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Many people are interested in taking astonishing photos and sharing them with others. Emerging high-
tech hardware and software facilitate the ubiquitousness and functionality of digital photography. Because
composition matters in photography, researchers have leveraged some common composition techniques, such
as the rule of thirds and the perspective-related techniques, in providing photo-taking assistance. However,
composition techniques developed by professionals are far more diverse than well-documented techniques
can cover. We present a new approach to leverage the underexplored photography ideas, which are virtually
unlimited, diverse, and correlated. We propose a comprehensive fork-join framework, named CAPTAIN
(Composition Assistance for Photo Taking), to guide a photographer with a variety of photography ideas. The
framework consists of a few components: integrated object detection, photo genre classification, artistic pose
clustering, and personalized aesthetics-aware image retrieval. CAPTAIN is backed by a large managed dataset
crawled from a Website with ideas from photography enthusiasts and professionals. The work proposes
steps to decompose a given amateurish shot into composition ingredients and compose them to bring the
photographer a list of useful and related ideas. The work addresses personal preferences for composition by
presenting a user-specified preference list of photography ideas. We have conducted many experiments on
the newly proposed components and reported findings. A user study demonstrates that the work is useful to
those taking photos.

CCS Concepts: « Computer Vision — Computational photography; « Applied computing — Arts and
humanities; « Computing methodologies — Object detection.

Additional Key Words and Phrases: image aesthetics, deep learning, image retrieval, recommender system
1 INTRODUCTION

Digital photography is of great interest to many people, regardless of whether they are profes-
sionals or amateurs. It has been estimated that over a billion photos are taken every year and they
are primarily taken with smartphones. People on social networks often share their photos with
their friends. Smartphones’ increasing computing power and ability to connect to more powerful
computing platforms via the network make them potentially useful as a composition assistant to
amateur photographers. Major smartphone manufacturers have started to introduce on-device
photo enhancement capabilities.

Emerging technologies, including artificial intelligence (AI)-chips and Al-aware mobile appli-
cations, provide more opportunities for composition assistance. Taking stunning photos often
needs expertise and experience at a level that professional photographers have. Like in other
visual arts, a lack of a common alphabet similar to music notes or mathematical equations makes
transferring knowledge in photography difficult. To many amateurs, as a result, photography is
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Fig. 1: Sample photos retrieved from the dataset based on the photo category and/or subject gender.
Each retrieved result shows a collection of photography ideas that can be used by an amateur to
compose photos for a given situation.

mysterious, and gaining skills is neither easy nor quick. Nonetheless, many people are fascinated
about professional-quality photos and desire to have the ability to create similar-quality photos
themselves for the scenes or events they are interested in. Because aesthetics in photography is
strongly linked to human creativity, it is daunting for an Al to compose photographs at a given
scene or a given studio setup that can impress people in a way professional photographers do. We
attempt to connect human creativity as demonstrated through their creative works with AL

Aesthetics and composition in photography have been heuristically explored as a collection of
rules or principles such as balance, geometry, symmetry, the rule of thirds, and framing [29, 67]. It
is well known that professional photographers take a large number of pictures, and through their
practice, they gain experience and knowledge which in turn enable them to be creative [28]. Some
composition rules or principles have been well articulated and many amateurs make use of them
in their photo taking. However, the set of known principles can hardly cover the creativity and
experience of thousands of photographers around the world. There is no unique photography idea
for a given situation, and people have different opinions on those ideas depending on their cultural
background, gender, age, experience, and emotional state. As a result, if the aesthetic quality of
photos is quantified by one number, it can only emulate the average opinion of the general public,
which may or may not be useful for a particular person.

It would be helpful if an AI can help people explore places [52] and select photography ideas
from thousands of professional-quality photos for a given scene. The key technical difficulties
for accomplishing this goal are (1) finding a suitable mapping between an amateurish photo of a
scene and underlying professional-quality photography ideas, (2) handling a virtually unlimited
number of photography ideas of a scene, and (3) providing meaningful and intuitive in-situ assis-
tance to the photographer based on personal preference. Using a data-driven approach through
recommendations from a large professional-quality dataset, our work tackles these challenges.

