of only 1,082 images rated for evoked

emotional response [46]. In 2017, Lu et al. [48] introduced

one of the first large-scale datasets, the EmoSet, utilizing a

human subject study. The EmoSet dataset is much larger, and

all images are complex scenes that humans regularly encounter

in daily life.

To create a diverse image collection, the researchers em-

ployed a data-crawling approach to gather nearly 44,000 im-

ages from social media, and obtained emotion labels (both di-

mensional and categorical) using crowdsourcing via the Ama-

zon Mechanical Turk (AMT) platform. They used the VAD

(Valence, Arousal, and Dominance) dimensional model [27],

which is similar to the PAD model. The researchers followed

strict psychological subject study procedures and validation

approaches. The images were collected from more than 1,000

users’ Web albums on Flickr using 558 emotional words as

search terms. These words were summarized by Averill [62].

The researchers carefully designed their online crowdsourc-

ing human subject study to ensure the quality of the data.

For example, each image was presented to a subject for
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Fig. 2. Example images in the ISEE dataset [50]. Images were selected after a thorough test-retest reliability study.

exactly six seconds. This design differed from conventional

object recognition data annotation tasks, where the subject

was often given no restrictions on the amount of time to view

an image. This design followed psychological convention, as

the intention was to collect the subject’s immediate affective

response to the visual stimuli. If subjects were given varying

amounts of time to view an image before rating it, the data

would not be a reliable capture of their immediate affective

response. To accommodate for this, subjects were given the

option to click a “Reshow Image” button if they needed to refer

back to the image. In addition, recognizing that categorical

emotions may not cover all feelings, this method allowed the

subject to enter other feelings they may have had.

2) Evoked Emotion – Test-Retest Reliability: The data col-

lection method proposed by Lu et al. [48] aimed to understand

immediate affective responses to visual content, but it did not

ensure retest reliability of affective picture stimuli over time

and across a population. Many psychological studies, from

behavioral to neuroimaging studies, have used visual stimuli

that consistently elicited specific emotions in human subject.

While the IAPS and other pictorial datasets have validated

their data, they have not examined the retest reliability or

agreement over time of their picture stimuli.

To address this issue, Kim et al. [50] developed the Image

Stimuli for Emotion Elicitation (ISEE) as the first set of stimuli

for which there was an unbiased initial selection method and

with images specifically selected for high retest correlation

coefficients and high within-person agreement across time.

The ISEE dataset used a subset of 10,696 images from the

Flickr-crawled EmoSet. In the initial screening study, study

participants rated stimuli twice for emotion elicitation across

a one-week interval, resulting in the selection of 1,620 images

based on the number of ratings and retest reliability of each

picture. Using this set of stimuli, a second phase of the study

was conducted, again having participants rate images twice

with a one-week interval, in which the researchers found a

total of 158 unique images that elicited various levels of

emotionality with both good reliability and good agreement

over time. Fig. 2 shows 18 example images in the ISEE

dataset.

3) Expressed Emotion – Body: In the field of expressed

emotion recognition, the collection of data on bodily expressed

emotions has received less attention compared to the more

widely studied areas of facial expression and microexpression

data collection. In addition, whereas earlier studies often relied

on data collected in controlled laboratory environments, recent

advancements in technology have made it possible to collect

data in more naturalistic, real-world settings. These “in-the-

wild” datasets are more challenging to collect, but they offer

the opportunity to capture a more diverse range of emotions

and expressions. Whereas laboratory environments provide

the advantage of advanced sensors such as Motion Capture

(MoCap), body temperature, and brain electroencephalogram

(EEG) for collecting data, and it is possible to capture self-

identified rather than perceived emotional expression, it is

impossible to accurately replicate the vast array of diverse

real-world scenarios within a controlled laboratory setting.

Using video clips from movies, TV shows, sporting, and

wedding events as a source of data for emotion recognition

has several advantages. These videos provide a wide range
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Fig. 3. A data collection pipeline was developed by Luo et al. [51]to utilize crowdsourcing to annotate vast amounts of videos available on the Internet. The
pipeline involved obtaining raw movies and videos from the Internet, segmenting them into short clips, processing the clips using computer vision techniques
to extract posture information and track individual characters, and utilizing crowdsourcing and expert annotation to assign emotion and movement labels to
the clips.

of scenarios, environments, and situations that can be used to

train computer systems to understand human behavior, expres-

sion, and movement. For instance, these videos have recorded

scenes during natural and man-made disasters, providing valu-

able information for understanding human emotions under

extreme conditions. In addition, a large proportion of video

shots in movies is of outdoor human activities, providing a

diverse range of contexts for training.

However, it is important to note that using publicly available

video clips as a source of data has its limitations. One such

limitation is that this approach can only capture perceived

emotions, as opposed to self-identified emotions. In many ap-

plications, perceived emotions are a sufficient proxy for actual

emotions, particularly when the goal is for robots to “perceive”

or “express” emotions in a way that is similar to humans for

efficient communication with humans. A further constraint is

that the videos mainly feature staged or user-selected scenes,

rather than depicting natural everyday interactions. This topic

will be further explored in Section III-G.

Luo et al. [51] developed the first dataset for bodily ex-

pressed emotion understanding (BEEU), named the BoLD

(Body Language Dataset), using this approach. The data

collection pipeline is illustrated in Fig. 3. The researchers

collected hundreds of movies from the Internet and cut them

into short clips. An identified character with landmark tracking

in a single clip is called an instance. They used the AMT

platform for crowdsourcing emotion annotations of a total of

over 48,000 instances. The emotion annotation included the

VAD dimensional model [27] and 26 emotion categories [63].

B. Data Quality Assurance

Quality control is a crucial aspect for crowdsourcing, par-

ticularly for affect annotations. Different individuals may have

varying perceptions of affect, and their understanding can be

influenced by factors such as cultural background, current

mood, gender, and personal experiences. Even an honest par-

ticipant may provide uninformative affect annotations, leading

to poor-quality data. In this case, the variance in acquiring

affect usually comes from two kinds of participants, i.e.,

dishonest ones, who give useless annotations for economic

motivation, and exotic ones, who give inconsistent annotations

compared with others. The existence of exotic participants

is inherent in emotion studies. The annotations provided by

an exotic participant could be valuable when aggregating the

final ground truth or investigating cultural or gender effects of

affect. However, we typically want to reduce the risk of high

variance caused by dishonest and exotic participants in order

to collect generalizable annotations.

In the case of the BoLD dataset [51], five complementary

mechanisms were used, including three online approaches

(i.e., analyzing while collecting the data) and two offline

(i.e., postcollection analysis), based on a recent technological

breakthrough for crowdsourced affective data collection [49].

These mechanisms were participant emotional intelligence

(EQ) screening [64], annotation sanity/consistency check [51],

gold standard test based on control instances [51], and prob-

abilistic multigraph modeling for reliability analysis [49].

Particularly critical is the probabilistic graphical model Ye
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et al. developed to jointly model subjective reliability, which

is independent from supplied questions, and regularity [49].

For brevity of discussion, we focus on using the mode(s) of

the posterior as point estimates. We assumed each subject i
had a reliability parameter τi ∈ [0, 1] and regularity parameters

αi, βi > 0 characterizing their agreement behavior with the

population, for i = 1, . . . ,m. We also used parameter γ
for the rate of agreement between subjects by pure chance.

Let Θ = ({τi, αi, βi}mi=1, γ) be the set of parameters. Let

Ωk be a random sub-sample from subjects {1, . . . ,m} who

labeled the stimulus k, where k = 1, . . . , n. We also assumed

sets Ωk’s were created independently from each other. For

each image k, every subject paired from Ω2
k, i.e., (i, j) with

i �= j, had a binary indicator I
(k)
i,j ∈ {0, 1} coding whether

their opinions agreed on the respective stimulus. We assumed

I
(k)
i,j was generated from a probabilistic process involving two

latent variables. The first latent variable T
(k)
j indicated whether

subject Oj was reliable or not. Given that it was binary, a

natural choice of model was the Bernoulli distribution. The

second latent variable J
(k)
i , lying between 0 and 1, measured

the extent to which subject Oi agreed with other reliable

responses. We used the Beta distribution parameterized by αi

and βi to model J
(k)
i because it was a widely used and flexible

parametric distribution for quantities on the interval [0, 1].

In a nutshell, T
(k)
j is a latent switch (a.k.a. gate) that

controls whether I
(k)
i,j can be used for the posterior inference

of the latent variable J
(k)
i . Hence, the researchers referred

to the model as the Gated Latent Beta Allocation (GLBA).

A graphical illustration of the model is shown in Fig. 4.

If an uninformative annotator was in the subject pool, their

reliability parameter τi was zero, though others could still

agree with their answers by chance at a rate of γ. On the other

hand, if an individual was very reliable yet often provided

controversial answers, their reliability τi could be one, while

they typically disagreed with others, as indicated by their high

irregularity

E[J
(k)
i ] =

αi

αi + βi
≈ 0 .

We were interested in finding both types of participants. Most

participants were between these two extremes. The quantita-

tive characterization of participants by GLBA will assist in

selecting subsets of the data collection for quality control or

gaining a comprehensive understanding of subjectivity. For

more details, please refer to [49, 65].

A recent study [66] presented a Python-based software

program called MuSe-Toolbox, which combines emotion an-

notations from multiple individuals. The software includes

several existing annotation fusion methods, such as Estima-

tor Weighted Evaluator (EWE) [67] and Generic-Canonical

Time Warping (GCTW) [68]. In addition, the authors have

developed a new fusion method based on EWE, named Rater

Aligned Annotation Weighting (RAAW), which is also in-

cluded in the software. Furthermore, MuSe-Toolbox includes

the capability to convert continuous emotion annotations into

categorical labels.

Fig. 4. Probabilistic graphical model GLBA, was developed by Ye et al. [49],
to model the subjective reliability and regularity in a crowdsourced affective
data collection. The work enables researchers in affective computing to
effectively identify and exclude highly subjective annotation data provided
by uninformative human participants, thereby improving the overall quality
of the collected data.

C. Existing Datasets

Several recent literature surveys have provided an overview

of existing datasets for emotions in visual media. In order

to avoid duplication of effort, readers are directed to these

papers for further information, which include surveys on

evoked emotion [16], BEEU [17], facial expression recognition

(FER) [4], microexpression recognition (MER) [7], and mul-

timodal emotion [22, 69, 70]. Table I presents a comparison

of the properties of some representative datasets. Researchers

are advised to thoroughly review the data collection protocol

used before utilizing a dataset to ensure that the data has

been collected in accordance with appropriate psychological

guidelines. In addition, when crowdsourcing is utilized, effec-

tive mechanisms are essential for filtering out uninformative

annotations.

D. Data Representations

After data collection and quality assurance stages, a sig-

nificant technological challenge is to represent the emotion-
relevant information present in the raw data in a concise

form. Whereas current deep neural network (DNN) approaches

often utilize raw data, such as matrices of pixels, as input in

the modeling process, utilizing a compact data representation

can potentially improve the efficiency of the learning process,

allowing for larger-scale experiments to be conducted with

limited computational resources. In addition, a semantically

meaningful data representation can facilitate interpretability,

which is crucial for certain applications. There are numerous

methods for compactly representing raw visual data, and we

discuss several intriguing or widely used data representations

for emotion modeling in the following.

1) Roundness, Angularity, Simplicity, and Complexity:
Colors and textures are commonly used in image analysis

tasks to represent the content of an image, but research has

shown that shape can also be an effective representation

when analyzing evoked emotions. In both visual art and

psychology, the characteristics of shapes, such as roundness,

angularity, simplicity, and complexity, have been linked to

specific emotional responses in humans. For example, round

and simple shapes tend to evoke positive emotions, while
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TABLE I
RECENT REPRESENTATIVE DATASETS FOR EMOTION RECOGNITION

Dataset Name Labeled
Samples

Data
Type

Categorical
Emotions

Continuous
Emotions

Lab-
Controlled Year Primary

Application
IAPS [45] 1.2k I - VAD 2005 Evoked

FI [71] 23.3k I 8§ - 2016 Evoked

VideoEmotion-8 [72] 1.2k V 8† - 2014 Evoked

Ekman-6 [73] 1.6k V 6† - 2018 Evoked

E-Walk [74] 1k V 4‡ - 2019 BEEU

BoLD [51] 13k V 26† VAD 2020 BEEU
iMiGUE [75] 0.4k V 2 - 2021 BEEU�

CK+ [76] 0.6k V 7‡ - � 2010 FER
Aff-Wild [77] 0.3k V - VA 2017 FER

AffectNet [78] 450k I 7‡ - 2017 FER

EMOTIC [79] 34k I 26† VAD 2017 FER∗
AFEW 8.0 [80] 1.8k V 7‡ - 2018 FER

CAER [81] 13k V 7‡ - 2019 FER∗
DFEW [82] 16k V 7‡ - 2020 FER

FERV39k [83] 39k V 7‡ - 2022 FER

SAMM [84] 0.2k V 7‡ - � 2016 MER

CAS(ME)2 [85] 0.06k V 4‡ - � 2017 MER
ICT-MMMO [86] 0.4k V,A,T - Sentiment 2013 Multi-Modal

MOSEI [87] 23.5k V,A,T 6† Sentiment 2018 Multi-Modal

† A superset of Ekman’s basic emotions ‡ Ekman’s basic emotions + neutral § Mikels’ emotions
� Micro-gesture understanding and emotion analysis dataset ∗ Context-aware emotion dataset
Data Type Key: (I)mage, (V)ideo, (A)udio, (T)ext

angular and complex shapes evoke negative emotions. Lever-

aging this understanding, Lu et al. developed a system that

predicted evoked emotion based on line segments, curves,

and angles extracted from an image [46]. They used ellipse

fitting to implicitly estimate roundness and angularity and

used features from the visual elements to estimate complexity.

Later, they developed algorithms to explicitly estimate these

representations [48]. Fig. 5 shows some example images with

different levels of roundness, angularity, and simplicity. The

researchers found that these three physically interpretable vi-

sual constructs achieved comparable classification accuracy to

the hundreds of shape, texture, composition, and facial feature

characteristics previously examined. This result was thought-

provoking because just a few numerical-value representations

could effectively predict evoked emotions.

2) Facial Action Coding System (FACS) and Facial Land-
marks: People use particular facial muscles to express certain

facial expressions. For instance, people can express anger by

frowning and pursing their lips. Consequently, each facial

expression can be viewed as a combination of some facial

muscle movements. Ekman and Friesen developed the FACS

in 1976, which encodes all movements of facial muscles [88].

FACS defines a total of 32 atomic facial muscle actions, called

Action Units (AUs), including Lids Tight (AU7), Cheek Raise

(AU6), and so on. By detecting all AUs of a person and linking

them to specific expressions, we can identify the individual’s

facial expressions.

The problem of AU detection can be approached as a

multilabel binary classification problem for each AU. Early

work on AU detection used facial landmarks to identify

regions of corresponding muscles and then applied neural

networks [89] or Support Vector Machines (SVMs) [90] for

classification. More recent work has developed end-to-end

AU detection networks [91]. Survey papers provide detailed

introductions to facial AU detection [92, 93] and face land-

mark detection [94, 95]. Some researchers also used facial

landmarks directly as a representation of facial information in

their recognition work.

3) Body Pose and Body Mesh: People can express emotions

through body posture and movement. By manipulating the

positioning of body parts (e.g., the shoulders, arms), people

produce various postures and movements. The coordinates of

human joints can serve as a representation of body language,

reflecting the individual’s bodily expression. In the field of

computer vision, two-dimensional (2D) pose estimation is a

well-studied task for detecting the 2-D position of human

joints in an image. Leveraging large-scale 2-D pose datasets

(e.g., COCO [96]), researchers have proposed several high-

performing pose networks [97, 98]. Even with challenging

scenes, such as crowded or occluded scenes, these networks

are able to provide comprehensive joint detection and linking.

However, 2-D pose estimation does not fully capture the

three-dimensional (3D) nature of human posture and move-

ment. 3-D human pose estimation, on the other hand, aims

to predict the 3-D coordinates of human joints in space.

Single-person 3-D pose estimation methods determine the 3-

D joint coordinates relative to the person’s root joint (i.e.,

the torso) [99, 100]. In addition, some multiperson 3-D pose

estimation approaches comprehensively estimate the absolute

distance between the camera and the individuals in the im-

age [101].

3D human mesh estimation, which provides the 3-D co-

ordinates of each point on the human mesh, is a further

extension of the 3-D pose estimation. Researchers often utilize

SMPL [103, 104] or other human graph models to represent

the mesh. Fig. 6 illustrates an example of 2-D pose, 3-D
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Fig. 5. Researchers developed algorithms to compute the roundness, angularity, and simplicity/complexity of a scene as the representation for estimating the
evoked emotion [48].

(a) original photo (b) 2-D pose (c) 2-D pose, superimposed

(d) 3-D pose (e) 3-D mesh (f) 3-D mesh, alternative view

Fig. 6. An example of state-of-the-art deep learning-based human pose and mesh detection with individuals in the scene separated properly [102]. The input
to the methods is a standard 2-D RGB photograph. The 3-D mesh method provides an estimation of the relative depths of the people in the scene.
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pose, and 3-D mesh automatically generated from a scene with

multiple people [102].
While human pose and human mesh representations pro-

vide a higher level of abstraction compared to low-level

representations such as raw video or optical-flow, there is

still a significant gap between these intermediate-level rep-

resentations and high-level emotion representations. To bridge

this gap, an intermediate-level representation that effectively

describes human movements is proposed. Specifically, Laban

Movement Analysis (LMA) is a movement coding system

initially developed by the dance community, similar to sheet

music for describing music. Fig. 7 illustrates the layers of data

representation for BEEU, from low pixel-level representations

to the ultimate high-level emotion representation. Elevating

each layer higher in this information pyramid requires consid-

erable advancements in abstraction technology.

E. Human Movement Coding and LMA
Expressive human movement is a complex phenomenon.

The human body has 360 joints, many of which can move

various distances at different velocities and accelerations, and

in two (and depending on the joint, sometimes more) different

directions, resulting in an astronomical number of possible

combinations. These variables create an infinite number of

movements and postures that can convey different emotions.

Beyond this array of body parts moving in space, expressive

movement also involves multiple qualitative motor compo-

nents that appear in unique patterns in different individuals

and situations. The complexity of human movement thus raises

the question: How do we determine which of the numerous
components present in expressive movement are significant
to code for emotional expression in movement? Thus, when

choosing a coding system, the early stages of each research

project can benefit from deeply considering which aspects

of movements are central to the expression being studied.

A multistage methodology, such as first identifying what is

potentially relevant and then using preliminary analyses to

refine the selection of movements most promising to code,

can be helpful before selecting a method to code or quantify

the multitude of variables present in unscripted movement

(e.g., [105, 106]).
After deliberating about which movement variables are

relevant and meaningful, we must then consider the three main

types of coding systems that have been used in various fields

such as psychology, computer vision, animation, robotics, and

AI, specifically:

• Lists of specific motor behaviors that have been found

in scientific studies to be typical to the expressions of

specific emotions, such as head down and moving slowly

as characterizing sadness; moving backward and bringing

the arms in front of the body as characterizing fear; jump-

ing, expanding and upward movements as characterizing

happiness, and so on. (for review of these studies and

lists of these behaviors see [107, 108]).

• Kinematic description of the human body models, such as

skeleton-based models, contour-based models, or volume-

based models. Most work in the field of emotion recog-

nition is based on skeleton-based models [109]. This

type of model uses 3-D coordinates of markers that

were placed on (using various MoCap systems) or were

mapped (using pose estimation techniques) to the main

joints of the body, to create a moving “skeleton,” which

enables researchers to quantitatively capture the move-

ment kinematics (e.g., [110, 111]).

• LMA, a comprehensive movement analysis system that

depicts qualitative aspects of movement and, theoret-

ically [112, 113], as well as through scientific re-

search [114, 115], relates the different LMA motor el-

ements (movement qualities) to cognitive and emotional

aspects of the moving individual.

4

3

2

1

PIXEL
video, 

optical flow

MOVEMENT
Laban Movement 

Analysis

POSE
2-D/3-D pose, 

mesh

EMOTION/MENTAL
emotion category, VAD, 

mental state

Fig. 7. For BEEU, Laban Movement Analysis as a movement coding system
can serve as an intermediate level of representation to bridge the significant
gap between the pose and the emotion/mental levels [51].