The multimedia and computer vision communities have been leveraging some of the photog-
raphy composition principles for aesthetics assessment [14, 25, 38, 41, 70]. Other approaches
manipulate the photo to comply with artistic rules, and they are referred to as auto-composition
or re-composition. The techniques include smart cropping [45, 59, 72], warping [8, 35], patch
re-arrangement [2, 12, 46], cutting and pasting [4, 75], and seam carving [18, 33]. However, they do
not help an amateur photographer capture a more impressive photo to begin with. The arrangement
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Fig. 2: The flowchart of our composition assistance framework: Blue, black and red flows show
the user settings, indexing, and searching flows respectively. The decomposition box extracts the
aesthetics-aware features and computes the composition model. The composition box retrieves
well-composed images from our dataset for user-specified preferences.

of dark and light masses, which is known as “Notan” in visual art, has been used for composition
analysis [32]. More recently, perspective-related techniques [78], the triangle technique [20], and
portrait composition technique [17] have also been exploited.

We investigate a holistic framework for helping people take a better shot with regard to their
current photography location and need. The framework addresses the differences in preferences
of the users by adjusting the ranking process used to retrieve recommendation photos. After
getting the first shot from the camera, our framework provides highly-scored related photos as
pre-composed “recipes” (i.e. photography ideas) for the user to consider. As an example, regarding
personalized criteria (such as photo category and subject gender), Figure 1 shows sample results
retrieved from the photo dataset. These photos illustrate various locations, scenes, and categories.
One can argue that while photos in the same row have the same category or gender, each photo has
a photography idea(s) that is different from those used in other photos of the same row. For example,
in the 2nd photo from the left in the 1st row, the subject using rule-of-thirds emphasizes the region
of interest, and in the 2nd and 3rd photos from the right in the same row, the subjects cross their
legs and bend one of the knees to form a triangle in the resulting photo. As mentioned before, the
rule-of-thirds and triangle techniques are popular techniques used by professionals. Also, they may
use one technique, but the way they use them is different, forming different photography ideas.

To address the complexity of transferring photography idea(s) to a user, we break down the
scene that the user wants to take a photo from into composition primitives and then build them
up for a better composed shot using professional-quality photos from the dataset with similar
composition primitives. To accommodate the user’s individual preferences, we perform personalized
aesthetics-aware image retrieval (PAIR). Figure 2 shows the flowchart of our approach for assisting
photographers in taking an improved photo. Based on the first query shot, highly-rated photos are
retrieved from the collected dataset using the user-specified preferences (USP) and our composition
model (CM). The main contributions of our work are as follows:

e We propose a new fork-join framework that understands the mapping between a photo and
its potential underlying photography idea(s) through decomposing the taken photo into
aesthetics/composition-related ingredients (Section 4) and followed by composing those ingre-
dients to show recommended ideas to the photographer (Section 5). The framework leverages
virtually unlimited number of photography ideas from professional-quality photographs.
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e We design the decomposition step to extract composition primitives of a query shot using
various detectors including the newly developed integrated object detector (IOD) (Section 4.1),
category detector (CaDe) (Section 4.2), and our proposed artistic pose detector (ArPose)
(Section 4.3). The IOD consists of a collection of performance-enhanced detectors including
an object detector, a pose estimator, and a scene parser. The integration of them substantially
boosts the detection accuracy by the proposed hysteresis fusion (Section 4.1.2). The CaDe
has top-down decisive hierarchical clustering (Section 4.2.1) and multi-class categorization to
leverage genre information (Section 4.2.2). The ArPose performs pose clustering (Section 4.3.1)
to extract pose information using joint to line distance and skeleton context features.

e We address the complexity of transferring photography knowledge, caused by existence of
abundant, diverse, and correlated photography ideas of a scene, by providing personalized
meaningful and useful feedback to photographers. We design the composition step to get a
similarity score (Section 5.1) and perform personalized aesthetics-aware retrieval (Section 5.2).

e In our framework, we manage a dataset containing 500K+ photos where 200K+ of them
are highly rated covering a large number of photography ideas (Section 3) for training and
retrieval. Using this dataset, we accommodate users’ needs for composition, by showing a
ranked list of photos based on user-specified preferences (USP).