The first coding system, based on lists of motor behaviors,

was primarily used in earlier studies in the field of psychology,

where the encoding and decoding of motor behaviors into

emotions and vice versa were done manually by human coders

in a labor-intensive process. Other limitations of this coding

system include the following:

• It is based on a limited number of behaviors that have

been used in prior scientific studies. However, people can

physically express emotions in many different ways, so

the list of previously observed and studied whole-body

expressions may not be exhaustive or inclusive of cultural

variations.

• Likewise, because each study used different lists of

behaviors, this method makes it difficult to compare

results or to review them additively to arrive at larger

verification. Thus, this coding system may miss parts of

the range of bodily emotional expression such as those

never observed and coded before. This limitation is espe-

cially pronounced because many of these previous studies

examined emotional expressions performed by actors,

whose movement tended to rely upon more stereotypical

bodily emotional expressions that were widely recognized

by the audience, rather than naturally occurring motor

expressions.

When using the second coding system, kinematic descrip-

tion, in particular the skeleton-based models, researchers usu-

ally employ a set of markers similar to, or smaller than that

provided by the Kinect Software Development Kit, and trans-

form the large amount of 3-D data into various low- and/or

high-level kinematic and dynamic motion features, which
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are easier to interpret than the raw data. Researchers using

this method have studied specific features such as head and

elbow angles [111], maximum acceleration of hand and elbow

relative to spine [116], distance between joints [117], among

others. For a review of such studies, please refer to [17].

In recent years, instead of computing handcrafted features

on the sequence of body joints, researchers have employed

various deep learning methods to generate representations of

the dynamics of the human body embedded within the joint

sequence, such as spatiotemporal graph convolutional network

(ST-GCN) [51, 118, 119]. Although the 3-D data from joint

markers can provide a relatively detailed, objective description

of whole-body movement, this coding system has two main

limitations:

• Movement is often captured by a camera from a single

view (usually the frontal), which can result in long

segments of missing data from markersthat are hidden

by other body parts, people, or objects in a video frame.

Automatic imputations of such missing data are often

impractical as they tend to create incorrect and unrealistic

movement trajectories.

• The SDK system has only three markers along the torso,

which are insufficient for capturing subtle movements

in the chest area, movements that are usually observed

during authentic emotional expressions, as opposed to

acted (and often exaggerated) bodily emotional expres-

sions. Another disadvantage is that these systems have

not yet been able to successfully and reliably detect many

qualitative changes in movement that are significant for

perceiving emotional expression.

In contrast to the quantitative data from joint markers,

which enable the capture of detailed movement of every

body part, the third coding system mentioned above, LMA,

describes qualitative aspects of movement and can relate to

a general impression from movements of the entire body or

to the movement of specific body parts. By identifying the

association between LMA motor components and emotions,

and characterizing the typical kinematics of these components

using high-level features (e.g., [120, 121, 122, 51, 123, 124]),

researchers can overcome the limitations of other coding

systems. If people express their emotions with movements

that have never been observed in previous studies, we can still

decode their emotions based on the quality of their movement.

Similarly, if parts of the body that are usually used to express

a certain emotion are not visible, it is possible that the emotion

could still be decoded by identifying the motor elements

composing the visible part of the movement. Moreover, by

slightly changing the kinematics of a movement of a robot or

animation (i.e., adding to a gesture or a functional movement

the kinematics of certain LMA motor elements associated

with a specific emotion), we can “color” this functional

movement with an expression of that emotion, even when

the movement is not the typical movement for expressing

that emotion (e.g., [125, 126]). Similarly, identifying the

quality of a movement can enable decoding the expressed

emotion even from functional actions such as walking [127]

or reaching and grasping. These advantages and the fact that

LMA features have been found to be positively correlated

with emotional expressions are why LMA coding is becoming

popular in studies that encode or decode bodily emotion

expressions (e.g., [51, 123]). In addition, LMA offers the

option to link our coding systems to diverse ways in which

humans talk about and describe expressive movement–it is

a comprehensive movement-theory system that is and can

be used across disciplines for application in acting [128],

therapy [129], education [130], and animation [131], among

others. The last advantage to consider is that LMA is a

comprehensive theory of body movement, much like art theory

or music theory, including theories of harmony, and thus

has been used by artists to attune to aesthetics including

movement-perception of visual art (such as that discussed in

Section VI-A) and visual, auditory and movement elements

of film and theatre (discussed in Section III-G). Like music

theory, LMA is capable of attending to rhythm and phrasing

as elements shift and unfold over time, aspects that may be

crucial to communicating and interpreting emotion expression.

�

�

�

�

�

Fig. 8. Some basic components of LMA that are often used in coding.

LMA identifies four major categories of movement: Body,

Effort, Shape, and Space. Each category encompasses several

subsets of motor components (LMA terms are spelled with

capital letters to differentiate them from regular usage of these

words). Fig. 8 illustrates some basic components of LMA that

are often used in coding.

The Body category describes what is moving and it is
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composed of the elements of Body Segments (e.g., arms,

legs, head), their coordination, and basic Body Actions like

Locomotion, Jump, Rotation, Change of Support, and so on.

The Effort category describes qualitative aspect of move-

ment, or how we move. It expresses a person’s inner attitude

toward movement, and it has four main factors, each describ-

ing the continuum between two extremes: indulging in the

motor quality of that factor and fighting against that quality.

Effort has four factors:

• Weight Effort, meaning the amount of force or pressure

exerted by the body. Activated Weight Effort can be

Strong or Light. Alternatively, there may be a lack of

weight activation when we give in to the pull of gravity,

which we describe as Passive or Heavy Weight.

• Space Effort describes attention to space, denoting the

focus or attitude toward a chosen pathway, i.e., is the

movement Direct or flexibly Indirect.

• Time Effort, describing the mover’s degree of urgency or

acceleration/deceleration involved in a movement, i.e., is

the movement Sudden or Sustained.

• Flow Effort, reflecting the element of control or the

degree to which a movement is Bound, i.e., restrained or

controlled by muscle contraction (usually cocontraction

of agonist and antagonist muscles), versus Free, i.e., being

released and liberated.

The Shape category reflects why we move: Shape describes

how the body adapts its shape as we respond to our needs

or the environment: Do I want to connect with or avoid

something, dominate or cower under? The way the body

sculpts itself in space reflects a relationship to self, others, or to

the environment. This component includes Shape Flow which

describes how the body changes to relate to oneself; it includes

Shape Change which describes changes in the form or shape

of the body; and includes the motor components of Expanding

the body or Condensing it in all directions and Rising or

Sinking in the vertical dimension, Spreading and Enclosing in

the horizontal dimension and Advancing or Retreating in the

sagittal dimension. Another Shape component is Shaping and
Carving which describes how a person shapes their body to

shape or affect the environment or other people. For example,

when we hug somebody, we might shape and carve the shape

of our body, adjusting it to the shape of the other person’s

body, or we might shape our ideas by carving or manipulating

them through posture and gesture.

The Space category describes where the movement goes in

the environment. It describes many spatial factors such as the

Direction where the movement goes in space, such as: Up and

Down in the vertical dimension, Side open and Side across

in the horizontal dimension, and Forward and Backward in

the sagittal dimension; the Level of the movement in space

relative to the entire body or parts of the body, such as Low

level (movement toward the ground), Middle level, (movement

maintaining level, without lowering or elevating) or High level

(moving upward in space); Paths or how we travel through

space by locomoting; and Pathways through the Kinesphere
(the personal bubble of reach-space around each mover that

can be moved in and through without locomoting or traveling.)

Movement in the Kinesphere might take Central pathways,

crossing the space close to the mover’s body center, Peripheral

pathways along the periphery of the mover’s reach space, or

Transverse pathways cutting across the reach space.
In addition, another important aspect of LMA which is par-

ticularly helpful and meaningful to expression is the Phrasing
of movements. Phrasing describes changes over time, such as

changes in the intensity of the movement over time, similar

to musical phrases, which can be Increasing, Decreasing, or

Rhythmic, among others. It can also depict how movement

components shift during the same action or a series of actions

occurring over time, for example beginning emphatically with

strength and then ending by making a light direct point

conclusion.
Previous research has highlighted the lack of a notation sys-

tem that directly encodes the correspondence between bodily

expression and body movements in a way similar to FACS for

face [51, 105]. LMA, by its nature, has the potential to serve

as such a coding system for emotional expressions through

body movement. Shafir et al. [115] identified the LMA motor

components (qualities), whose existence in a movement could

evoke each of the four basic emotions: anger, fear, sadness, and

happiness. Melzer et al. [114] identified the LMA components

whose existence in a movement caused that movement to be

identified as expressing one of those four basic emotions. In an

additional experiment by the Shafir group, Gilor, for her Mas-

ter’s thesis, has been studying the motor elements that are used

for expressing sadness and happiness. In this series of studies,

the LMA motor components found to evoke these emotions

through movement were, for the most part, the same as those

used to identify or recognize each emotion from movement,

or to express each emotion through movement. For example,

anger was associated with Strong Weight Effort, Sudden Time

Effort, Direct Space Effort, and Advancing Shape during

both emotion elicitation and emotion recognition. Fear was

associated with Retreating Shape, moving backward in Space

for both emotion elicitation and recognition. In addition, En-

closing and Condensing Shape, and Bound Flow Effort, were

also found for emotion elicitation through movement. Sadness

was associated with Passive Weight Effort, Sinking Shape,

and Head drop for emotion elicitation, emotional expression,

and emotion recognition, and arms touching the upper body

was also a significant indicator for emotion elicitation and

expression. Sadness expression was also associated with using

Near-Reach Space and Stillness. In contrast, Happiness was

associated with jumping, rhythmic movement, Free and Light

Efforts, Spreading and Rising Shape, and moving upward

in Space for emotion elicitation, emotion expression, and

emotion recognition. Happiness expression was also associated

with Sudden Time Effort and Rotation. These findings for

Happiness were also validated by van Geest et al. [132].

Whereas these studies represent a promising start, further

research is needed to create a comprehensive LMA coding

system for bodily emotional expressions.

F. Context and Functional Purpose
While human emotions are shown through the face and

body, they are closely connected to context and purpose. Thus,
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the image context surrounding the human can also be used

to further identify human emotions. The context information

includes the semantic information of the background and

what the person is holding, which can assist in identifying

activities of the human, thereby allowing for more accurate

prediction of the human’s emotion. For instance, people are

more likely to feel happy than sad during a birthday party.

Context information also includes interactions among humans,

which can help infer emotion. For example, people are more

likely to be angry when they are engaged in a heated argument

with others.

Since the early 2000s, researchers in the field of image

retrieval have been developing context recognition systems us-

ing machine learning and statistical modeling [133, 134, 135].

With the advent of deep learning and the widespread use of

modern graphics processing units (GPUs) or AI processors,

accurate object annotation from images has become more

feasible. Several deep learning-based approaches have been

proposed to leverage context information to enhance basic

emotion recognition networks [136, 81, 137]. Sections IV-B3

and IV-E provide more details.

In addition to contextual information, the functional purpose

of a person’s movement can also provide valuable insights

when inferring emotions. Movement is a combination of

both functional and emotional expression, and thus, emotion

recognition systems must be able to differentiate between

movement that serves a functional purpose and movement

that expresses emotions. Action recognition [138], an actively

studied topic in computer vision, has the potential to provide

information on the function of a person’s movement and

assist in disentangling functional and emotional components

of movement.

G. Acted Portrayals of Emotion

Research on emotions has often turned to acted portrayals

of emotion to overcome some of the challenges inherent

in accessing adequate datasets, particularly because evoking

intense, authentic emotions in a laboratory can be problematic

both ethically [139] and practically. This is because, as noted

in Section II, emotional responses vary. Datasets relying

upon actors have been useful in overcoming challenges of

obtaining ample, adequately labeled emotion-expression data

because compared to unscripted behavior (“in the wild”),

where emotion expression often appears in blended or com-

plex ways, actors are typically serving a narrative, in which

emotion is part of the story. In addition, sampling emotional

expression in the wild encounters cultural distinctions for the

expressions themselves, as well as social norms for emotion

expression or its repression [140], which may also be culturally

scripted for gender. Thus, researchers interested in emotional

expressivity and nonverbal communication of emotion often

turn to trained actors [139] both to generate new datasets

of emotionally expressive movement (e.g., [141]) and for the

sampling of emotion expression (e.g., [51]). Such datasets are

useful because actors coordinate all three channels of emo-

tions expression, namely vocal, facial, and body, to produce

natural or authentic-seeming expressions of emotions. Some

researchers have validated the perception of actor-based and

expert movement-based datasets in the lab by showing them to

lay observers [141, 114]. This approach also entails problems,

in that whereas it may capture norms of emotion expression

and its clear communication, it may miss distinctions related to

demographics such as gender [142], ethnolinguistic heritage,

individual, or generational norms [143, 144]. According to

cultural dialect theory, we all have non-verbal emotion ac-

cents [144], meaning emotion is expressed differently by dif-

ferent people in different regions, from different cultures. Only

some of those cultural dialects appear when sampling films.

Such films have often been edited so that viewers beyond that

cultural dialect can “read” the emotional expression central to

the narrative. Nuance in nonverbal dialects may be excluded

in favor of general appeal.

Yet, an advantage of generating datasets from actors or

other trained expressive movers is that ground truth can be

better established. The intention of the emotion expressed, the

emotion felt, and later the emotion perceived from viewing can

all be assessed when generating the dataset. Likewise, because

actors coordinate image, voice, and movement in the service

of storytelling, the context and purpose are clarified, and thus

many of the multiple expressive modes can be organized

into individual emotion expression [145, 146]. Moreover,

because performing arts productions, such as movies and films

made of theatre, music, and dance performances, integrate

multiple communication modes, the creative team collaborates

frequently about the emotional tone or intent of each work, co-

ordinating lighting, scenery/background, objects, camerawork,

and sound, with the performers (actors, dancers, musicians).

While the team articulates their intentions during the creative

process, the resulting produced art often resonates with wider

variation to different audiences, according to their perceptions

and tastes.

For researchers relying upon acted emotions, it may be help-

ful to understand some ways in which actor training considers

the role of emotions in theatre and film [147]. The role of

emotion in narrative arts may reflect some of the theories about

the role of emotion itself [148]–to approximately inform the

character (organism) about their needs, in order to drive them

to take action to meet their needs, or to provide feedback

on how recent actions meet or do not meet their needs. As

actors prepare, they identify a character’s needs (called their

objective) and are moved by emotion to drive the character’s

action to overcome obstacles as they pursue the character’s

objective. Thus, when collecting data from acted examples,

emotion expression can often be found preceding action in

the narrative, or in response to it. Actors are also trained to

listen with their whole being to their scene partner, to “hold

space” during dialogue for emotion expression to fully unfold

and complete its purpose of moving either the speaker or the

listener to response or action. This expectation is particularly

true in opera or other musical theatre genres, which often

extend the time for emotion expression.

In terms of 3-D modeling, actors trained for theatre not only

highly develop the specific emotion-related action tendencies

of the body but also consider viewer perception from 3D,

for example, when performing on a thrust stage or theatre-
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in-the-round. Thus, their emotion expression may be more

easily picked up by systems marking parts of the body during

movement. Because bodily emotion expression is so crucial

to a narrative, an important application of this field might be

to automate audio description of emotion expression in film

for the visually impaired or audio description of movement

features salient to emotion expression.

Whereas we often do not recognize subtle emotion ex-

pression in strangers as well as we can in those we know,

when actors portray characters within the circumstances of

a play, the audience, gradually over the arc of the play,

comes to perceive the emotional expression of each character

as revealed over time. Understanding how this works in art

can help us develop systems that take the time to learn and

better understand emotion expression in diverse contexts and

individuals, similar to how current voice recognition learns

individual accents.

H. Cultural and Gender Dialects

In a meta-analysis examining cultural dialects in the non-

verbal expression of emotion, measurable variations were

found in response to facial expression across cultures [149].

Moreover, it has long since been acknowledged that learned

display rules [150] and decoding rules [151] vary across

different cultures. For example, in Japanese culture, overt

displays of negative emotional expression are discouraged.

Further, smiling behavior in this context is often considered an

attempt to conceal negative emotions. In contrast, in American

culture, negative expressions are considered more appropriate

to display [151].

Previous research has similarly demonstrated a powerful

influence of gender-related emotion stereotypes in driving

differential expectations for the type of emotions men and

women are likely to experience and express. Men are ex-

pected to experience and express more power-related emotions

like anger and contempt, whereas women are expected to

experience and express more powerless emotions like sadness

and fear [152]. These findings match self-reported emotional

experiences and expressions with strong cultural consistency

across 37 different countries worldwide [153]. Furthermore,

there are even differences in the extent to which neutral facial

appearance resembles different emotions, with male faces

physically resembling anger expressions more (low, hooded

brows, thin lips, angular features) and female faces resembling

fear expressions more [154].

While cultural norms affect how and whether emotions

are displayed, such norms also influence how displays of

emotion are perceived. For example, when a culture’s norm

is to express emotion, less intensity is read into such displays,

whereas, in cultures where the norm is not to express emotion

intensely, the same displays are read as more intense [155].

In this way, visual percepts derived from objective stimulus

characteristics can generate different subjective experiences

based on culture and other individual factors. For instance,

there is notable cultural variation in the extent to which basic

visual information, such as background versus foreground, is

integrated into observers’ perceptual experiences [156].

Culture and gender add complexity to human emotional

expression, yet little research to date has examined individual

variation in responses to visual scenes, either in terms of basic

aesthetics or the emotional responses people have. Future work

assessing simple demographic details (e.g., gender, age) will

begin to explore this important source of variation.

I. Structure
Some basic visual properties have been found that char-

acterize positive versus negative experiences and preferences.

Most notably, round features–whether represented in faces or

objects–elicit feelings of positivity and warmth and tend to

be preferred over angular visual features. This preference has

been used to explain the roundness of smiling faces, and the

angularity of anger displays [157]. Such visual curvature has

also been found to influence attitudes toward, and preference

for even meaningless patterns represented in abstract visual

designs [158]. The connection between affective responses

and these basic visual forms has helped computer vision

predict emotions evoked from pictorial scenes, as mentioned

earlier [46].
Importantly, the dimensional approach to assessing visual

properties underlying emotional experience can be used to

examine both visual scenes and faces found within those

scenes. Indeed, the dimensional approach adequately captures

both “pure” and mixed emotional facial expressions [159], as

well as affective responses to visual scenes, as demonstrated

by the IAPS. Critically, even neutral displays have been found

to elicit strong spontaneous impressions [160], ones that are ef-

fortless, nonreflective, and highly consensual. Recent research

utilizing computer-based models suggests that these inferences

are largely driven by the same physical properties found in

emotional expressions. For instance, Said and colleagues [161]

employed a Bayesian network trained to detect expressions

in faces, and then applied this analysis to images of neutral

faces that had been rated on a number of common personality

traits. The results showed that the trait ratings of faces were

meaningfully associated with the perceptual resemblances that

these “neutral” faces had with emotional expressions. Thus,

these results speak to a mechanism of perceptual overlap

whereby expression and identity cues can both trigger similar

emotional responses.
A reverse engineering model of emotional inferences has

suggested that perceptions of stable personality traits can be

derived from emotional expressions as well [162]. This work

implicates appraisal theory as a primary mechanism by which

observing facial expressions can inform stable personality

inferences made of others. This account suggests that people

use appraisals that are associated with specific emotions to

reconstruct inferences of others’ underlying motives, intents,

and personal dispositions, which they then use to derive

stable impressions. It has likewise been shown that emotion-

resembling features in an otherwise neutral face can drive

person perception [152]. Finally, research has also suggested

that facial expressions actually take on the form that they

do to resemble static facial appearance cues associated with

certain functional affordance, such as facial maturity [163],

and gender-related appearance [152].
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J. Personality

Personality describes an individual’s relatively stable pat-

terns of thinking, feeling, and behaving. These are charac-

terized by certain personality traits which represent a person’s

disposition towards the world. Emotions, on the other hand, are

the consequence of the individual’s response to external or in-

ternal stimuli. They may change when the stimuli change, and

therefore are considered as states (as opposed to traits). Just

as a full-blown emotion represents an integration of feeling,

action, appraisal, and wants at a particular time and location,

personality represents integration of these components over

time and space. Researchers have tried to characterize the

relationships between personality and emotions. Several stud-

ies found correlations between certain personality traits and

specific emotions. For instance, the trait neuroticism was found

to be correlated with negative emotions, while extroverted

people were found to experience higher levels of positive emo-

tions than introverted people [164]. These correlations were

explained by relating different personality traits to specific

emotion regulation strategies e.g., [165] or by demonstrating

that evaluation mediates between certain personality traits and

negative or positive affect [166]. Whatever the reason for these

correlations is, the fact that they are correlated might help to

create state-to-trait inferences. Therefore, if emotional states

can be mapped to personality, the ability to automatically

recognize emotions could provide tools for automatic detection

of personality.

Curiosity, creativity, noveltyitsosioriCur

Organized, dependable, hardworkingiznianagOrg

Outgoing, warm, seeks adventureinoigogtOu

Trusting, helpful, empatheticngintistusTru

Anxious, sensitive, unhappyusouoxixAnx

Fig. 9. The Big Five personality traits, or OCEAN.

Advances in computationally, data-driven methods offer

promising strides toward personality traits being predicted

based on a dataset of individuals’ behavior, self-reported

personality traits, or physiological measures. It is also possible

to use factor analyses to identify underlying dimensions of

personality, such as the Big Five personality traits, or OCEAN

(openness, conscientiousness, extraversion, agreeableness, and

neuroticism) [167, 168] (Fig. 9). Personality can likewise be

inferred from facial expressions of emotion [162] and even

from emotion-resembling facial appearance [169]. Machine

learning algorithms have recently been successfully employed

to predict human perceptions of personality traits based on

such facial emotion cues [170]. Further, network analysis,

such as social network analysis, can also be incorporated to

identify patterns of connectivity between different personality

traits or behavioral measures. Finally, interpreting a person’s

emotional expression might also depend on the perception of

their personality, when additional data is available for inferring

personality [171]. For further information, readers can refer to

recent research in this area, e.g., [172, 173].

K. Affective Style

Affective styles driven by the tendencies to approach re-

ward versus avoid punishments found their way into early

conflict theories [174] and remain a mainstay of contemporary

psychology in theories such as Carver and Scheier’s Control

Theory [175] and Higgins’s Self-discrepancy Theory [176].

Evidence for the specific association between emotion and

approach-avoidance motivation has largely involved the ex-

amination of differential hemispheric asymmetries in cortical

activation. Greater right frontal activation has been associated

with avoidance motivation as well as with flattened positive

affect, and increased negative affect. Greater left frontal activa-

tion has been associated with approach motivation and positive

affect [177]. Supporting the meaningfulness of these findings,

Davidson argued that projections from the mesolimbic reward

system, including basal ganglia and ventral striatum, which

are associated with dopamine release, give rise to greater left

frontal activation. Projections from the amygdala associated

with the release of the primary vigilance-related transmitter

norepinephrine give rise to greater right frontal activation.

Further evidence supporting the emotion/behavior orienta-

tion link stems from evidence accumulated in studies using

measures of behavioral motivation based on Gray’s [178] pro-

posed emotion systems. The most widely studied of these are

the Behavioral Activation System (BAS) and the Behavioral

Inhibition System (BIS). The BAS is argued to be highly

related to appetitive or approach-oriented behavior in response

to reward, whereas the BIS is argued to be related to inhibited

or avoidance-oriented behavior in response to punishment.

Carver and White [179] developed a BIS/BAS self-report

rating measure that is thought to tap into these fundamental

behavioral dispositions. They found that extreme scores on

BIS/BAS scales were linked to behavioral sensitivity toward

reward versus punishment contingencies, respectively [179].

BIS/BAS measures have been shown to be related to emotional

predisposition, with positive emotionality being related to the

dominance of BAS over BIS and depressiveness and fearful

anxiety being related to the dominance of BIS over BAS [180].

Notably, for many years there existed a valence (posi-

tive/negative) versus motivational (approach/avoidance) con-

found in all work conducted in the emotion/behavior domain.

Negative emotions were associated with avoidance-oriented

and positive emotions with approach-oriented behavior, a
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contention supported by much of the work reviewed above.

The valence/motivation confound led researcher Harmon-

Jones and colleagues to test for hemispheric asymmetries in

activation associated with anger, a negative emotion with an

approach orientation (aggression) [181]. They argued that if

left hemispheric lateralization was associated with anger this

would indicate that the hemispheric lateralization in activation

previously found was in fact due to behavioral motivation.

However, right hemispheric lateralization would indicate that

they were due to valence. In these studies, they found that

dispositional anger [181] was associated with left lateralized

EEG activation, consistent with the first interpretation and

with that previously reported only for positive emotion. They

supported this conclusion by showing that the dominance of

BAS over BIS was associated with anger [58].

IV. EMOTION RECOGNITION: KEY IDEAS AND SYSTEMS

The field of computer-based emotion recognition from

visual media is nascent, but has seen encouraging devel-

opments in the past two decades. Interest in this area has

also grown sharply (Section IV-A). We will highlight some

existing research ideas and systems related to modeling evoked

emotion (Section IV-B), facial expression (Section IV-C), and

bodily expression (Section IV-D). In addition, we will discuss

integrated approaches to emotion recognition (Sections IV-E

and IV-F). Because of the breadth of the field, it is not possible

to cover all exciting developments, so we will focus our review

on the evolution of the field and some of the most current,

cutting-edge results.

A. Exponential Growth of the Field

To gain insight into the growing interest of the IEEE and

computing communities in emotion recognition research, we

conducted a survey of publications in the IEEE Xplore and

ACM Digital Library (DL) databases. Results revealed an

exponential increase in the number of publications related to

emotion or sentiment in images and videos over the last two

decades (Fig. 10).

As of February 2023, a total of 48,154 publications were

found in IEEE Xplore, with the majority (35,247 or 73.2%)

being in conference proceedings, followed by journals (8,214

or 17.1%), books (2,400 or 5.0%), magazines (1,413 or 2.9%),

and early access journal articles (831 or 1.7%). The field has

experienced substantial growth, with a 25-fold increase during

the period from the early 2000s to 2022, rising from an average

of 275 publications per year to about 7,000 per year in 2022.

In the ACM DL, a total of 30,185 publications were found,

with conference proceedings making up the majority (24,817

or 82.2%), followed by journals (3,851 or 12.8%), magazines

(780 or 2.6%), newsletters (505 or 1.7%), and books (264

or 0.9%). In the ACM community, the field has seen a 22-

fold growth during the same period, with an average of 170

publications per year in the early 2000s rising to about 3,800

per year in 2022.

A baseline search indicated that the field related to images

and videos had a roughly linear, 6-fold growth during the

same period. Emotion-related research accounted for 14.2% of

Fig. 10. An exponential growth in the number of IEEE and ACM publications
related to emotion in images and videos in the recent two decades was
observed. Statistics are based on querying the IEEE and ACM publication
databases. The lower rate of expansion observed in the year 2020 can be
attributed to the disruptions caused by the COVID-19 pandemic and the
limitations it imposed on human subject studies.

image- and video-related publications. The growth in emotion-

related research outpaced the baseline growth by a significant

margin, suggesting that it has a higher future potential. The

annual growth rate for the field of emotion in images and

videos is 15-16%. If this growth continues, the annual number

of publications in this field is expected to double every five

years.

B. Modeling Evoked Emotion

Input image

Visual emotion feature representation

CNN

ANP

Principles

Feature selection 
and fusion

Feature-to-evoked-
emotion mapping

SVM

FL

Predicted emotion

Amusement
Anger
Awe

Contentment
Disgust

Excitement
Fear

Sadness

Fig. 11. A generalized framework for evoked emotion prediction from images.

Evoked emotions can be inferred when viewers see an image

or a video, either based on changes in their physical body

or the stimuli being viewed, i.e. explicit affective cues or

implicit affective stimuli [114, 22, 69]. In this section, we

will focus on implicit affective stimuli, particularly images

and videos. Similar to other machine learning and computer

vision tasks [182, 16], an evoked emotion recognition system

from images or videos typically consists of three components:

emotion feature extraction, feature selection and fusion, and

feature-to-evoked-emotion mapping. The generalized frame-

works for this process are illustrated in Figs. 11 and 12. The

first step is to extract emotion features from the original images

and videos, typically after pre-processing, and converting them

to numerical representations that are easier to process. Feature

selection and fusion aim to select discriminative features that

are more relevant to emotions, reduce the dimensionality of

features, and combine different types of features into a unified

representation. Finally, each unified representation is classi-
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fied. Feature-to-evoked-emotion mapping learns a classifier to

project the feature representation to specific evoked emotions.

1) Visual Emotion Feature Representation: Prior to the

emergence of deep learning, visual emotion features were pri-

marily developed manually, drawing inspiration from various

interrelated disciplines including computer vision, art theory,

psychology, and aesthetics.

One straightforward approach employs existing low-level
vision features as representations of emotion. Yanulevskaya

et al. [183] extracted holistic Wiccest and Gabor features.

Other researchers have employed scale-invariant feature trans-

form (SIFT), histogram of oriented gradients (HOG), self-

similarities, GIST, and local binary patterns (LBP) to ex-

tract low-level vision representations of emotion for video

keyframes [72, 184]. Yang et al. [185] compared their method

with multiple low-level vision features, including SIFT, HOG,

and Gabor. Rao et al. [186] first employed bag-of-visual-words

of SIFT features for each image block from multiple scales and

then represented each block by extracting latent topics based

on probabilistic latent semantic analysis. While such low-level

vision representations are still used, such as LBP and optical

flows [187], they do not effectively bridge the semantic gap

and cannot bridge the more challenging affective gap [16].

More robust approaches to exploring visual emotion features

employ theories on art and aesthetics to design and develop

features. Art is often created with the intention of evoking

emotional reactions from the audience. As Pablo Picasso

claims, “Art washes away from the soul the dust of everyday

life,” and as Paul Cézanne asserts, “A work of art which did

not begin in emotion is not art,” [44, 188, 189]. Generally,

art theory includes elements of art and principles of art. The

elements of art, such as color, line, texture, shape, and form,

serve as building blocks in creating artwork. Meanwhile, the

principles of art correspond to the rules, tools, or guidelines

for arranging and orchestrating the elements of art, such as

balance, emphasis, harmony, variety, and gradation. Among

these elements, color is the most commonly used artistic

feature [44, 190, 191, 192, 193, 194, 187, 195], followed by

texture. Lu et al. [46] investigated the relationship between

shape and emotions through an in-depth statistical analysis.

Zhao et al. [188] systematically formulated and implemented

six artistic principles except for rhythm and proportion and

combined them into a unified representation.

Aesthetics is widely acknowledged to have a strong corre-

lation with emotion [182, 196]. Artwork that is aesthetically

designed tends to attract viewers’ attention and create a sense

of immersion. As early as 2006, Datta et al. developed com-

puter algorithms to predict the aesthetic quality of images [52].

Among the various aesthetic features, composition, such as

the rule of thirds, has been the most popular [52, 44, 196,

190, 191, 197]. The figure-ground relationship, which refers

to cognitive feasibility in distinguishing the foreground and

the background, and several other aesthetic features were

designed [196]. Sartori et al. [198] to analyze the influence

of different color combinations on evoking binary sentiment

from abstract paintings. Artistic principles and aesthetics were

used to organize artistic elements from different but correlated

perspectives, which were sometimes not clearly differentiated

and extracted together [196, 197]. By considering relationships

among different elements, artistic principles and aesthetics

have been demonstrated to be more interpretable, robust, and

accurate than artistic elements and low-level vision represen-

tations for recognizing evoked emotions [196, 188].

To bridge the gap between low-level visual features and

high-level semantics, an intermediate level of attributes and
characteristics was designed. These intermediate attributes and

characteristics were then applied to the prediction of evoked

emotions [199, 192, 193, 194]. For example, in addition to

generic scene attributes, eigenface-based facial expressions

were also considered [199]. These attributes performed better

than low-level vision representations, but the interpretability

was still limited.

High-level content and concept play an essential role in

evoking emotions for images with obvious semantics, such

as natural images. The number and size of faces and skins

contained in an image have been used as an early and simple

content representation [44]. Facial expressions of images con-

taining faces are a direct cue for viewers to produce emotional

reactions and are therefore often employed as content repre-

sentation [192, 193]. Jiang et al. [72] developed a method

that involved detecting objects and scenes from keyframes.

Based on the observation that general nouns like “baby” were

detectable but had a weak link to emotion, whereas adjectives

like “crying” could provide strong emotional information but

were difficult to detect, Borth et al. [200] introduced adjective

noun pairs (ANPs) by adding an adjective before a noun, such

as “crying baby.” The combination enabled strong ability to

map concepts to emotions while remaining detectable. A large

visual sentiment ontology named SentiBank was proposed to

detect the probability of 1,200 ANPs. Thus, as a milestone,

SentiBank cannot be ignored as a baseline in performance

evaluation, even in the current deep learning era. A multi-

lingual visual sentiment ontology (MVSO) [201] was later

extended to deal with different cultures and languages. About

16K sentiment-biased visual concepts across 12 languages

are constructed and detected. ANP representations are widely

used as high-level semantic representations [72, 192, 202, 193,

194]. These content and concept representations achieve the

best performance for the images containing such semantics but

fail for abstract paintings.

Fortunately, the rise of deep and very deep Convolutional

Neural Networks (CNNs) in image classification has led

to deep learning becoming the primary learning strategy in

various fields, including computer vision and natural language

processing. This is also the case for evoked emotion model-

ing [16]. Given sufficient annotated data, deep learning models

can be trained to achieve superior performance on various

types of images, including natural and social photographs, as

well as abstract and artistic paintings. In many cases, features

are automatically learned without the need for manual crafting.

Recently, global representation at the image level has been

demonstrated to hold promise for evoked emotion analysis.

One approach to extract deep features is to directly apply

pretrained CNNs, such as AlexNet [203], VGGNet [204],

and ResNet [205], to the given images and obtain responses

of the last (few) fully connected (FC) layers [206, 190, 71,
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202, 207, 197, 194, 208, 209, 210, 211]. Other methods have

begun to use the output of a transformer’s encoder as visual

reorientation [212, 213]. Xu et al. [206] demonstrated that the

deep features from the last but one FC layer outperformed

those from the last FC layer. The extracted CNN features

were transformed to another kernelized space via discrete

Fourier transform and sparse representation to suppress the

impact of noise in videos [207]. Chen et al. [214] first

obtained event, object, and scene scores with state-of-the-art

pretrained detectors based on deep neural networks. They then

integrated these into a context fusion network to generate a

unified representation. More recently, Song et al. [195] used

the pretrained MS Azure Cognitive Service API to extract

objects contained in an image and corresponding confidence

scores as visual hints, which were then transformed to TF-IDF

representation. This pretrained deep feature can be essentially

viewed as another handcrafted feature since the classifier used

for the final emotion prediction needs to be separately trained.

To enable end-to-end training, fine-tuning is widely employed

to adjust the deep features to be more correlated with evoked

emotions [215, 190, 71, 216]. Other inspiring improvements

include multitask learning [217, 185] and emotion correlation

mining [218, 219, 220] to better learn emotion-specific deep

features. The image-level global representation extracts deep

features from the global aspect taking the original image as

input. To deal with the temporal correlations among successive

frames in videos, 3-D CNN (C3D) [221] is adopted taking a

series of frames as input [222]. Although contextual informa-

tion is considered, the global representation treats local regions

equally without considering their importance.

Strategies such as attention [223, 224, 225, 226] and senti-

ment maps [227, 228] have been widely used to extract region-
level representations in order to emphasize the importance of

local regions in evoked emotion prediction. Spatial attention

is used to determine the correspondence between local image

regions and detected textual visual attributes [223]. Besides

operating on the global representation to obtain attended local

representation, the spatial attention map is enforced to be

consistent with prior knowledge contained in the detected

saliency map [224]. Both spatial and channel-wise attentions

are considered to reflect the importance of the spatial lo-

cal regions and the interdependency between different chan-

nels [226]. In contrast, Fan et al. [225] investigated how

image emotion could be used to predict human attention

and found that emotional content could strongly and briefly

attract human visual attention. Yang et al. [227] designed a

weakly supervised coupled CNN to explore local information

by detecting a sentiment-specific map using a cross-spatial

pooling strategy, which only required image-level labels. The

holistic and local representations were combined by coupling

the sentiment map. To address the issue of overemphasis on

local information and neglect of some discriminative senti-

ment regions, a discriminate enhancement map was recently

constructed by spatial weighting and channel weighting [228].

Both the discriminate enhancement map and sentiment map

were coupled with the global representation.

In recent years, a growing body of research has focused on

developing effective multilevel representations [229, 230, 231,

219, 232, 233, 234, 235, 236, 237, 238]. One strategy has been

to view different CNN layers as different levels [229, 231,

234]. Multiple levels of features were extracted at different

branches (four [231] and four plus one main [229] branches).

The features from different levels were then integrated by a

Bidirectional Gated Recurrent Unit [229] or a fusion layer

with basic operations like the mean. These two methods both

claim that features from global to local levels can be extracted

at different layers, but the correspondence between them is

still unclear. This issue is partially addressed in the multilevel

dependent attention network (MDAN) [234]. Based on the

assumption that different semantic levels and affective levels

are correlated, affective semantic mapping disentangles the

affective gap by one-to-one mapping between semantic and

affective levels. Besides the global-level learning at the highest

affective level with emotion hierarchy preserved, local learning

is incorporated at each semantic level to differentiate among

emotions at the corresponding affective level [234]. Further,

multihead cross channel attention and level-dependent class

activation maps are designed to model level-wise channel

dependencies and spatial attention within each semantic level,

respectively. Further research is needed to explore more ef-

fective ways to map semantic and affective levels, particularly

when the number of levels varies significantly.

Another strategy for extracting multilevel representations

involves utilizing object, saliency, and affective region de-

tection [219, 232, 236, 237, 238, 230, 235]. Inspired by

the Stimuli-Organism-Response (S-O-R) emotion model in

psychology, Yang et al. [219] selected specific emotional

stimuli, including image-level color and region-level objects

and faces, using off-the-shelf detection models. Corresponding

to the selected stimuli, three specific networks were designed

to extract the features, including CNN-based color and other

global representations, Long-Short Term Memory (LSTM)-

based semantic correlations between different objects, and

CNN-based facial expressions. Besides the correlations be-

tween different objects based on graph convolutional network

(GCN), Yang et al. [232] also mined the correlations between

scenes and objects using a scene-based attention mechanism,

motivated by the assumption that scenes guide objects to

evoke distinct emotions. A similar approach was applied by

Cheng et al., but with the input to the object detector being

the extracted temporal-spatial features by C3D [238]. These

methods treat objects, typically detected by Faster R-CNN, as

regions, and reflect the importance of different regions through

attention [219] or graph reasoning [232, 238]. Objects and

faces were also respectively detected in [236] and [237], and

corresponding CNN features were extracted. Rao et al. [230]

employed an emotional region proposal method to select emo-

tional regions and remove non-emotional ones. The region’s

emotion score was a combination of the probability of the

region containing an object and that of the region evok-

ing emotions. A similar approach for selecting emotionally

charged regions was used by Zhang et al., but the emotion

score was a weighted combination of two probabilities [235].

Efforts have been made to combine handcrafted and deep
representations in order to take advantage of their comple-

mentary information. For example, Liu et al. [197] com-
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Fig. 12. A generalized framework for evoked emotion prediction from videos.

bined them after feature dimension reduction, whereas Chen

et al. [239] used AlexNet-style deep CNNs [203] to train ANP

detectors and achieved improved ANP classification accuracy.

The DeepSentiBank has also been used to extract keyframe

features in videos [240, 210]. More recently, the correlations

of content features based on pretrained CNN and color features

from color moments have been taken into consideration [241].

Specifically, the proposed cross-correlation model consists of

two modules: an attention module to enhance color repre-

sentation using content vectors and a convolution module to

enrich content representation using pooled color embedding

matrices. Further research is needed to investigate the potential

of this approach to interact between handcrafted and deep

representations.

2) Audio Emotion Feature Representation: The audio fea-

tures used in video-based evoked emotion analysis are often

sourced from the fields of acoustics, speech, and music signal

processing [69]. Similar to visual features, audio features

for emotion analysis can be divided into two categories:

handcrafted and deep learning-based.