2 RELATED WORK

While our approach to maximize photography idea coverage is novel, the work is closely related to
the existing literature in aesthetic quality assessment, re-composition techniques, and composition
rule-based feedback systems.

Aesthetic Quality Assessment: Basic image aesthetics and composition rules in visual art [28, 29,
67], including geometry, color palette, and the rule of thirds, have first been studied computationally
by Datta et al. [14] and Ke et al. [25] as visual aesthetic features. Luo et al. [38], and Wong and
Low [70] attempted to leverage a saliency map method, and considered the features of the salient
parts because more appealing parts of an image often reside in the prominent region. Marchesotti
et al. [41] showed that generic image descriptors were useful to assess image aesthetics, and built
a generic dataset for composition assessment - the Aesthetic Visual Analysis (AVA) dataset [43].
Deep learning-based approaches [27, 36, 37, 40, 66] exploit customized architectures to train image
aesthetic-quality models with annotated datasets, and the outcome is an estimation for actual
(average) or personalized [55] aesthetic rating of an image.

Image Re-Composition: Auto-composition systems [3, 4] actively manipulate and then re-
compose the taken photo for a better view. Cropping techniques [60, 62, 63, 69] separate the
region of interest (ROI) with the help of a saliency map, an eye fixation, basic aesthetic rules
[75], or visual aesthetics features in the salient region [45, 59, 72]. Warping [35] is another type
of re-composition that represents an image as a triangular or quad mesh, to map the image into
another mesh while keeping the semantics and perspective unchanged. Also, R2P [8] detects the
foreground part in the reference image. Then, it re-targets the salient part of the image to the
best-fitted position using a graph-based algorithm. Furthermore, patch re-arrangement techniques
mend two ROIs in an image together. Pure patch rearrangements [2, 12, 46] detect a group of pixels
on the border of the patch and match this group to the other vertical or horizontal group of pixels
near the patched area. Also, cut-and-paste methods [4, 75] remove the salient part and re-paint the
foreground with respect to the salient part and the borders, and then paste it to the desired position
in the image. Another auto-composition system, seam carving [18, 33], replaces useless seams.

On-site Feedback Systems: An aesthetic assessor may find a metric to evaluate the aesthetic
quality of an image, but the way it conveys this assessment to take a better photo is also crucial. In [9]
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the authors search for views within a scene and retrieve a better crop relying on known structural
features and visual saliency of professional photographs. There exist prior works that use the meta-
data information (such as geo-location, weather, and time), and recommend a better position in the
frame for standing people [44, 68], camera state guidance [50, 74], or quality and uniqueness-aware
view cells [51] where their dataset contains known landmark photos. Combining the spring-electric
graph model with color energy from visual arts, Rawat et al. [53] use visual balance as an image
aesthetic factor to recommend social group position in a scene. An on-site aesthetics feedback
system [32] retrieves similar images with known composition rules as qualitative feedback. But
giving such feedback may be unrelated or unrealistic to the user, and the retrieved results may not
be aesthetically useful to a photographer. More recently a perspective-related technique [78] and
a triangle technique [20] retrieve similar photos to a query photo having perspective or triangle.
Compared to the previous work in [17], we use a much broader dataset in terms of the size (about
twice), diversity (portrait and landscape), quality (higher rating photos) of the dataset (Sections 3
and 6.1). Further, we implemented novel object detectors in Sections 4.1 and 6.2, novel category
detection (Sections 4.2 and 6.2.5), novel artistic pose clustering (Sections 4.3 and 6.2.6). We also
employed a novel integration of detectors (hysteresis fusion) in Sections 4.1.2 and 6.2.4, new
decomposition and composition models with a faster retrieval system for user preferences and
ranking (Sections 5 and 6.3). Also, our new method is extensively compared with recent deep
learning-based methods for object detection [6, 11, 54, 56, 64, 76] and image retrieval [19, 61].