Among handcrafted feature representations, the Mel-

frequency cepstral coefficients (MFCC) are commonly adopted

features [72, 191, 184]. Energy entropy, signal energy, zero

crossing rate, spectral rolloff, spectral centroid, and spectral

flux are also employed [72, 184]. The openSMILE toolkit is a

popular option for extracting handcrafted audio features [242].

El Ayadi et al. [243] classified speech features into four

groups: continuous, qualitative, spectral, and Teager energy

operator-based. Panda et al. [14] summarized music features

into eight dimensions, including melody, harmony, rhythm,

dynamics, tone color, expressivity, texture, and form. For

more information on handcrafted audio feature representations,

please refer to these papers.

Learning-based deep audio feature representations mirror

the learning-based strategy used in the visual stream in videos,

and some studies have explored the use of CNN-based deep

features for audio streams. One approach is to send the raw

audio signal directly to a 1-dimensional CNN. However, a

more popular method involves transforming the raw audio

signal into MFCC, which can be viewed as an image, before

feeding it into a 2-D CNN [202, 237, 208, 238, 222, 211, 213].

When simultaneously considering the MFCC from multiple

video segments, 3-D CNN or LSTM can be utilized. For

further information on modeling the temporal information in

videos, see Section IV-B4.

3) Contextual Feature Representation: The context infor-

mation that is important in evoked emotion prediction can be

divided into two categories: within visual media and across

modalities. For context within visual media, one common

approach is to extract features from different levels that

correspond to semantics at different scales, such as the global

and local levels. For more details, see Section IV-B1. When

considering context across modalities, the social context of

users, including their common interest groups, contact lists,

and similarity of comments to the same images, is taken

into account in personalized image emotion recognition [193].

In addition to the visual and audio representations, motion

representation is also considered [213].

4) Feature Selection and Fusion: As previously mentioned,

features can be extracted within a single modality (e.g.,

image) or across multiple modalities. On the one hand,

different types of features can have varying discriminative

abilities. High-dimensional features may suppress the power

of low-dimensional ones when fusing them together. High-

dimensional features may cause a “curse of dimensionality”

and corresponding overfitting. On the other hand, fusing differ-

ent features together can improve the performance of emotion

analysis by jointly exploiting their representation ability and

complementary information. Therefore, feature selection and

fusion techniques are often used, particularly for datasets with

a small number of training samples.

Before being processed by the feature extractor, an image

or video often undergoes preprocessing. Resizing an image

to a fixed spatial resolution is straightforward, but videos

pose a greater challenge due to differences in both spatial

and temporal structures. It is important to determine how to

combine frame-level or segment-level features into a unified

video-level representation. Below, we first explore commonly

used temporal information modeling in videos, followed by a

summary of feature selection and fusion techniques.

In the area of temporal information modeling, there is a need

to divide the input video into segments and extract keyframes

to be used for feature extraction. A straightforward method is

to use all frames of the entire video [207, 236], which ensures

the least information loss but also results in high computational

complexity. Common methods for segment sampling include

fixed time interval [72, 184, 202, 237, 211], fixed number

of segments [208, 222], and video shot detection [238, 210].

Sampling keyframes within a segment can be done through

fixed frame sampling (uniform sampling) [72, 184, 237, 211],

random sampling [208], middle frame selection [202], and

mean histogram sampling (i.e., the frame with the closest

histogram to the mean histogram) [191]. Recently, researchers

have developed dedicated keyframe selection algorithms [240,

210]. One such method uses low-rank and sparse representa-

tion with Laplacian matrix regularization in an unsupervised

manner, considering both the global and local structures [240].

Another method trains an image emotion recognition model on

an additional image dataset to estimate the affective saliency

of video frames [210]. Keyframes are selected based on

the largest inter-frame difference of color histograms, after

first sorting the segments (shots) based on affective saliency.

Despite progress, effective and efficient selection of emotion-

aware keyframes to enhance accuracy and speed remains an

open challenge.

Another challenge is combining frame-level or segment-
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level features into a unified video-level representation. Some

straightforward methods include average pooling [72, 184,

207, 236], average pooling with temporal attention [208],

max pooling [210], bag-of-words quantization [72, 184],

LSTM [238, 222], and gated recurrent units (GRUs) [237].

Another approach is to perform emotion prediction at the

segment level and then combine the results using methods

such as majority voting [202, 211].

Feature selection, especially for handcrafted features, is

often employed when extracted features have high dimensions

that contain redundant, noisy, or irrelevant information, the

dimensions of different kinds of features to be fused vary

significantly, or the size of the training samples is small.

Some commonly used feature selection methods in evoked

emotion modeling include cross-validation on the training

set [183], wrapper-based selection [44], forward selection [46],

and principal component analysis (PCA)-based selection [44,

46, 188, 71]. Feature selection can be combined with feature

fusion, particularly in the case of early fusion [188, 197]. If

dimensions of the features being fused are similar, feature

selection is carried out after fusion [188]. However, if dimen-

sions are significantly different, feature selection is usually

performed first [197] to prevent an overemphasis on high-

dimensional features.

The integration of multiple features within a single modality

or different kinds of representations across different modalities

through feature fusion plays a crucial role in emotion recog-

nition [22]. Model-free fusion, which operates independently

of learning algorithms, is widely used and encompasses early

fusion [44, 196, 188, 198, 190, 229, 225, 197, 230, 219, 232,

233, 195, 237, 208], late fusion [199, 194, 241, 202, 211],

and hybrid fusion [210]. Hierarchical fusion that incorporates

various feature sets at different levels of the hierarchy is also

employed [187].

Model-based fusion, however, is performed explicitly during

the learning process. Kernel-based fusion [72, 236] and graph-

based fusion are often used for shallow learning models,

whereas attention-based [235, 222, 213], neural network-

based [184, 238], and tensor-based fusion strategies have been

recently employed for deep learning models.

A Transformer encoder with multihead self-attention layers

is used in sentiment region correlation analysis to exploit

dependencies between regions [235]. The self-attention trans-

forms original regional features into a higher-order representa-

tion between implied regions. Ou et al. used a local-global at-

tention mechanism to explore the intrinsic relationship among

different modalities and for different segments [222]. The local

attention evaluates the importance of different modalities in

each segment, whereas the global attention captures the weight

distribution of different segments. In contrast, Pang et al. [184]

employed the deep Boltzmann machine (DBM) to infer non-

linear relationships among different features within and across

modalities by learning a jointly shared embedding space.

Cheng et al. [238] proposed an adaptive gated multimodal

fusion model, which first mapped features from different

modalities to the same dimension and then employed a gated

multimodal unit (GMU) to find an intermediate representation.

For a comprehensive survey on feature fusion strategies, please

refer to [22].

5) Feature-to-Evoked-Emotion Mapping: Based on the

emotion representation models discussed in Section II-A,

various evoked emotion analysis tasks can be undertaken,

including classification, regression, retrieval, detection, and

label distribution learning [22]. The former three can also be

classified into visual media-centric dominant emotion analyses

and viewer-centric personalized emotion analyses, while the

latter two are typically visual media-centric. After obtaining a

unified representation, shallow or deep learning-based methods

can be employed to map the features to evoked emotions.

A variety of machine learning algorithms have been utilized

to learn the mapping between the unified representation after

feature fusion and evoked emotions. These algorithms include

naı̈ve Bayes [44, 200, 196], logistic regression [200, 199,

195, 184], SVM and support vector regression with linear

and radial basis function (RBF) kernels [183, 46, 200, 199,

188, 197, 195, 72, 191, 207, 236, 240, 210, 187, 211],

linear discriminant analysis (LDA) [211], multiple instance

learning [186], random forest [195, 210], decision tree [195],

ensemble learning [202], a mixture of experts [237], sparse

learning [192, 194], and graph/hypergraph learning [193].

There is still room for innovation in designing emotion-

sensitive mapping algorithms.

The most common deep learning-based mapping is a multi-

layer perceptron based on one or more fully connected layers.

The difference mainly lies in objective loss functions, such

as cross-entropy loss for classification [215, 71, 217, 229,

216, 185, 227, 230, 231, 232, 241, 233, 228, 234, 212, 235,

240, 238, 210, 222], Euclidean and mean squared error loss

for regression [190, 195], contrastive loss and triplet loss

for retrieval, and Kullback-Leibler (KL) divergence loss for

label distribution learning [217, 218, 189]. Unlike shallow

learning methods, these deep learning techniques can typically

be trained in an end-to-end manner. Some improvements have

also been made to better explore the interactions between

different tasks and the characteristics and relationships of dif-

ferent emotion categories, such as through the use of polarity-

consistent cross-entropy loss and regression loss [226, 208]

and hierarchical cross-entropy loss [219]. More details are

given in the following.

The aforementioned evoked emotion analysis tasks are in-

terconnected. For instance, the detection of emotional regions

can inform the emotion classification task, and the emotion

category with the largest probability in label distribution

learning often aligns with the emotion classification results.

However, a notable difference between evoked emotion mod-

eling and traditional computer vision or machine learning

lies in the existence of specific correlations among emotions.

We summarize recent advancements in multitask learning and

the exploration of emotion correlations in evoked emotion

modeling.

Multi-task learning has been shown to significantly improve

performance compared to single-task learning by leveraging

appropriate shared information and imposing reasonable con-

straints across multiple related tasks [244]. It has become

popular in evoked emotion modeling, especially when train-

ing data is limited for each task. Based on the relations
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Fig. 13. Illustration of different emotion correlations. (a) Emotion hierarchy: a three-level hierarchy from sentiment to primary emotion and secondary
emotion [234]. (b) Emotion similarity: Mikels’ emotion wheel on the left [193] and Emotion circle on the right [218]. (c) Emotion boundedness: rough
transformation between discrete emotion categories and continuous emotion values in the VAD space [46].

explored, multitask learning can be categorized into task

relation learning-oriented [217, 185, 227, 230, 233, 228],

testing data relation learning-oriented [192], feature relation

learning-oriented [194], and viewer relation learning-oriented

approaches [193]. Different evoked emotion analysis tasks are

often jointly performed, such as classification and distribution

learning [217, 230], classification and retrieval [185], and

classification and detection [227, 228, 233]. Joint optimization

of different objective losses allows models to extract more

discriminative feature representations. For example, multitask

shared sparse regression was proposed to predict continuous

emotion distributions of multiple testing images with sparsity

constraints, which takes advantage of feature group struc-

tures [192]. Different constraints across features are consid-

ered [194] to reflect their importance by a weighting strategy,

which can be viewed as a special late fusion category. Rolling

multitask hypergraph learning is proposed to simultaneously

predict personalized emotion perceptions of different viewers

where social connections among viewers are considered [193].

Exploring correlations among different emotion categories

or continuous emotion values can improve evoked emotion

analysis. Commonly considered emotion correlations include:

• Emotion hierarchy. As emotion categories researchers

attempt to model become more diverse and nuanced, level

of granularity increases [234]. As shown in Fig. 13(a),

emotions can be organized into a hierarchy, which

has been exploited in evoked emotion analysis. By

considering the polarity-emotion hierarchy, i.e. whether

two emotion categories belong to the same polarity,

polarity-consistent cross-entropy loss [208] and regres-

sion loss [226] are designed to increase the penalty of

predictions that have the opposite polarity to the ground

truth. Hierarchical cross-entropy loss has been proposed

to jointly consider both emotion and polarity loss [219].

For each level in the emotion hierarchy, one specific

semantic level is mapped with local learning to acquire

corresponding discrimination [234].

• Emotion similarity. Similarities or distances between

emotions can vary, with some being closer than others.

For example, sadness is closer to disgust than it is to

contentment. To account for these similarities, the Mikels’

emotion wheel was introduced [193] (Fig. 13(b) left).

Pairwise emotion similarity is defined as the reciprocal

of “1 plus the number of steps required to discriminate

one emotion from another”. Using the Mikels’ wheel, the

emotion distribution is transformed from a single emotion

category [217, 230]. Chain center loss is derived from the

triplet loss, with anchor-related-negative triplets selected

based on emotion similarity [220]. A more accurate

method of measuring emotion similarity, based on a well-

grounded circular-structured representation called the

Emotion Circle, has also been designed [218] (Fig. 13(b)

right). Each emotion category can be represented as an

emotion vector with three attributes (i.e., polarity, type,

and intensity) and two properties (i.e., similarity and

additivity), allowing for vector addition operations.

• Emotion boundedness. Not every combination of valence,

arousal, and dominance values make sense in an emo-

tion space. The transformation between discrete emotion

states and their rough continuous values is often possi-

ble [46, 16] (Fig. 13(c)). For example, positive valence is

linked to happiness, whereas negative valence is linked to

sadness or anger, even though exact boundaries may not

be clear. When performing multitask learning involving

both classification and regression, it is helpful to consider

the constraints on these values. For example, it would not

be valid to predict happiness with a negative valence. The

BoLD dataset (Section III-A3) leverages this concept to

check the validity of crowdsourced annotations [51].

6) Preliminary Benchmark Analysis: We provide a sum-

mary of image- and video-based evoked emotion classification

accuracy of various representative methods, reported on the

FI [71] and VideoEmotion-8 [72] datesets, respectively. The

compared methods for image emotion prediction include Sen-

tiBank [200], artistic principles [188], DeepSentiBank [239],

fine-tuned AlexNet [203], fine-tuned VGG-16 [204], fine-

tuned ResNet-101 [205], progressive CNN [215], multilevel

deep representation network (MldrNet) [231], weakly super-

vised coupled network (WSCNet) [227], polarity-consistent

deep attention network (PDANet) [226], Multi-level region-

based CNN (MlrCNN) [230], stimuli-aware visual emotion

analysis network (SAVEAN) [219], scene-object interrelated

visual emotion reasoning network (SOLVER) [232], multilevel

dependent attention network (MDAN) [234], and SimEmo-

tion [212]. Results in Table II indicate that: (a) fine-tuning deep

neural networks, particularly those with more layers, outper-
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TABLE II
PERFORMANCE COMPARISON OF REPRESENTATIVE METHODS FOR

8-CLASS EVOKED EMOTION CLASSIFICATION FROM IMAGES ON THE FI
DATASET, MEASURED BY AVERAGE ACCURACY (%). *THE RESULTS ARE

MAINLY OBTAINED FROM MDAN [234] AND SIMEMOTION [212].

Method Venue Accuracy (%)
SentiBank [200] ACM MM 2013 44.5

Artistic principles [188] ACM MM 2014 46.1
DeepSentiBank [239] arXiv 2014 53.2

Fine-tuned AlexNet [203] NeurIPS 2012 58.3
Fine-tuned VGG-16 [204] ICLR 2015 65.5

Fine-tuned ResNet-101 [205] CVPR 2016 66.2
Porgressive CNN [215] AAAI 2015 56.2

MldrNet [231] NPL 2020 65.2
WSCNet [227] CVPR 2018 70.1
PDANet [226] ACM MM 2019 72.1
MlrCNN [230] NEUCOM 2019 75.5
SAVEAN [219] TIP 2021 72.4
SOLVER [232] TIP 2021 72.3
MDAN [234] CVPR 2022 76.4

SimEmotion [212] TAFFC 2022 80.3

TABLE III
PERFORMANCE COMPARISON OF REPRESENTATIVE METHODS FOR

8-CLASS EVOKED EMOTION CLASSIFICATION FROM VIDEOS ON THE

VIDEOEMOTION-8 DATASET, MEASURED BY AVERAGE ACCURACY (%).
*THE RESULTS ARE MAINLY OBTAINED FROM VAANET [208] AND

TAM [213].

Method Venue Accuracy (%)
SentiBank [200] ACM MM 2013 35.5
E-MDBM [184] TMM 2015 40.4

ITE [73] TAFFC 2018 44.7
V.+Au.+At. [72] AAAI 2014 46.1

CFN [214] ACM MM 2016 50.4
V.+Au.+At.+E-MDBM [184] TMM 2015 51.1

Kernelized [207] TMM 2018 49.7
Kernelized+SentiBank [207] TMM 2018 52.5

VAANet [208] AAAI 2020 54.5
KeyFrame [210] MTAP 2021 52.9

FAEIL [207] TMM 2021 57.6
TAM [213] ACM MM 2022 57.5

forms handcrafted features (e.g., fine-tuned ResNet-101 [205]

versus SentiBank [200]); (b) exploring local feature represen-

tations and combining representations from different levels can

increase accuracy to around 75% (e.g., MDAN [234]); and (c)

SimEmotion, which uses large-scale language-supervised pre-

training, achieves an overall accuracy of around 80%, which

remains lower than traditional computer vision tasks. The

results highlight the challenges in evoked emotion prediction

due to large intra-class variance and the need for further

progress toward human-level emotion understanding.

The compared methods for video emotion prediction in-

clude SentiBank [200], enhanced multimodal deep Bolz-

mann machine (E-MDBM) [184], image transfer encod-

ing (ITE) [73], visual+audio+attribute (V.+Au.+At.) [72],

CFN [214], V.+Au.+At.+E-MDBM [184], Kernelized features

and Kernelized+SentiBank [207], visual-audio attention net-

work (VAANet) [208], KeyFrame [210], frame-level adap-

tation and emotion intensity learning (FAEIL) [207], and

temporal-aware multimodal (TAM) methods [213]. Results in

Table III indicate that: (a) fusing information from multiple

modalities is more effective than using a single modality (e.g.,

VAANet [208] versus SentiBank [200]); (b) the current best

accuracy is less than 60%; and (c) effectively fusing informa-

tion from different modalities and selecting key segments or

frames are two challenges. Evoked emotion prediction from

videos is even more challenging than image-based prediction

and requires further research efforts.

C. Facial Expression and Microexpression Recognition

Facial expressions play a crucial role in natural human

communication and emotion perception. Facial expression

recognition (FER) involves automatic identification of a per-

son’s emotional state through analysis of images or video clips

and has been a long-standing research topic in computer vision

and affective computing.

1) Earlier Approaches: Before 2012, traditional hand-

crafted features and pipelines were commonly used. The

process generally included the following steps: detecting fa-

cial regions, extracting handcrafted features (e.g., LBP [245],

non-negative matrix factorization (NMF) [246], HOG [247])

from facial regions, and employ a statistical classifier (e.g.,

SVM [248]) to recognize emotions.

Readers interested in traditional methodologies are advised

to refer to survey articles [249, 250, 251, 252].

Since the creation of the ImageNet dataset and deep CNN

AlexNet in 2012, DNNs have demonstrated remarkable image

representation capabilities. FER researchers have established

large-scale datasets (e.g., EmotoNet [253], AffectNet [78]) that

provide ample training data for DNNs. Consequently, deep

learning approaches have become the dominant approach in

FER. A survey by Li and Deng [4] provides a comprehensive

summary of deep learning-based FER methods from 2012 to

2019. During this period, researchers proposed several DNN

techniques to improve FER performance, which the authors

categorize as follows:

• Adding auxiliary blocks to the typical backbone net-

work (e.g., ResNet [205] and VGG [204]). The Scoring

ensemble (SSE) [254] proposed three auxiliary blocks

to extract features from the shallow-, intermediate-, and

deep-layers, respectively.

• Ensembling different models to achieve outstanding

performance. For example, [255] concatenated fea-

tures from three different networks–VGG13 [204] and

VGG16 [204], and ResNet [205].

• Designing specialized loss functions (such as Center

loss [256], Island loss [257], and (N+M)-tuple cluster

loss [258]) to learn facial features.

• Leveraging multitask learning to learn various features

from facial images. For instance, [259] proposed MSCNN

to jointly learn face verification and facial expression

recognition tasks.

Moreover, some studies concentrated on FER from video

clips using spatiotemporal networks to capture temporal cor-

relations among video frames. Some researchers [260] also

used recurrent neural networks (RNNs) (e.g., LSTM), wheras

others [261, 262] used 3-D convolutional networks such as

C3D [221].
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(a) Annotation (b) Robustness (c) Subtlety

Fig. 14. Three challenges in facial expression recognition. Images in (a-b)
are obtained from the AffectNet dataset [78] and images in (c) are obtained
from the CK+ dataset [76].

2) Recent Approaches: Although deep learning-based

methods have achieved remarkable success, FER remains a

difficult task due to these three challenges.

• Annotation. Annotations of FER datasets contain much

ambiguity. Each annotator subjectively evaluates facial

expressions in images, leading to different annotations

to the same image. Some images also have inherent

ambiguity, making it difficult to assign a clear emotion

label. Low image quality (such as occlusion or poor

lighting) and ambiguous facial expressions exacerbate

this problem. For instance, the images in Fig. 14 (a)

are labeled as neutral, but this label is uncertain due to

annotator subjectivity and/or image quality.

• Robustness. FER contains several sources of disturbance.

Datasets are made up of individuals of varying ages,

genders, and cultures. In addition, visual variations (such

as human facial pose, illumination, and occlusions) com-

monly exist in facial images, which cause distinct ap-

pearance differences. These identity and visual variations

can make it difficult for FER models to extract useful

features. As illustrated in Fig. 14 (b), image appearances

can vary greatly due to differences in age, gender, race,

facial pose, and lighting. Moreover, individuals with

different identities and cultures might display their facial

expressions differently, adding another challenge for FER

models.

• Subtlety. Some facial expressions are delicate, and some

emotions can also be conveyed through subtle facial

actions. Such fine distinctions can make it challenging to

distinguish between emotions. For instance, the difference

between “fear” and “disgust” images in Fig. 14 (c)

is nuanced. Thus, FER models must efficiently extract

discriminative features to differentiate emotions.

Most deep learning methods developed after 2019 have

attempted to address these problems. Regarding the annotation

problem, Zeng et al. pointed out the inconsistency of emotion

annotation across different FER datasets due to annotators’

subjective evaluations of emotion [263]. To address this issue,

they proposed a framework called Inconsistent Pseudo Anno-

tations to Latent Truth (IPA2LT), which trains multiple inde-

pendent models on different datasets separately. These models

may assign inconsistent pseudo labels to the same image be-

cause each model reflects the subjectivity of the corresponding

dataset annotators. By comparing image’s inconsistent labels,

IPA2LT estimates the latent true label. Another factor that can

contribute to annotation ambiguity is uncertain facial images,

such as blurry images or those with ambiguous emotions.

To mitigate the effect of uncertain images, researchers have

proposed various approaches. Wang et al. developed a Self-

Cure Network (SCN) to identify and then suppress uncertain

images [264]. SCN uses a self-attention mechanism to estimate

the uncertainty of facial images and a relabeling mechanism

to adjust labels of those images. Chen et al. argued that an-

notating uncertain images with multilabel and intensity, rather

than the one-hot label commonly used in current FER datasets,

is more suitable [265]. Label Distribution Learning (LDL)

allows models to learn label distribution (i.e., multilabel with

intensity). Chen et al. introduced an approach called Label

Distribution Learning on Auxiliary Label Space Graphs (LDL-

ALSG) [265]. Given one image, LDL-ALSG first leverages

models of related tasks (such as AU detection) to find its

neighbor images. Then LDL-ALSG employs a task guide loss

to let images learn a similar label distribution (i.e.,multilabel

with intensity) with the neighbors. She et al. combined LDL

and uncertain image estimation. The proposed DMUE network

mines the label distribution and estimates the uncertainty of

images together [266].

To address robustness challenges in FER, researchers have

explored mitigating the impact of identity variations on recog-

nition [267, 268]. Chen and Joo investigated the influence of

gender and revealed that models tend to recognize women’s

faces as happy more often than men’s, even when smile

intensities are the same [267]. To overcome this issue, the

authors proposed a method that first detected facial AUs and

then applied a triplet loss to ensure that people with similar

AUs exhibited similar expressions, regardless of gender [267].

Zeng et al. demonstrated that emotion categories can intro-

duce bias into a dataset [268]. In some datasets, emotions

(such as disgust) occur less frequently than more prevalent

emotions such as happiness and sadness, leading to poor

performance of networks trained on these datasets on minority

emotion classes. The authors utilized a million-image-level

facial recognition dataset (much larger than the FER dataset)

and a meta-learning framework to address the issue [268].

Li et al. recognized the category imbalance challenge and

addressed it by proposing AdaReg loss to dynamically adjust

the importance of each category [269].

Other researchers have focused on visual disturbance varia-

tions, which lead to the robustness issue. Wang et al. designed

a region attention network to capture important facial regions,

thus obtaining occlusion-robust and pose-invariant image fea-

tures [270]. Zhang et al. used a Deviation Learning Network

(DLN) to learn identity-invariant features [271]. Wang et al.

considered both identity and pose variations together [272],

where an encoder was followed by two discriminators that

classified pose and identity independently, while the encoder

extracted features that were invariant to both. A classifier for

expressions was then used to produce expression predictions.

To address the subtlety problem in FER, Ruan et al.

decomposed facial expression features into shared features

that represented expression similarities, and unique features

that represented expression-specific variations using a Feature
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Decomposition Network (FDN) and a Feature Reconstruc-

tion Network (FRN), respectively [273]. The authors further

addressed robustness and subtlety problems by proposing a

disturbance feature extraction model (DFEM) to identify dis-

turbance features (such as pose and identify) and an adaptive

disturbance-disentangled model (ADDM) to remove distur-

bance features extracted by DFEM and extract the discrim-

inative features across different facial expressions. Farzaneh

and Qi enhanced Center Loss [256, 274]. Although Center

Loss can learn discriminative features, it can also include some

irrelevant features. The proposed Deep Attentive Center Loss

adopts an attention mechanism to adaptively select important

discriminative features. Xue et al. leveraged Transformers to

detect discriminative features and showed that the original

vision transformer (ViT) [276] can only capture most dis-

criminative features but neglects other features [275]. Thus

this work proposes the Multi-Attention Dropping (MAD)

technique to randomly drop some attention maps, such that the

network can characterize all comprehensive features except the

most discriminative ones. Furthermore, Savchenko et al. [277]

achieved remarkable performance on FER using the well-

performing network EffientNet [278] to extract discriminative

features.

TABLE IV
PERFORMANCE COMPARISON OF REPRESENTATIVE METHODS FOR

7-CLASS FACIAL EXPRESSION RECOGNITION ON THE AFFECTNET

DATASET, MEASURED BY AVERAGE ACCURACY (%).

Method Venue Accuracy (%)
IPA2LT [263] ECCV 2018 57.31

IPFR [272] ACM MM 2019 57.40
RAN [270] TIP 2020 52.97
SCN [264] CVPR 2020 60.23

DACL [274] WACV 2021 65.20
DMUE [266] CVPR 2021 63.11
KTN [269] TIP 2021 63.97

TranFER [275] CVPR 2021 66.23
Face2Exp [268] CVPR 2022 64.23

ADDL [279] IJCV 2022 66.20
EfficientNet-B2 [277] TAFFC 2022 66.34

3) Preliminary Benchmark Analysis: Table IV provides a

concise overview of the recent FER method performance on

the AffectNet dataset, one of the most comprehensive FER

benchmarks. The table shows the emotion classification accu-

racy of selected representative methods, which were previously

discussed in the text. As seen in the table, TranFER, ADDL,

and EfficientNet-B2 are among the top-performing methods

on the AffectNet benchmark. The utilization of advanced

network structures from general image recognition tasks in

TranFER and EfficientNet-B2 highlights the importance of

drawing knowledge and expertise from the image recognition

field in FER. However, it is important to note that the highest

reported accuracy remains below 70%. Given the over 90%

top-1 accuracy achieved by state-of-the-art image recognition

methods on the challenging ImageNet benchmark, this deficit

suggests significant potential for improvement in FER.

4) Microexpression Recognition (MER): The methods de-

scribed above are for recognizing facial expressions. However,

individuals may consciously exhibit certain facial expressions

to conceal their authentic emotions. In contrast to conventional

facial expressions, which can be deliberately controlled, mi-

croexpressions are fleeting and spontaneous and can uncover

an individual’s genuine emotions. A microexpression is brief

in duration and can be imperceptible with the naked eye.

MER often requires high frame-rate videos as input and the

development of spotting algorithms to isolate temporally the

microexpression within videos. A recent survey gives a more

in-depth introduction to developments in MER [7].

D. Bodily Expressed Emotion Understanding (BEEU)

In everyday life, people express their emotions through

various means, including via their facial expressions and body

movements. Recognizing emotions from body movements has

some distinct advantages over recognizing emotions from

facial images for many computer and robotic applications:

• In crowded environments where facial images may be

obscured or lack sufficient resolution, body movements

and postures can still be reasonably estimated. This

context is particularly important in robotic applications

where the robot may not be close to all individuals in its

environment.

• Due to privacy concerns, facial information may be

inaccessible. For example, in some medical applications,

sharing of facial images or videos is restricted to protect

sensitive patient identity information.

• Incorporating body expressions as an additional modality

can result in more accurate emotion recognition compared

to using facial images alone. For example, when the

person is not facing the camera, the camera cannot obtain

a frontal view.

Psychologists have conducted extensive studies to exam-

ine the relationship between body movements and emotions.

Research suggests that body movements and postures are

crucial for understanding emotion, encoding rich information

about an individual’s status, including awareness, intention,

and emotional state [280, 281, 282, 283, 114]. Several studies,

including one published in Science, found that the human

body may be more diagnostic than the face for emotion

recognition [283, 284, 285].

However, the field of BEEU in visual media has progressed

relatively slowly. Unlike FER, which has seen significant

progress with deep learning methods since 2013, most BEEU

studies relied on traditional, handcrafted features until 2018.

The bottleneck for BEEU is the scarcity of large-scale, high-

quality datasets. As mentioned in Section III-A3, collecting

and annotating a dataset of bodily expressions with high-

quality labels is extremely challenging and costly. Understand-

ing and perception of emotions from concrete observations

is heavily influenced by context, interpretation, ethnicity, and

culture. There is often no gold-standard label for emotions,

especially bodily expressions. Prior to 2018, research on

bodily expression was limited to small, acted, and constrained

lab-setting video data [286, 287, 288, 289]. These datasets

were insufficient for deep learning-based models that required

a large amount of data. The recent BoLD dataset by Luo

et al. [51] introduced in Section III-A3 is the largest BEEU
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dataset to date. It contains over 10,000 video clips of body

movements with high-quality emotion labels. In addition,

Randhavane et al. [74] proposed the E-Walk data, including

1,136 3-D pose sequences extracted from raw video clips. As

a result, computer vision research is increasingly focused on

emotion recognition through body movement recordings.
Because static body images alone can hardly inform a

person’s emotions, BEEU often considers human video clips.

According to input modality of the models, BEEU methods

can be classified as pixel-based and skeleton-based. Pixel-

based methods use entire video clips, whereas skeleton-based

methods first extract 2D/3D pose information and then feed

it into the models. Some BEEU works, which focus on

movement when walking, are known as gait-based. Herein,

we refer to them as skeleton-based as well because gait is

also a 2D/3D pose. Figs. 15 and 16 illustrate the two kinds of

methods.

Fig. 15. Skeleton-based BEEU takes the 2D/3D pose sequence of the target
human instance as input.

1) Skeleton-based Methods: Our review of past publica-

tions shows a greater adoption of skeleton-based approaches

compared to pixel-based. This is due to two reasons. First,

skeleton data, consisting of sequences of 2D/3D joint coor-

dinates, requires less engineering effort to process than video

clips. A straightforward method is to feed coordinates into

a machine learning classifier (e.g. SVM) for direct emotion

prediction results. Second, improved MoCap systems enable

researchers to easily collect accurate 3-D poses from individ-

uals walking in laboratory settings.
In early stages of skeleton-based BEEU research, a conven-

tional approach was followed, which entailed the extraction of

low-level features from 2D/3D pose sequences and subsequent

utilization of a machine learning classifier to predict emotion.

These features were categorized as follows:

• Frequent domain features, which transform temporal in-

formation into a frequency domain, are obtained through

Fourier transformation. For instance, Li et al. used Fourier

transformation to convert 3-D pose sequences into fre-

quency domain features, which were then classified using

linear discriminant analysis, naı̈ve Bayes, decision tree,

and SVM algorithms [290].

• Motion features, characterize the movement of body

joints, include joint velocity and acceleration [51].

• Geometry features, which describe self-transformation of

the body, encompass angles of specific skeletons and

distance between certain joints, among others. In partic-

ular, Crenn et al. combined motion features, geometry

features, and Frequent domain features into an SVM

classifier [291].

Luo et al. compared traditional and deep learning-based

methods using the BoLD dataset and developed the Auto-

mated Recognition of Bodily Expression of Emotion (ARBEE)

system [51]. A traditional machine learning approach was

designed, where motion and geometry features were extracted

from 2-D pose sequences, and a random forest classifier was

employed to categorize emotions. In addition, a ST-GCN was

utilized to train and evaluate the BoLD dataset. The result

indicated that carefully designed traditional machine learning

methods outperformed the ST-GCN model from scratch.

Since the development of ARBEE, various deep learning-

based methods have emerged. These methods can be broadly

categorized into three groups based on the type of neural

network used: RNN, Graph Neural Network (GNN), and CNN.

Randhavane et al. used a LSTM network, which is a

type of RNN, to extract temporal features from a 3-D pose

sequence, which were then concatenated with handcrafted

features for classification [74]. Bhattacharya et al. leveraged a

semi-supervised technique to improve the performance of an

RNN model [292]. The work consisted of a GRU (a kind of

RNN model) for feature extraction from a 3-D pose sequence,

followed by an autoencoder with both encoder and decoder

components. During training, when the input data was labeled

with emotions, the classifier after the encoder produced the

emotion prediction, and the decoder reconstructed the 3-D

pose. If the input lacked emotion labels, only the decoder was

used for reconstruction.

Bhattacharya et al. [293] adopted ST-GCN [294] to classify

emotion categories from 3-D pose sequences. To increase

the size of the training set, the authors used a Conditional

Variational Autoencoder (CVAE) to generate some synthetic

data. Banerjee et al. combined GCN and natural language

processing (NLP) techniques to achieve zero-shot emotion

recognition, which entailed recognizing novel emotion cate-

gories not seen during training [295]. The authors used ST-

GCN to extract visual features from the 3-D pose sequences

and used the word2vec method to obtain word embeddings

from emotion labels. An adversarial autoencoder was used to

align visual features with word embeddings. During inference,

the system searched for the emotion label that best matched

the output visual feature.

Inspired by the success of image recognition, some studies

have attempted to convert skeleton sequences into images.

Narayanan et al. embedded 3-D pose sequences into im-

ages, then utilized a CNN for classification [296]. Hu et al.

employed a two-stream CNN, where one stream directly

embedded the 3-D pose into an image, and the other stream

converted handcrafted features from the 3-D pose into another

image [297]. The two CNNs were integrated using Trans-

former layers.
2) Pixel-based Methods: Pixel-based networks for BEEU

require video clips as input. Due to an increased redundancy
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Fig. 16. Pixel-based BEEU uses raw videos as input. The target human
is cropped and the resulting frames are input into a video analysis neural
network.

in video clips compared to 2D/3D pose sequences, these net-

works necessitate larger training datasets to extract distinctive

features. With the availability of the large-scale BEEU dataset,

researchers have focused on pixel-based methods. Because the

well-established field of action recognition, which also uses

videos to analyze human behavior, has many similarities to

BEEU, current BEEU research often incorporates networks

from action recognition.

The ARBEE study benchmarked the performance of various

action recognition networks on the BoLD dataset [51]. They

cropped human body regions from raw videos as the input and

then fed them into different methods, including a traditional

handcrafted feature method and three deep learning methods

(Two-Stream (TS) [298], I3D [138], and TSN [299]). Both

TS and TSN consisted of a two-stream network, where one

stream processed the RGB image sequence and the other

processed the optical flow sequence. TS and TSN used 2-

D convolutional networks, whereasI3D employed a 3-D con-

volutional network. Results indicated that all deep learning

methods significantly outperformed the traditional handcrafted

feature method. Among the three deep learning methods, I3D

performed worse than TS and TSN, potentially due to its

requirement for more training data to reach a comparable

level of performance. The BoLD dataset is not as extensive as

action recognition datasets like Kinetics-400 [300], and thus,

I3D trained on BoLD could not fully exhibit its capability

as it could on Kinetics-400. At the same time, TS and TSN

produced similar results.

The ARBEE study also evaluated the impact of a person’s

face on BEEU model performance [51]. They designed an ab-

lation study with three different video inputs: the whole body

(crop the whole human body from the raw video clips), just the

face (only crop the face part), and the body without the face

(crop the whole human body but mask the facial region) [51].

Results showed that using either the face or body alone was

comparable to using the whole body. This demonstrated that

both the face and body contributed significantly to the final

prediction. Although the whole body setting of the TSN model

outperformed the separate models, it did so by combining

facial and body emotions.

Most BEEU research has followed ARBEE to continue

pixel-based approaches. Because ARBEE cropped human

body regions as input, a direct idea to improve upon ARBEE

is to explicitly utilize facial images and background images

as input as well. Recent studies [301, 302] used an extra

network to extract context information from whole images,

then fused the context features with features extracted from

body images. Some research adopts an additional network

with facial images as input [303]. Moreover, inspired by the

cutting-edge vision-language research of CLIP [304], Zhang

et al. developed EmotionCLIP, a contrastive vision-language

pretraining paradigm to extract comprehensive visual emo-

tion representations from whole images, encompassing both

context information and human body information simulta-

neously [305]. Because EmotionCLIP uses only uncurated

data, it addresses the challenge of data scarcity in emotion

understanding. EmotionCLIP outperforms state-of-the-art su-

pervised visual emotion recognition methods and competes

with many multimodal approaches across various benchmarks,

demonstrating its effectiveness and transferability.

Certain studies delve deeply into the analysis of body ges-

tures and movement in the context of BEEU. ARBEE currently

provides only a generalized emotion label for entire video

clips, lacking specific descriptions for human body gestures or

movements. In contrast, Liu et al. and Chen et al. introduced

datasets for micro-gesture understanding and emotion analysis,

featuring detailed body gesture labels, such as crossed fingers,

for each human movement clip [75, 306]. These enriched

datasets have the potential to improve machines’ understand-

ing of emotions conveyed through gestures. As mentioned in

Section III-E, LMA is a comprehensive method for describing

human movement. Wu et al. further advanced BEEU by pre-

senting an LMA dataset that provides accurate LMA labels for

human movements [307]. Wu et al. incorporated a novel dual-

task model structure that simultaneously predicts emotions and

LMA labels, achieving remarkable performance on the BoLD

dataset.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR BODILY

EXPRESSIVE EMOTION UNDERSTANDING ON THE BOLD DATASET.

Method Venue mAP (%)
Skeleton-based:

ST-GCN [263] AAAI 2018 12.63
Random Forest [51] IJCV 2020 13.59
Pixel-based:

TS [298] NeurIPS 2014 17.04
TSN [299] ECCV 2016 17.02
I3D [138] CVPR 2017 15.34

Filntisis et al. [302] ECCVW 2020 17.96
Pikoulis et al. [303] FG 2021 21.87
EmotionCLIP [305] CVPR 2023 22.51

Wu et al. [307] arXiv 2023 23.09

3) Preliminary Benchmark Analysis and Current Direc-
tions: Table V presents the results of various BEEU meth-

ods using the BoLD dataset, with performance measured

by mean average precision (mAP) across 26 emotional cat-

egories. Results indicated that pixel-based methods outper-

formed skeleton-based ones, which was not surprising given
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RGB images contained more information. Despite significant

progress in BEEU, performance remains relatively low, with

mAP scores below 25%.

As BEEU is a relatively new area in computer vision, we

explore its potential future directions inspired by the trajectory

of related areas like action recognition and FER. First, existing

bodily expression datasets are not sufficiently large. BoLD

contains only thousands of instances, which is much less than

contained in action recognition datasets such as Kinetics-400.

The BoLD team is developing larger and more comprehensive

datasets to satisfy data requirements of deep learning methods,

but those expansions are not yet complete. Second, existing

approaches are largely based on action recognition methods

without leveraging deep affective features. Previous work only

applied low-level features, neglecting characteristics of concur-

rent body movement. Third, annotation ambiguity, similar to

FER, is also challenging. Fourth, any method that segments

body regions must account for changing relationships among

body sections (i.e., Shape Change in LMA) which is crucial

for bodily expressed emotion, and may be particularly relevant

to the dimensional emotion model because Shape Change

reveals approach and retreat. Section V discusses technological

barriers more broadly and in greater depth.

E. Integrating Multiple Visual Input to Model Expression

We discussed earlier how facial and body images have been

used as separate inputs to identify human emotions. As was

already established, the context of people in a scene also

contributes to inferring their emotion. Humans synthesize all

visual information to produce emotion determinations. Natu-

rally, computers are also capable of making an identification

by combining all visual inputs including facial images, body

images, and context information.

Fig. 17. The multistream network extracts features from different inputs,
which can be various visual inputs (such as entire and body images) or inputs
from other modalities (such as audio). The fusion module combines those
features.

As illustrated in Fig. 17, recent work used multistream

networks to fuse different visual inputs. Kosti et al. [136] and

Lee et al. [81] developed initial approaches by adopting a two-

stream network. Specifically, Kosti et al. used body images and

entire images as input to extract context information and body

features separately. Lee et al. adopted faceless images (i.e.,

cropped the human face out of the entire image) and facial

images as input, and a feature fusing network that dynamically

fused context and facial features based on their significance.

Subsequent research has taken two paths. Some researchers

have explored more kinds of visual inputs. For example, Mittal

et al. demonstrated that a depth map can indicate how people

interact with each other [137]. The estimated depth map from

the raw image served as one input. In addition, this work

used three other inputs–the facial image, the 2-D pose, and

the bodiless (i.e., cropping the human body out of the entire

image) images–to extract facial information, body posture

information, and context information separately. This was a

four-stream network overall. Studies [301, 302, 303] have also

used a three-stream network with the entire, facial, and body

images as input.

Other researchers focused on more effective fusion of visual

features. Existing multistream approaches in typical emotion

recognition adopt a simple fusion strategy, i.e., ensemble the

predictions from each stream [301, 302, 303]. To improve

upon this, Le et al. proposed the Global-Local Attention

(GLA) module to enhance interaction between facial and

context features [308].

F. Multi-modal Modeling of Expressions

Emotions can be conveyed and perceived not just through

visual signals, but also through text and audio. To effec-

tively process multimodal signals, however, is nontrivial. With

advancements in deep learning, new technical approaches

to this problem have emerged, particularly the vision-and-

language model [309, 304]. Similar to methods discussed in

Section IV-E, multimodal approaches also follow a multi-

stream pipeline, as illustrated in Fig. 17. These techniques use

independent networks to extract features from different inputs

of multiple modalities and fuse these features with a fusion

network.

Multi-modal approaches typically utilize backbone net-

works, such as BERT [310] and ResNet, to extract text and

audio features. The visual feature extraction process, however,

differs and is typically performed using one of the following

three methods:

• Region features. A detection network is employed to

identify regions of interest (ROIs), from which features

are extracted.

• Grid features. A backbone network, such as ResNet 101,

is used to extract features for the entire image.

• Patch projection. The image is split into patches, and a

linear layer is used to generate a liner embedding, as

described in ViT [276].

For the fusion process, a simple approach is to directly en-

semble the final prediction of the different networks. Another

method involves concatenating feature maps from different

modality networks and using a single network to fuse the

features. Yet another approach is to use multiple networks

to process different features, with interactions between the

different networks.

Some research in emotion recognition focuses on integrat-

ing audio and visual inputs. For example, Tzirakis et al.

attempted to fuse audio signals with facial images [311].
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They incorporated an audio stream network to extract audio

features, followed by an LSTM network to fuse facial and

audio features. Antoniadis et al. combined audio signals with

multiple visual modalities, including facial image, body image,

and context image [312]. In contrast to using CNN, Shirian

et al. utilized a GCN structure to process audio, facial, and

body inputs, and then used a pooling layer to process the fused

features [313].

With the rapid advancement of NLP, there has been a

surge in research on multimodal sentiment analysis, which

incorporates text, audio, and visual input. Survey papers by

Gandhi et al. [70] and Zhao et al. [22] provided comprehensive

overviews of advancements in multimodal sentiment analysis

techniques. Noteworthy methods from recent years include

the development of a multitask network by Akhtar et al. that

used text, acoustic, and visual frames of videos as input with

inter-modal attention modules to adjust the contribution of

each modality [314]. Most existing methods adopt multimodal

emotion labels as the supervision, ignoring unimodal labels.

Yu et al. proposed a label generation module that generated

unimodal labels for each modality in a self-supervised man-

ner [315], enabling a multitask network to train all unimodal

and multimodal tasks simultaneously. Jiang et al. adopted

several baseline models for each modality input and used PCA

to find the optimal feature for the modality [316]. Further,

an early fusion strategy combined all features. Yang et al.

and considered the consistency and differences among various

modalities in a unified manner, using common and private

encoders to learn modality-invariant and modality-unique fea-

tures, respectively, across all modalities [317]. With a similar

motivation, Zhang et al. proposed a cascade and specific scor-

ing model to represent the inter- and intra-relationship across

different modalities [318]. Zhang et al. used reinforcement

learning and domain knowledge to process fused features from

multiple modalities in conversational videos [319]. Through

reinforcement learning, Dueling DQN predicted the sentiment

of the target sentence based on features of previous sentences.

Moreover, information in the first several sentences was used

as domain knowledge for subsequent predictions. Mittal et al.

incorporated multiple visual inputs, resulting in the inclusion

of five distinct types of input: face, body, context, audio, and

text [320].

To show recent advancements in multimodal sentiment

analysis, Table VI presents the performance of selected rep-

resentative methods on the widely used benchmark, the MO-

SEI dataset. Performance is evaluated through mean absolute

error (MAE) and binary accuracy (Acc-2) metrics. The top-

performing methods were Self-MM [315] and FDMER [317].

Self-MM utilizes a multitask network to train all modalities

simultaneously, whereas FDMER employs modules to capture

shared and individual features across modalities. The essence

of multimodal sentiment analysis remains the optimization of

relationships between different modalities.

In addition, some research centers on fusing multimodal fea-

tures. For example, Cambria et al. presented Sentic Blending

to fuse scalable multimodal input [321]. In a multidimensional

space, it constructed a continuous stream for each modality,

which depicted the semantic and cognitive development of

TABLE VI
PERFORMANCE COMPARISON OF REPRESENTATIVE METHODS FOR

MULTIMODAL SENTIMENT ANALYSIS ON THE MOSEI DATASET, *THE

RESULTS ARE MAINLY OBTAINED FROM FDMER [317].

Method Venue MAE Acc-2 (%)
TFN [322] EMNLP 2017 0.593 82.5
LMF [323] ACL 2018 0.623 82.0
MFM [324] ICLR 2019 0.568 84.4
ICCN [325] AAAI 2020 0.565 84.2
MISA [326] ACM MM 2020 0.555 85.5

Self-MM [315] AAAI 2021 0.530 85.2
FDMER [317] ACM MM 2022 0.536 86.1

humans. The streams of different modalities were then fused

over time.

V. MODELING EMOTION: SIGNIFICANT TECHNOLOGICAL

BARRIERS

Despite advancements propelled by deep learning and big

data, solving the problem of emotion modeling is nowhere

in sight. In this section, we share insights on some of the

most significant technological barriers in computer vision

(Section V-A), statistical modeling and machine learning (Sec-

tion V-B), AI (Section V-C), and emotion modeling (Sec-

tions V-D, V-E, V-F, and V-G) that hinder progress in the field.

At present, there are no straightforward solutions to these is-

sues. Some fundamental technologies in multiple related fields

must be further developed before substantial progress can be

made in emotion understanding. Emotional intelligence plays

a significant role in our cognitive functions such as decision-

making, information retrievability, and attention allocation.

Artificial emotional intelligence (AEI) will likely become an

integral part of future-generation AI and robotics. To put it

succinctly, AEI based on visual information is a “Holy Grail”

research problem in computing.

A. Fundamental Computer Vision Methods

1) Pre-training Techniques: The task of annotating emotion

is a time-consuming process. Acquiring a large-scale dataset

for FER or BEEU on the level of ImageNet is difficult.

To completely overcome the challenge of emotion recogni-

tion, DNNs must acquire sufficient representation capability

from extensive datasets. This gap can be bridged by using

pretraining techniques, in which a model is initially trained

on a massive dataset for an upstream task and then fine-

tuned for a downstream task. During pretraining, the model

is expected to learn emotion recognition capabilities from the

upstream task. The choice of upstream task is critical because

it determines the amount of emotion-related capabilities the

model can acquire.

The widely adopted pretraining strategy is to train the

model on ImageNet for image classification tasks. However,

the ARBEE team has demonstrated that this approach does not

significantly enhance the performance of the BEEU task [51].

Our hypothesis is that image classification and emotion

recognition require different types of discriminative features

to be extracted. This observation reflects the fact that whereas

most individuals can recognize common objects, a portion of
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the population is unable to discern subtle emotions. In light

of the current state of computer vision, two upstream tasks

have been promising for pretraining: self-supervised learning

(SSL) [327, 328] and image-text retrieval [304]. Regarding

SSL, our concern is that despite pretraining with state-of-the-

art SSL techniques, the model still required large downstream

datasets in the fine-tuning phase. For instance, even after pre-

training with SSL, action recognition tasks required fine-tuning

on large-scale Kinetics-400 for several epochs to achieve

remarkable performance [329]. As for image-text retrieval,

it is crucial to carefully design the text prompts to effec-

tively bridge an emotion recognition model with a pretrained

image-text model. Further research is needed to determine

how pretraining techniques can substantially enhance emotion

recognition.

2) Comprehensive and Robust Body Landmarks: The ef-

fectiveness of current 2-D pose estimation methods has led

to their widespread usage in downstream tasks such as action

recognition [97, 294]. However, for emotion recognition, these

methods face significant limitations. First, body landmarks

used in pose estimation are insufficient for the analysis of

subtle emotions, as they do not account for all relevant

movements. For instance, many methods only provide one

landmark on the chest, and this limitation prevents skeleton-

based emotion recognition algorithms from leveraging infor-

mation regarding chest expansion or contraction, which is

a common indicator of a person’s confidence. Similarly, a

person can express emotions through finger movements, which

are not captured by most pose-estimation algorithms due to

being too fine-grained. Developing an emotion-specific pose

estimation method would require constructing a new, large-

scale annotated dataset with additional landmarks, which can

be a time-consuming and costly process. Second, 2-D pose

estimation results can be noisy due to the jitter errors [330].

Although these errors may have a minimal effect onmetrics

of pose estimation benchmarks, they can significantly impact

understanding of subtle bodily expressions, which demands

substantially higher precision of landmark locations [51].

Given that pose estimation serves as the starting point for

skeleton-based BEEU methods, any errors in human pose can

have a ripple effect on a final emotion prediction.

3) Accurate 3-D Pose or Mesh In-the-Wild: The integration

of 3-D pose information has the potential to substantially

enhance BEEU algorithms because the extra dimension allows

for a better understanding of movements in 3-D space. In other

words, BEEU algorithms could depend on precise 3-D pose

or mesh as input which should enhance its overall accuracy.

Whereas accurate 3-D poses can be obtained through MoCap

systems for laboratory-collected data, obtaining accurate 3-D

poses for in-the-wild data is challenging. It is impossible to set

up MoCap to capture the 3-D pose of a person because the area

of movement is often too large for the placement of MoCap

cameras. Furthermore, existing 3-D pose or mesh estimation

approaches have poor performance when applied to in-the-

wild images. The difficulty of collecting 3-D annotations for

in-the-wild images has resulted in a lack of large-scale, high-

quality 3-D pose datasets. Current 3-D pose models are heavily

reliant on lab-collected 3-D datasets for training, which are

subject to a distinct domain shift from in-the-wild images. In a

laboratory setting, the lighting and environment are fixed, and

the appearance and posture of individuals are monotonous.

Conversely, in-the-wild images exhibit significant variations

in these factors, making it difficult for current models to

generalize well to in-the-wild images.

B. Fundamental Statistical Modeling and Learning Methods

The field of emotion modeling has seen a shift from

conventional computer vision and machine learning techniques

(e.g., [46]) to deep learning-based methods (e.g., [331, 51]).

For many other computer vision problems, deep learning has

shown its power in substantially advancing the state of the art

compared to other machine learning methods. However, some

intrinsic limitations of deep learning continue to limit progress

in the field of emotion modeling. In this context, we aim to

highlight some fundamental data-driven AI capabilities that, if

developed, could drive the field forward.

1) Modeling a Complex Space with Scarce Data: A per-

son’s emotions and behaviors are influenced by various fac-

tors such as personality, gender, age, race/ethnicity, cultural

background, and situational context. Modeling this multidi-

mensional, complex space requires a massive amount of data

to sample it sufficiently and properly. Despite the potential

to collect data from the Internet, manually annotating such

a large dataset for emotion can be prohibitively expensive.

This conundrum challenges machine learning researchers to

find ways to learn meaningful information with limited data

collection.

A relatively more specific challenge facing researchers

developing datasets for emotion research is determining the

appropriate amount of data needed to obtain meaningful re-

sults through machine learning. Emotion data, when collected

from public sources, tends to be naturally imbalanced, with

some emotion categories (e.g., happiness, sadness) having a

much higher number of samples than others (e.g., yearning,

pain) [51]. Unlike in typical object recognition where metadata

(e.g., keywords, image file names) can aid in crawling a

reasonably balanced dataset, we usually cannot determine or

estimate the emotion label for a piece of visual data from

just the available metadata. Making a balanced, representative

dataset depends on crawling or collecting a very large dataset,

in the hope of obtaining a sufficient number of samples for

the less prevalent categories. Such a laborious process greatly

increases the cost of data collection. A potential solution to this

challenge is to use AI to guide a more efficient data collection

process, so that limited annotation resources can be used to

achieve maximum benefit for AI training.

2) Explainability, Interpretability, and Trust: The ability

for AI systems to provide clear and interpretable explanations

of their reasoning processes is particularly crucial in critical

applications, such as healthcare, because end-users, who may

not have a data science background, need to have confidence

in the AI system’s quantitative findings. There is ongoing

research in this area within the broader field of AI, with some

progress being made [332, 333, 334]. However, it is widely

considered an open challenge.
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The task of emotion understanding presents unique chal-

lenges in terms of explainability, interpretability, and trust.

First, emotions are highly subjective, and AI models typically

learn from a general population’s responses based on data

collected from numerous human subjects. The AI’s ability

to explain or interpret results, thus, is limited to a general

perspective, which may naturally be considered unreasonable

to a certain extent by virtually any particular individual,

especially if their opinions on emotions frequently deviate

from the norm.

Second, causal relationships are often more significant in

emotion-related applications. For example, in determining why

a sunset scene evokes positive emotions in many viewers, it is

important to understand whether it is the sunset scenario, the

orange hues, the gradient of colors, the horizontal composition,

or some other properties that cause viewers to feel positive

emotions. Without this knowledge, algorithms developed may

behave unpredictably in many situations, acting as black

boxes. Currently, methods for causal discovery are often not

scalable to high-dimensional or complex data and are sensitive

to sparse data. Therefore, there is a need to develop appropriate

frameworks and methods for high-dimensional and complex

causal discovery specifically tailored to the understanding of

emotions.

Third, overlapping semantics among emotion labels add

complexity to interpreting results. The BoLD dataset has

shown, using video clip annotations, that several pairs of

emotion labels are highly correlated [51]. Examples are

pleasure and happiness (correlation = 0.57), happiness and

excitement (0.40), sadness and suffering (0.39), annoyance

and disapproval (0.37), sensitivity and sadness (0.37), and

affection and happiness (0.35). Even in the dimensional VAD

model, researchers have detected correlations between valence

and dominance (0.359) and between arousal and dominance

(0.356). Current data-driven approaches can often provide a

probability score for each emotion label in the classification

system. Although it remains common practice to sort these

scores to determine the most likely emotion, it is not always

clear what a mixture of scores represents. For example, what

does it mean to have 80% happiness, 60% excitement, and

50% sadness? Is it reasonable to just assume the data point

should be classified as happiness? Or, should it be considered

a mixture of happiness, excitement, and sadness all at the

same time, perhaps as representative of humans often complex

emotional states? Or, could it be some partial combination

of these categories? More fundamental statistical learning

methods will likely be needed to address this issue in a

principled way.

One potential strategy in automated emotion recognition

is to uncover useful patterns from a large amount of data,

with the aim of gaining a deeper understanding of emotions

beyond simple classification. Such findings may either support

or challenge existing psychological theories or inspire new

hypotheses. However, black-box machine learning models can

provide little insight into why a decision is made, which

restricts our ability to gain knowledge through automated

learning. As a result, there has been a recent and growing

focus on developing interpretable machine learning.

There are two primary approaches to interpretable ma-

chine learning. The first is known as model-agnostic ap-

proaches [335, 336] and involves using relatively simple

models such as decision trees and linear models to approx-

imate locally the output of a black-box model like DNN. A

fundamental issue with this approach is that the explanation

is local, usually a neighborhood around every input point.

This outcome raises the question of whether such limited

explanations are truly useful. Because the power of explaining

a phenomenon implies the capability to reveal underlying

mechanisms coherently for a wide range of cases, a severe

lack of generality in interpretation undermines this goal.

In the second approach, the emphasis is on developing mod-

els that are inherently interpretable. Classic statistical models,

due to their simple structure, are often inherently interpretable.

However, their accuracy is often significantly lower compared

to top-performing black-box models. This drawback of classic

models has motivated researchers to develop models with en-

hanced accuracy without losing interpretability. For example,

Seo et al. [337] proposed the concept of cosupervision by

DNN to train a mixture of linear models (MLM), aimed at

filling the gap between transparent and black-box models.

The idea is to treat a DNN model as an approximation to

the optimal prediction function based on which augmented

data are generated. Clustering methods are used to partition

the feature space based on the augmented data, and a linear

regression model (or logistic regression for classification) is fit

in each region. Although MLMs have existed in various con-

texts, they have not been widely adopted for high-dimensional

data because of the difficulties in generating a good partition.

The authors overcame this challenge by exploiting DNN. They

also developed methods to help interpret models either by

visualization or simple description. Advances in the direction

of developing accurate models that are directly interpretable

are valuable for emotion recognition.

3) Modeling Under Uncertainty: Data available for model-

ing human emotions and behaviors is often suboptimal, leading

to various challenges in accurate modeling. For instance, in the

case of bodily expressed emotion recognition, the available

data is often limited to partial body movements (e.g., only the

upper body is visible in the video) and may include occlusions

(i.e., certain body parts are blocked from view). In addition,

the automated detection of human body landmarks in video

frames is not always precise. An interesting research direction

will be to establish accurate models based on incomplete and

inaccurate data. Furthermore, it is important to quantify un-

certainty throughout the machine learning process, given that

such uncertainties are present at each step. This is necessary

in order to effectively communicate results to users and help

them make informed interpretations.

4) Learning Paradigms for Ambiguous Concepts: The uti-

lization of traditional learning frameworks, such as DNN,

SVM, and classification and regression trees (CART), may

prove to be limited in tackling complex problems, such

as modeling not-so-well-defined concepts like emotions and

movements. Unlike more concrete objects, such as cars and

apples, there may not always be a clear ground truth for

expression of emotions in a video clip. The ambiguity of
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establishing a ground truth can be influenced by subjective

interpretations of annotators, leading to different viewpoints

and no correct interpretation.
Although these traditional learning frameworks are opti-

mized for well-defined concepts, their straightforward applica-

tion to emotion recognition may lead to incorrect assumptions,

such as assuming a majority annotator holds the ground truth.

In the case of BEEU, the creation of a mid-layer of movement

concepts between pixel-level information and high-level emo-

tions brings forth another challenge. Many movement classes

are qualitative in nature (e.g., dropping weight, rhythmicity,

strong, light or smooth movement, and space harmony), further

complicating the development of accurate models. The need

for advanced learning paradigms that can effectively tackle the

challenges of modeling complex, ambiguous concepts such as

emotions and movements has become apparent.
5) AI Fairness and Imbalanced Datasets: In the collec-

tion of data regarding human emotions and behaviors, it is

not uncommon for certain demographic or emotion/behavior

groups to have smaller sample sizes compared to others. For

instance, data about White people is often more abundant

than data about Black people, and data about happiness and

sadness is typically more abundant than data about esteem,

fatigue, and annoyance. Similarly, data across cultural groups

varies significantly. Despite being a current area of research in

AI [338], tackling such inadequacies is particularly complex

in emotion understanding due to its unique characteristics.
6) Efficiency of AI Models: For some applications, emotion

recognition algorithms must be fit onto robots or mobile

devices that are limited by their on-board computing hardware

and battery power. Complex problems that require multiple

AI algorithms and models to work in concert can be difficult

to address in real-time without high-performance GPU/CPU

computing hardware. Therefore, it is crucial to simplify the

mathematical models while maintaining their accuracy.
Machine learning researchers have derived techniques to

simplify the model, including channel pruning techniques. In

an earlier attempt, Ye et al. [339] proposed a method for

accelerating the computations of deep CNNs, which directly

simplify the channel-to-channel computation graph without the

need to perform the computationally difficult and not-always-

useful task of making high-dimensional tensors of CNN

structure sparse. There have been numerous recent studies on

pruning neural networks [340, 341].

C. Fundamental AI Methods
These are some fundamental AI components for creating

an effective human-AI interaction and collaboration system

that can have a significant impact in relevant domains. Simply

increasing the amount of data alone may not be sufficient to

counterbalance the deficiencies in these fundamental areas of

AI. Below we will explore some of these challenges in greater

detail.
1) Decision-Making Based on Complex Information: In

real-world applications, such as mental healthcare, we often

need to incorporate multiple sources of information (e.g.,

nonverbal cues, verbal cues, health record information, ob-

servations over time), and different people may have different

sets of information inputs (e.g., some patients may not have

observations over time whereas others may not have detailed

health records). For example, when a patient with depression

visits a clinic, a combination of behaviors, speech, and health

record information can be used to make informed decisions.

To effectively connect all relevant information, research is

required to develop a comprehensive framework. This funda-

mental area of AI research has the potential to impact many

AI applications.

2) Integrative Computational Models and Simulations for
Understanding Human Communication and Collaboration:
Current research primarily concentrates on analyzing individu-

als, such as deducing an individual’s emotional state from their

behavior. However, emotional expressions play a significant

role in interpersonal communication and collaboration. The

emotional expression of one individual can have a significant

impact on the emotions and behavior of those around them.

Thus, there is a need for the development of integrative com-

putational models and simulations to investigate the emotional

interactions among individuals. As the problem of understand-

ing individual emotions remains unresolved, a comprehensive

approach to study interpersonal emotional interactions must

consider the uncertainties present in individual-level emotion

recognition.

In addition, when robots are integrated into the interaction,

the distinction between human-human and human-robot inter-

actions (HRIs) must be weighed. The external design and be-

havior of robots can vary greatly and offer a much wider range

of possibilities than humans, making it challenging to sample

comprehensively the potential space of robot interactions. For

example, a robot can take on various forms, such as a human,

animal, or a unique entity with its own distinct personality.

Similarly, robots can move in ways that go beyond human or

animal-like motions. whereas research can be conducted with

limitations on specific types of robots, the results may not be

applicable to other forms of robots.

3) Incorporation of Knowledge and Understanding of Cog-
nitive Processes: When humans interpret emotions through

visual media, they rely on their accumulated knowledge and

experience of the world around them. However, the same

behavior can be interpreted differently depending on the con-

text or situation. Data-driven emotion recognition approaches

require vast amounts of training data to be effective, but the

countless possible scenarios and contexts can make obtaining

such data challenging. To address this issue, AI researchers

have been exploring the development of common-sense knowl-

edge representations [342]. Integrating these advances into

an emotion recognition framework is an important area of

research. In addition, cognitive scientists have gained valuable

insights into human cognitive processes through experiments,

and incorporating these findings into the design of a next-

generation emotion recognition system could be key to its

success.

The expression and interpretation of emotions by humans

involve various levels and scales, ranging from basic phys-

iological processes impacting a person’s behavior to socio-

cultural structures that shape their knowledge and actions.

Currently, multilevel and multiscale analyses of emotions are
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a rare occurrence in AI due to the complexity it entails.

4) Prediction of Actions: Most of the current research in the

field focuses on emotion recognition using visual information.

However, for certain human-AI interaction applications, it is

necessary to not only recognize emotions based on past data

but also proactively gather information in real-time and make

predictions about future events. For example, in the event of

a heated argument between two human workers, a robot may

need to move closer to better understand the situation and

based on changes in the behavior of the workers, it may need

to predict any potential danger and take action to resolve the

issue. This might entail alerting others or attempting to redirect

the attention of involved parties. Research is required to

map emotion recognition with appropriate actions, even while

acknowledging the inherent uncertainty involved in the process

of emotion understanding. Such process is more nuanced than

typical scene understanding.

D. Demographics

Unlike many computer vision problems such as object

detection, when it comes to emotion, we simply cannot

ignore the effect of demographics. Emotional responses can

vary greatly among different demographic groups, including

gender, age, race, ethnicity, education, socioeconomic status,

religion, marital status, sexual orientation, health and disability

status, and psychiatric diagnosis. Existing machine learning-

based recognition technologies are not equipped to effectively

handle such a vast array of demographic factors. In the

absence of sound methods for evaluation, our brains tend to

resort to shortcuts that may not be dependable, in order to

conserve energy and navigate difficult situations where solid

judgment is not present. To fill the gap, we often rely on

stereotypes, heuristics, experience, and limited understanding

to gauge emotions in other demographic groups, which may

be unreliable. However, when we design AI systems, such

shortcuts are not acceptable as mistakes made by machines can

have disproportionate negative consequences for individuals

and society as a whole. Addressing the issue of demographics

in automated emotion understanding will likely remain a

persistent challenge in the field.

E. Disentangling Personality, Function, Emotion, and Style

A person’s behavior, captured by imaging or movement

sensors, is a combination of several elements, including

personality, function, emotion, and style. Even if we can

find solutions to the problems we have mentioned earlier,

separating these elements so that emotional expression can

be properly analyzed will remain challenging. For example,

the same punching motion would convey different emotions

in a volleyball game versus during an argument between two

individuals. This single example highlights the need for AI to

first understand the purpose of the movement. For the same

function, with the exact sequence of movements, two persons

with very different personalities and contexts would likely be

expressing different emotions or at least different levels of the

same emotion. Without knowing people’s personality traits, it

will be impossible to pinpoint their emotional state. There is

a need to advance technology to differentiate between these

factors in movements.

While fine-tuning the learned model to a specific person is

possible, it usually requires collecting a substantial amount of

annotated data from that person, which may not be feasible

in practical applications requiring personalization. Further

research is necessary to develop methods for personalizing

emotion-related models with minimal additional data collec-

tion.

F. Partitioning the Space of Emotion

Thus far, technology developers have mostly relied on psy-

chological theories of emotion, including the various models

we discussed. However, these models have limitations that

make them not ideal for AI applications. For example, if a

model used in an AI program has too many components,

the program may struggle to differentiate among them. At

the same time, if the model is too simple with too few

components, the AI may not be able to fully grasp the human

emotion for the intended application. The VAD model offers a

solution to this issue, but it is not suitable for AI applications

for which specific emotions need to be identified. A deeper

understanding of the emotional spectrum in AI will lead to

more effective applications.

In a recent study, Wortman and Wang articulated that the

strongest models needed robust coverage, which meant defin-

ing the minimal core set of emotions from which all others

could be derived [343]. Using techniques from natural lan-

guage processing and statistical clustering, these researchers

showed that a set of 15 discrete emotion categories could

achieve maximum coverage. This finding applies across six

major languages–Arabic, Chinese, English, French, Spanish,

and Russian–they have tested. Categories were identified as

affable, affection, afraid, anger, apathetic, confused, hap-
piness, honest, playful, rejected, sadness, spiteful, strange,

surprised, and unhealthy. A more refined model with 25

categories was also proposed, which included the addition of

accepted, despondent, enthusiasm, exuberant, fearless, frustra-
tion, loathed, reluctant, sarcastic, terrific, and yearning and the

removal of rejected. Through the analysis of two large-scale

emotion recognition datasets, including BoLD, the researchers

confirmed the superiority of their models compared to existing

models [343].

G. Benchmarking Emotion Recognition

Effective benchmarking has been instrumental in driving

advancements in various AI research areas. However, bench-

marking for emotion recognition is a challenging task due to

its unique nature and the obstacles discussed earlier. Below,

we offer insights on how to establish meaningful benchmarks

for the field of emotion recognition, with a specific emphasis

on the relatively new area of BEEU, where benchmarking is

currently lacking.

1) Benchmark Task Types: A suite of tasks should be

devised, including basic tasks such as single-data-type recog-

nition of emotion (based on video only, images only, audio

only, skeleton only, human mesh only), as well as multimodal
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recognition (a combination of video, audio, and text). Emotion

localization, which involves determining the range of frames

in a video that depicts a targeted label, as well as movement

recognition or LMA recognition using video, skeleton, or

human mesh should also be considered. Furthermore, tasks re-

lated to predicting emotion from movement coding and video,

or based on interaction can be developed. With the rich data

across various contexts, natural environments, or situations

(e.g., celebration, disaster, learning), data mining tasks focused

on social interactions, including the comparison between age

groups or the impact of assistive animals on mood, can be

explored. In addition, real-world use-case challenges targeting

specific applications can be utilized to assess algorithms’ broad

applicability and robustness.

2) Testing and Evaluation: In a benchmarking competi-

tion, the performance of participating teams’ algorithms or

systems can be evaluated using various criteria. Along with

standard prediction accuracy based on shared training and

testing datasets and the extent of emotion coverage, a system’s

performance with limited training data and equitable accuracy

across different demographic subgroups, such as gender or

ethnicity, can also be considered. The competition host can

supply training data of varying sizes and required metadata,

allowing participating teams to focus on a specific evalu-

ation criterion and compete against others using the same

standard. This competition format promotes diverse scientific

exploration among participating teams, and collectively, teams

focusing on different standards broaden the scope of models

being investigated, effectively fostering a form of free-style

community collaboration.

3) Verification and Validation: To validate software pack-

ages developed by participating teams in the competition,

winning teams should be required to deposit their packages

on repositories such as GitHub. The competition host should

provide guidelines for verification, including compatibility

with common computing environments, comprehensive doc-

umentation, and clear feedback on the execution status and

reasons for any unexpected termination. To maintain fairness,

true labels for test cases should not be disclosed prior to the

completion of a competition.

Software packages should undergo thorough verification and

validation throughout the entire training and testing pipeline.

The competition host should replicate the training and testing

process provided by each winning team, and the results should

be compared to the claimed results. To streamline the valida-

tion process, subsampling of test cases may be employed.

4) Risk Management: To gauge the robustness of winning

teams’ software packages, they should be asked to provide

results from a set of robustness tests, although during the

competition, the comparison standard should be based on a

single, focused criterion within a relatively straightforward

test framework. Specifically, the impact of variations in fac-

tors such as batch randomization, bootstrapped sampling of

training images, and training data size should be numerically

evaluated.

5) Evaluation Metric: As a person’s emotional state does

not fall exclusively into a single type, to provide a fair evalu-

ation of algorithms developed by the competition participants,

emotions can be characterized by a distribution over a given

set of types, allowing each dataset to be described by different

(and multiple) types and users to select the set that works best

for their methods. Both the ground truth and the output of

emotion recognition algorithms are formatted as distributions

over these types. Suppose there are a total of K emotion

types denoted by e1, e2, ..., eK . Different from a typical

classification problem, there is a more subtle relationship

between these types. Each pair of emotion types has a specified

distance (or similarity) instead of just being different. For

example, the emotions “happy” and “sad” are farther apart

than “happy” and “excited”. As a result, when we compare

two emotion distributions over these types, we want to account

for the underlying distances between emotion types. These

pairwise distances can be estimated from the data based on

how two emotion types co-occur. We can then use Wasserstein

distance [344] to compute the overall distance between the

ground truth and the computer prediction. Other commonly

used distances between distributions such as Lp norm or KL

divergence cannot factor in the underlying distances between

emotion types. Let the distance between ei and ej be ci,j ,

i, j = 1, ...,K. Consider two probability mass functions

over {e1, ..., eK}: p = (p1, ..., pK) and q = (q1, ..., qK).
The Wasserstein distance is defined by an optimal transport

problem [344]. Let W = (wi,j)i,j=1,...,K be a non-negative

matching matrix between p and q. The Wasserstein distance

is:

D(p, q) = min
W

K∑

i=1

K∑

j=1

wi,jci,j

wi,j ≥ 0 , i, j = 1, ...,K
K∑

i=1

wi,j = qj , j = 1, ...,K

K∑

j=1

wi,j = pi , i = 1, ...,K .

VI. BEYOND EMOTION: INTERACTION WITH OTHER

DOMAINS

Emotion, as one of the core components of human-to-human

communication, can play an essential role in an array of

future technological advancements impacting different parts

of society. In this section, we provide an overview of how

visual emotional understanding can be connected with other

research problems, domains, or application areas, including

art and design (Sections VI-A and VI-B), mental health

(Section VI-C), robotics, AI agents, autonomous vehicles,

animation, and gaming (Section VI-D), information systems

(Section VI-E), industrial safety (Section VI-F), and education

(Section VI-G). Instead of attempting to provide exhaustive

coverage, we aim to highlight key intersections. Because some

areas are in their early stages of development, we provide only

a brief discussion of their potential.

A. Emotion and Visual Art

Art often depicts human emotional expressions, conveys the

artist’s feelings, or evokes emotional responses in viewers.



PROCEEDINGS OF THE IEEE, VOL. XX, NO. X, FEBRUARY 2023 34

Except for certain genres in visual art, e.g. Realism, achieving

lifelikeness is usually not the primary goal. Dutch Post-

Impressionist painter Vincent van Gogh wrote, “I want to

paint what I feel, and feel what I paint.” Similarly, fine-art

photographer Ansel Adams stated, “A great photograph is

one that fully expresses what one feels, in the deepest sense,

about what is being photographed.” It is evident that artists

intentionally link visual elements in their works with emotions.

However, the relationship between visual elements in art and

the emotion they evoke is still largely an enigma.

Fig. 18. Automatic brushstroke extraction for Red Cabbages and Onions
(Paris, October-November 1887, oil on canvas, 50.2 cm × 64.3 cm) by Vincent
van Gogh [345]. Painting image courtesy of the Van Gogh Museum, Amster-
dam (Vincent van Gogh Foundation). The brushstroke map was provided by
the James Z. Wang Research Group (The Pennsylvania State University).

Because visual artworks are almost always handcrafted by

an artist and artists often develop unique styles, artworks are

often abstract and difficult to analyze. In 2016, Lu et al.

extended this research on evoked emotion in photographs [46]

to paintings [47]. They acknowledged that using models devel-

oped for photographs on paintings would not be accurate due

to different visual characteristics of the two types of images.

To address this, they created an adaptive learning algorithm

that leveraged labeled photographs and unlabeled paintings to

infer the visual appeal of paintings.
To convey emotion effectively, artists often create and

incorporate certain visual elements that are not commonly

seen in real-world objects or scenes. An example is van

Gogh’s highly rhythmic brushstroke style, which has been

shown by computer vision researchers Li et al. to be one

of the key characteristic differences between him and his

contemporaries [345] (Fig. 18). In fact, van Gogh took piano

lessons in the period 1883-1885 and in the middle of his

painting career. He wrote to his younger brother Theo toward

the latter part of his career in 1888, “......this bloody mistral

is a real nuisance for doing brushstrokes that hold together

and intertwine well, with feeling, like a piece of music played

with emotion.” The study by Li et al. [345] highlights the

importance of designing algorithms specifically to answer

the art-historical question at hand rather than using existing

computer vision algorithms meant for analyzing real-world

scenes.
Because artwork is the crystallization of the creativity and

imagination of artists, studying artwork using computers and

modern AI has the potential to reveal new perspectives on

the connection between visual characteristics and emotion.

Artists often incorporate exaggerated visual expressions such

as carefully designed color palettes, tonal contrasts, brush-

stroke texture, and elegant curves. These features have inspired

computer scientists to create new algorithms for analyzing

visual content. For instance, Yao et al. developed a color

triplet analysis algorithm to predict the aesthetic quality of

photographs, drawing inspiration from artists’ use of limited

color palettes [346]. Li et al. created an algorithm for tonal

adjustments based on the visual art concept of “Notan” which

captures the dark and light arrangement of masses [347].

Motivated by the use of explicit and implicit triangles in

artworks, He et al. and Zhou et al. developed algorithms

to identify triangles in images, which can assist portrait and

landscape photographers with composition [348, 349].

Current techniques for understanding emotion are not yet

capable of analyzing certain aspects of emotion expressed in

artwork, particularly at the level of composition or abstraction.

For example, when emotions are conveyed through subtle

interactions between people, the correspondence between low-

level features we can extract and the emotions they represent

cannot be easily established. American Impressionist painter

Mary Cassatt’s work, for example, depicts the love bond

between a mother and child through composition, pose, and

brushstrokes, rather than through clear facial expressions.

Similarly, American Modernist artist Georgia O’Keeffe used

dramatic colors, elegant curves, and creative, abstract compo-

sition in her paintings of enlarged flowers and landscapes to

convey feelings. She stated, “I had to create an equivalent for

what I felt about what I was looking at – not copy it.” There

is still much to be discovered by technology researchers in

terms of the systematic connection between visual elements

in abstract artwork and the emotions they convey.

B. Emotion and Design

Emotion plays a key role in product design, whether it

be for physical or virtual products. Cognitive scientist D.

A. Norman was a pioneer in the study of emotional de-

sign [350]. A successful design should evoke positive emotions

in users/customers, such as excitement and a sense of pride

and identity. In physical products, from a bottle of water to

a house, designers carefully select visual elements, such as

round corners, simple shapes, and elegant curves, to evoke

positive emotions in customers. Similarly, designers of Web-

sites, mobile apps, and other digital products and services

use harmonious color schemes, simple and clean layouts, and

emotion-provoking photographs to create a positive emotional

impact on viewers or users.

By advancing evoked emotion prediction, future design-

ers can be assisted by computers in multiple ways. First,

computers can assess the evoked emotion of a draft design,

based on models learned from large, annotated datasets. For

example, a Website designer can ask the computer to rate a

sample screenshot, identify areas for improvement, and pro-

vide advice on how to improve it. To develop this capability,

however, researchers need to gain a better understanding of

how demographics affect emotion. Certain design elements,

e.g. color, may evoke different feelings in different cultures.

A system trained with a general population may perform

poorly for certain demographic groups. Second, computers

can provide designers with design options that not only
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meet customer needs but also evoke a specific emotion. For

example, deep learning and generative adversarial networks

(GANs) can already do the former task. If an additional

emotion understanding component can be used to assess the

design options generated and provide feedback to the system,

the resulting designs can then evoke a desired emotion.

C. Emotion and Mental Health

Many mental health disorders can be considered disorders of

emotion and emotion regulation [351]. This is because mental

health disorders often entail extremes of chronic self-reported

distress, sadness, anxiety, or lack of emotions such as flat

affect and numbness as well as extremes in fluctuation of emo-

tions [352]. For example, anxiety disorders are instances of

being in an ongoing state of the fight or flight response, often

viewing danger where none exists and therefore reacting as

though the danger is constantly present and/or overreacting to

ambiguous information. Emotion-related symptoms of anxiety

disorders include panic attacks, fear, feelings of impending

danger, agitation, excessive anxiety, feeling on edge, irritabil-

ity, and restlessness [352]. Major depressive disorder has been

conceptualized as a disorder of sustained negative affect, par-

ticularly sadness, and low levels of positive affect [353, 354].

Emotion-related symptoms of major depression include feeling

sad or down most of the day nearly every day for at least two

weeks and can also include an abundance of guilt, agitation,

excessive crying, irritability, anxiety, apathy, hopelessness, loss

of interest or pleasure in activities, mood swings, and feelings

of restlessness. Similarly, bipolar disorder can include mood

swings, elevated sadness, anger, anxiety, apathy, apprehension,

euphoria, general discontent, guilt, hopelessness, loss of in-

terest or pleasure, irritability, aggression, and agitation [352].

Extreme mood swings are also a prominent feature for some

personality disorders such as borderline personality disorder,

which also entails intense depressed mood, irritability or

anxiety lasting a few hours to a few days, chronic feelings

of emptiness, intense or uncontrollable anger, shame, and

guilt [352]. Schizophrenia is associated with symptoms that

are associated with mood. Positive symptoms can include

delusions or paranoia, feeling anxious, agitated, or tense, and

being jumpy or catatonic. Negative symptoms can include lack

of interest or enthusiasm, lack of drive, and being emotionally

flat [352]. Because extreme emotions are associated with

these disorders researchers have examined ways to identify

important distinctive features of them from videos.

Such studies have examined ways to use machine learning

to code videos for nonverbal behaviors from facial expres-

sions, body posture, gestures, voice analysis, and motoric

functioning to diagnose mental health problems. In terms

of facial expressions, studies have found that people with

major depression, bipolar disorder, and schizophrenia demon-

strated less facial expressivity compared to individuals with-

out these disorders [355, 356, 357]. Depressed compared to

non-depressed individuals also evidenced shorter durations

and lower frequency of smiling behavior, less looking at an

interviewer, and less eyebrow movement [358, 359, 360].

Such differences have been used to discriminate depressed

from nondepressed individuals [361, 362, 363, 364, 365, 366]

Studies have similarly diagnosed differential facial movement

features of people with disorders such as autism spectrum

disorder [367], posttraumatic stress disorder, and generalized

anxiety disorder from healthy controls [368]. Similar to fa-

cial emotion, studies have used linguistic and voice emotion

analysis to detect disorders such as depression, schizophrenia,

bipolar disorder, posttraumatic stress disorder, and anxiety

disorders [369, 370, 371].

As with facial actions, gestures and body movement have

also been examined. In terms of gestures, those with de-

pression showed more self-touching than those without de-

pression [358, 360, 372]. Compared to schizophrenic indi-

viduals, those with depression tended to make fewer hand

gestures [358]. Bipolar and depressed people also showed less

gross motor activity than those without these disorders [360].

However, depressed and bipolar individuals showed more

gross motor activity than people with schizophrenia [360]. At

the same time, patients with schizophrenia demonstrated fewer

hand gestures [373], fewer small and large head movements,

and shorter duration of eye contact compared to those with

depression [358, 360, 374]. Additional studies have detected

attention deficit hyperactivity disorder from gestures and body

movements [367]. Such differences have been used to diagnose

mental health problems [375, 376]. See Table VII for more

details about differentiating clinical disorders from healthy

controls.

Gait, balance, and posture have also been used to identify

mental health problems. For example, one meta-analysis sum-

marized 33 studies of gait and balance in depression [474].

Depressed individuals had worse and more slumped pos-

ture [397, 395, 475, 393] and more postural instability and

control [399]. In terms of gait, compared to healthy controls,

those with depression took shorter strides, lifted their legs in an

upward as opposed to a forward motion [391, 390], had more

body sway, and walked more slowly, possibly to maintain their

balance [393, 390, 401, 392]. These results are consistent with

psychomotor retardation, a common symptom of depression.

In terms of anxiety disorders, a study showed that these indi-

viduals walked more slowly, took shorter steps, and demon-

strated problems with balance and mobility [463, 476]. Studies

have also used gait to identify bipolar disorder [477], autism

spectrum disorders [367], and attention deficit hyperactivity

disorder [367].

In addition to mental health problems being disorders of

emotional expression and experience, mental health problems

can also be considered to be disorders of emotion recognition

and understanding leading to social deficits. Understanding

one’s own and others’ emotion has been termed theory of

mind. Tests for theory of mind can include either identifying

emotions by looking at images of faces with various emotional

expressions (sometimes with parts of the faces obstructed), or

watching a video of an interpersonal interaction and answering

questions about various people’s emotions and intentions.

Having difficulties of theory of mind has been associated with

depression [403, 404], social anxiety disorder [478], obsessive-

compulsive disorder [479], schizophrenia [404, 480], bipolar

disorder [404, 481], and autism spectrum disorders [473]. For
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TABLE VII
DISTINCT EMOTION-RELATED NONVERBAL BEHAVIORS IN MENTAL HEALTH DISORDERS COMPARED TO HEALTHY CONTROLS.

Major Depressive Disorder
• Reduced facial expressivity [355, 356] • Reduced variability of head movements [377, 378]
• Less eyebrow movements [379, 358, 380, 381] • More nonspecific gaze patterns [382]
• Looking-down behaviors [382] • Less eye contact with another person [358]
• Reduced hand gestures [379, 381] • Less smiling [379, 358, 380, 383, 381, 360, 359]
• More self-touching [358, 383, 381, 360] • Slower voice [384]
• Reduced rate of speech [384] • More monotonic voice [385, 386, 369, 387]
• Reduced speech [384] • Reduced pitch range [384]
• Slower movements or abnormal postures [388, 372] • Reduced gross motor activity [379, 389, 360]
• Reduced stride length and upward lifting motion of legs [390, 391] • Slower Gait speed [392, 390, 393]
• Arm swing and vertical head movements while walking [393] • Lateral upper body sway while walking [393]
• Slumped posture [394, 393, 395] • Forward inclination of head and shoulders [396, 397]
• Balance difficulties during motor and cognitive tasks [398, 399, 393, 400, 401]
• Impaired balance and lower gait velocity [390, 394, 393, 402] • Difficulty recognizing emotions [403, 404]

Bipolar Disorder
• Reduced levels of facial expressivity [405] • Greater speech tonality [406, 407, 408]
• Less gross motor activity [360]
• More frequent and longer speech pauses when in depressive states [406, 409]
• More postural sway [410] • Difficulty recognizing emotions [411, 412]

Schizophrenia
• Reduced facial expressivity [413, 355, 356, 414] • Less upper facial movement expressing positive emotion [356, 415, 416]
• Less smiling [358, 417, 418]
• Reduced smiling eye gaze and head tilting associated with negative symptoms [419, 420]
• Fewer hand gestures when speaking [373, 421, 419, 422, 420] • Fewer gestures and poses [421]
• Less head nodding [373, 419] • Less head movement [374, 358]
• Lower total time talking [423, 424, 371] • Slower rate of speech [425, 426]
• Longer speech pauses [423, 424, 371, 427] • More pauses [371]
• Flat affect [371] • Forward head posture and lower spine curvature [428]
• Balance difficulties and increased postural sway, [429, 430, 431, 432] • Difficulty walking in a straight line [433, 434]
• Slower velocity of walking and shorter strides [435] • Difficulty recognizing emotions [411, 412, 436]

Anxiety Disorders
• Less eye contact [437, 438, 439] • Instability of gaze direction [440]
• Grimacing [437] • Nonsymmetrical lip deformations [441]
• Strained face [442] • Eyelid twitching [442]
• Smiled less, [438] • More frequent and faster head movements [443, 444, 445]
• More and faster blinking [443, 446, 447, 448] • Nodded less [438]
• Small rapid head movements [446] • Made fewer gestures [438]
• More physical movements indicative of nervousness (e.g., bouncing their knees, fidgety, reposuring [449, 450, 451, 452, 453, 438]
• Self touching [449] • Speech errors [454]
• Speech dysfluency [437] • More jittery voice [455, 456]
• Slow gait velocity associated with fear of falling [457, 458, 459] • Balance dysfunction [460, 461, 462, 463, 464]
• Slower speed walking [463] • Shorter steps [463]
• Enhanced recognition of anxiety [465, 466]

Posttraumatic Stress Disorder
• Monotonous slower flatter speech [369, 467, 468, 469] • Reduced facial emotion [470]
• More anger, aggression, hostility, less joy [471, 470]

Autism Spectrum Disorder
• Distinctions in gait [472] • Difficulty recognizing emotions [473]

example, both schizophrenic and bipolar patients showed emo-

tional reactivity that was discordant to emotional videos [357].

Studies have also examined videotapes of facial emotional

reactions to emotionally evocative videos as a means of

diagnosing mental health problems. For example, using this

technique, those with autism spectrum disorders demonstrated

impairment in their ability to recognize emotions from body

gestures [482, 483]. Thus, emotion regulation, emotional un-

derstanding, and emotional reactivity can be impaired in those

with mental health problems. Such impairment, however, can

be used to create systems to automatically detect the presence

of these emotional disorders. See Table VII for more details.

D. Emotion and Robotics, AI Agents, Autonomous Vehicles,
Animation, and Gaming

A natural application domain for emotion understanding

is robotics and AI. In science fiction films, robots and AI

agents are often depicted as having a high level of EQ, such

as R2-D2, T-800, and Wall-E. They are able to understand

human emotion, effectively communicate their own emotional

feelings, engage in emotional exchanges with other robots or

humans, take appropriate actions in challenging situations or

conflicts, and so on. The idea of empowering robots and AI

with this level of EQ is widely seen as a desirable and ultimate

goal, or a “Holy Grail.”
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Some recent surveys studied the field of robotics and

emotion [484, 485, 486], covering topics such as advanced

sensors, latest modeling methods, and techniques for perform-

ing emotional actions. Research in the fields of HRI, human-

machine interaction (HMI), and human-AI interaction is highly

relevant. However, because BEEU is in its infancy and is

considered a bottleneck technology, we have yet to see its

applications in robotics.

If we can effectively model human emotions through both

facial and bodily expressions, robots can work more effectively

with human counterparts. Humans would be able to communi-

cate with robots in a way similar to how emotions are used in

human-to-human communication. For example, when human

workers in a warehouse want to stop a fast-moving robot, they

could wave their hands swiftly to signal distress. Similarly,

pedestrians could wave their hands to signal to a self-driving

vehicle on a highway that there is an accident ahead, and

cars should slow down to avoid a collision. In such situations,

traditional forms of communication such as speech and facial

expressions may not effectively convey a sense of urgency.

Effective emotional communication can help us understand

the intention of robots or AI. For instance, emotionless robots

can be perceived as unfriendly or unsympathetic. In certain

robotic or AI applications, such as companion robots or

assistive robots, it is desirable to project a compassionate and

supportive image to establish trust and cooperation between

the device and humans interacting with it. Researchers have

begun to investigate the relationship among robotics, person-

ality, and motion [487].

In animated films, robots can display emotional behaviors,

but these are often created by recording the movements of

human actors through MoCap. That is, the animated characters

mimic the movements of the actors behind the scenes. How-

ever, the capacity for computers to comprehend emotions akin

to human perception could enable animated characters to use

an emotion synthesis engine to autonomously generate authen-

tic emotional behaviors. Advancements in computer graphics,

virtual reality, and deep learning techniques including GANs,

transformers, diffusion models, and contrastive learning have

facilitated the creation of increasingly realistic and dynamic

visual content. These technologies potentially enable the syn-

thesis of complex and nuanced emotional displays.

Emotion understanding can substantially enhance the gam-

ing experience by making games more emotionally responsive

and immersive, as well as by providing personalized feedback

to players. Game designers can make design decisions that

enhance a player’s experience based on the player’s frustration

level. If players are feeling sad, the game could offer them

a story-based scenario that is more emotionally uplifting. By

providing meaningful feedback, players are more likely to stay

engaged with the game, improving their overall experience.

E. Emotion and Information Systems

Emotion understanding can play a pivotal role in advancing

information systems. Currently, when searching for visual

content in online collections, we primarily rely on keyword-

based metadata. Whereas recent developments in deep learning

have enabled information systems to search using machine-

generated annotations, these annotations are typically limited

to identifying objects and relationships (e.g. a boy in a yellow

shirt playing soccer).

Fig. 19. Two scenes included in the computer-generated trailer for the sci-
fi thriller “Morgan” [488]. The computer program considered these scenes
most suited to give viewers a sense of horror or thrill. The copyright of these
movie frames belongs to 20th Century Fox. They are used here for illustrating
a scientific concept only.

IBM scientists demonstrated that computers with the ability

to understand emotions could aid in sorting through a large

amount of visual content and composing emotion-stimulating

visual summaries [488]. In 1996, they created the first com-

puter system for generating movie trailers. The trailer it

produced for the 20th Century Fox sci-fi thriller “Morgan” was

released as the official trailer. The system identified the top

ten moments for inclusion in the trailer (Fig. 19). This work

represents a significant milestone in understanding evoked

emotions.

IBM’s program is likely to be the starting point for a surge

of emotion-based information systems. We can expect to see

new applications such as evoked emotion assessment sys-

tems, emotion-based recommender systems, emotion-driven

photo/video editing software, emotion-based media summa-

rization/synopsizing services, and so on.

F. Emotion and Industrial Safety

Emotion understanding can be useful in promoting safety in

workplaces such as factories and warehouses. It can provide

early warnings of potential safety risks, such as worker fatigue

or stress, allowing managers to take proactive measures to

address the situation. Such capabilities can also provide per-

sonalized support and resources to workers who are experienc-

ing emotional distress, improving overall emotional well-being

and contributing to a safer work environment. The National

Safety Council estimates that fatigue costs employers over

$130 billion annually in lost productivity, and over 70 million

Americans have sleep disorders [489]. Existing research on

fatigue detection typically involves specialized sensors or

vision systems that monitor the face or eyes [490, 491, 492,

493, 494, 495, 496]. However, sensor-based approaches have

limitations such as the need to wear them, size, cost, and

reliability. Thus, there is a need to develop recognition systems

that use body movement to enhance such systems [490, 497].

G. Emotion and Education

Emotion recognition technology can help create a more en-

gaging and effective learning experience for online education.

Many universities have been offering online courses for years,

but the COVID-19 pandemic led to widespread adoption of

online teaching using video conferencing platforms in 2020
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and 2021. Even as in-person instruction has resumed, many

educational institutions continue to conduct some of their

teaching activities online. For example, instructors may be

allowed to teach a portion of their classes online for pedagog-

ical or emergency reasons or to hold office hours online. In a

traditional classroom setting, instructors can gauge students’

attentiveness and emotional states by observing their facial and

bodily expressions. Such feedback can help instructors better

understand and respond to students’ needs, e.g., by adjusting

the pace of instruction or covering alternative materials. How-

ever, in an online teaching environment, instructors often can

only see the faces of a small number of students, which does

not provide real-time feedback on the instruction. Potentially,

if an online teaching platform could dynamically monitor the

students and provide aggregated feedback (e.g., the percentage

of students with high attentiveness, the overall mood of the

class) to the instructor, the quality of online learning could be

improved. To protect students’ privacy, the monitoring process

should only produce overall statistics.

VII. EMOTION AND SOCIETY: ETHICS

New technologies often bring new ethical concerns. In the

field of emotion understanding, we have begun to witness the

potential misuse of these technologies. In this section, we will

discuss some of the general ethical issues surrounding the

development and deployment of these technologies.

1) Generalizability: Because the emotion space is complex,

it is important to recognize that there will always be outliers or

unusual situations (e.g., an otherworldly scene, or an eccentric

behavior) that may not be captured by our models. Without

proper consideration of demographic differences and individ-

ual variations, these technologies may only provide a broad

overview of the general population. To be truly beneficial,

the system must be carefully tailored to specific needs of

an individual. Likewise, diversity of representation in sample

datasets is critical to ensure that algorithms emerging from

them are inclusive.

2) Verification of Accuracy or Performance: It is important

for researchers to keep in mind that there is almost always
a lack of ground truth in emotion understanding. We have

discussed the impact on data collection, modeling, and eval-

uation/benchmarking earlier (Sections III-B, V-B, and V-G).

For AI models, it is imperative that both the output, design,

and training processes are transparent and auditable. Black-box

models can become uncontrollable if not properly monitored.

3) Privacy – Data Collection: The collection of human

behavior data, including facial, body, and vocal information,

raises privacy concerns. Research involving sensitive popu-

lations, such as patients in psychological clinics, must be

conducted with utmost care. Further, almost all emotion-

related annotations must be collected from humans. To protect

human subjects, research protocols must be carefully designed

to collect only necessary information, de-identify before dis-

tribution, and protect the data with proper access control and

encryption. All protocols must be reviewed by an Institutional

Review Board.

4) Privacy – Use of Technology.: In today’s automated

world, people are losing their privacy to whoever controls

data: Governments and companies are collecting data about

where we are at any given moment; our financial transactions

are followed and verified; companies are collecting data about

our purchases, preferences, and social networks; most public

places are constantly videotaped; and so on. People must

sacrifice privacy to live a normal life because everything

is computerized. We are being followed, and “Big brother”

knows all about us. The only thing we can still keep to

ourselves is our thoughts and emotions.

Once AI reaches high-accuracy automatic emotion recog-

nition, our emotions will not be private anymore, and videos

of our movements could be used against us by authorities or

whoever will have videos of our movements. This situation

could become very frightening. Moreover, if we want to hide

our emotions, we will have to move in a way that will not

reveal them, like using a “Poker face” to hide facial expres-

sions. However, because specific movements not only express

associated emotions but also enhance those emotions [115],

moving in ways that flatten emotional expressions can also

flatten the felt emotions, and living in such a way can lead to

depression or other mental health problems.

5) Synthesized Affective Behavior: As much as its potential

use in entertainment, success in emotion modeling could

inevitably lead to even more lifelike deepfakes and similar

abuses. As a society, instead of being fearful of the negative

impact of new, beneficial technologies, we need to take on the

challenge of detecting fakes, much as we recognize scammers,

and mitigating the harm.

6) Lower the Risks.: To mitigate the risks of misuse,

proactive measures must be taken. It is essential that laws

and regulations are established to keep pace with the rapid

development of AEI technologies. As researchers, we have

a responsibility to involve affected communities, particularly

those that are traditionally marginalized such as minority

groups, elderly individuals, and mental health patients, in

design, development, and deployment processes to ensure that

these individuals’ perspectives and needs are recognized and

valued.

7) Performance Criteria: To promote a responsible and

ethical expansion of the field, it is crucial to establish reliable

mechanisms for comparing the predictions of different algo-

rithms and learning procedures. As discussed in Section V-G,

a thorough evaluation of algorithms should not only consider

accuracy and speed but also factors such as interpretability,

demographic representation, context coverage, emotion space

coverage, and personalization capabilities.

VIII. CONCLUSION

We provided an overview of the stimulating and exponen-

tially growing field of visual emotion understanding. Adopting

a multidisciplinary approach, we discussed the foundational

principles guiding technological progress, reviewed recent in-

novations and system development, identified open challenges,

and highlighted potential intersections with other fields. Our

objective was to provide a comprehensive introduction to
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this vast field sufficient to intrigue researchers across related

IEEE subcommunities and to inspire continued research and

development towards realizing the field’s immense potential.

Given the multidisciplinary nature of this field, which en-

compasses multiple technical fields, psychology, and art, the

barrier to entry can be considerable. Our aim is to provide

researchers and developers with the essential knowledge re-

quired to tackle the numerous attractive open problems in the

field. Interested readers are encouraged to delve deeper into

the cited references for a more profound understanding of the

topics discussed.

As active researchers in this domain, we strongly recom-

mend that those interested in pursuing this research topic

collaborate with others possessing complementary expertise.

Although we anticipate the development and sharing of

more large-scale datasets and continuous incremental progress,

transformative solutions will not arise solely from straight

application of data-driven approaches. Instead, sustained col-

laboration among researchers in computational, social and

behavioral, and machine learning and statistical modeling

fields will likely lead to lasting contributions to this intricate

research field.
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[480] M. Brüne, ““theory of mind” in schizophrenia: A review of the literature,”
Schizophrenia Bulletin, vol. 31, no. 1, pp. 21–42, 2005.

[481] C. Montag, A. Ehrlich, K. Neuhaus, I. Dziobek, H. R. Heekeren, A. Heinz, and
J. Gallinat, “Theory of mind impairments in euthymic bipolar patients,” J. Affective
Disorders, vol. 123, no. 1-3, pp. 264–269, 2010.

[482] A. P. Atkinson, “Impaired recognition of emotions from body movements is asso-
ciated with elevated motion coherence thresholds in autism spectrum disorders,”
Neuropsychologia, vol. 47, no. 13, pp. 3023–3029, 2009.

[483] S. K. Jarraya, M. Masmoudi, and M. Hammami, “A comparative study of
autistic children emotion recognition based on spatio-temporal and deep analysis
of facial expressions features during a meltdown crisis,” Multimedia Tools and
Applications, vol. 80, no. 1, pp. 83–125, 2021.

[484] R. Savery and G. Weinberg, “Robots and emotion: A survey of trends, clas-
sifications, and forms of interaction,” Advanced Robotics, vol. 35, no. 17, pp.
1030–1042, 2021.

[485] F. Cavallo, F. Semeraro, L. Fiorini, G. Magyar, P. Sinčák, and P. Dario, “Emotion
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