3 THE DATASET

The most valuable resource used by our framework is the collected dataset because it contains a
large number of innovative photography ideas from around the world. We have examined photo-
sharing websites for photography purposes including Flickr, Photo.net, DPChallenge, Instagram,
Pinterest, and Unsplash, but none of them properly cover several categories such as full-body and
upper-body in portrait photography as well as landscape photography ideas.

Portrait and Landscape Dataset: The dataset is gradually collected by crawling the 500px website
which contains photos from millions of photographers around the world who are expanding their
social networks of colleagues while exploiting technical and aesthetic skills to make money by
marketing their photographs. To get the file list and then the images sorted by rating, we have
implemented a distributed multi-IP address, block-free Python script. Nearly half a million images
for the current dataset have been collected. The dataset has diverse photography ideas especially
for the aforementioned portrait categories (full body, upper body, facial, group, couple or any
two-body, side-view, hand-only, and leg-only) and landscape categories (nature, urban, etc) from
highly-rated images taken by mostly photography enthusiasts and professionals. While Figure 1
shows sample photos from the dataset, Figure 6 in Section 6.1 shows the properties of the dataset.
As a result, more than 90% of the images were viewed more than 100 times, and nearly half of the
images in the dataset had a very high rating between 40 and 50, out of 60.

Automating Dataset Annotation: Our dataset contains 500K+ images where 200K+ of them are
highly rated. We have manually annotated around 50K+ of the dataset for training, verification,
and testing purposes. More precisely, we annotate 10K+ images for object detector, 5K+ for pose
estimator, about 5K for scene parser, and about 25K for portrait. Also, we discard the rest of the
training/testing set as they are unrelated. Then, we leverage multiple highly accurate detectors to
automate and accelerate the annotation process of the rest of the images. However, the accuracy of
our IOD (92.02%) and our CaDe (91.60%) for auto-annotation are high enough to retrieve aesthetics-
aware exemplars. Also, the redundancy across our designed detectors makes the annotation process
more robust.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:6 Farhat et al.

4 PHOTO DECOMPOSITION

Content-based image retrieval (CBIR) methods help us map unbounded correlated data (e.g. an
image) to a bounded range (e.g. feature vector), and then find similar images based on similarity
metrics. But there are many restrictions to exploit them directly for applied problems. As mentioned
before, there is no limit to innovation in visual arts. Hence, it is very difficult if not impossible for
available methods to map an image to a set of useful and related photography ideas which are
abundant, diverse, and correlated. Also, as the number of ideas increases, mean average precision
(MAP) falls abruptly at the rate of O(%) and manual idea labeling of a large dataset is costly in
terms of computational time and available budget.

To recommend better-composed photos to a photographer, we decompose the query image
from the camera shot into composition ingredients called aesthetics-aware information. This
information includes high-level features (such as semantic classes, photography categories, human
pose classes, subject gender, and photo rating) as well as low-level features (such as color, texture,
etc). To accelerate the retrieval process from the dataset based on a query image, we perform the
decomposition procedure on all images in the dataset as an offline process, called indexing, shown
as black arrows in Figure 2. We construct the composition model (CM) after indexing the whole
dataset. If new images join the dataset, we index them and update our CM. In the searching step
shown as red arrows in Figure 2, we decompose the query image, and compare it with our CM.
Then, we retrieve the highly-ranked photos from the dataset based on the decomposed values of
the query and user-specified preferences (USP).

Through this section, we describe the proposed integrated object detector (IOD) to determine
semantic classes in a query image more comprehensively and more accurately than a single object
detector. Also, the proposed category detector (CaDe) specifies the photography genre and style.
Furthermore, the proposed artistic pose clustering (ArPose) extracts human pose information
specifically for portrait photography.

4.1 Integrated Object Detectors (10D)

To tackle the problem of classifying a virtually unlimited number of photography ideas, we need
composition ingredients of a query shot, and then map them to top-ranked photography ideas.
One of these ingredients is semantics inside query shot. To detect these semantics more accurately,
we adopted deep-learning architectures and improved the detection accuracy compared to the
state-of-art detectors by training our customized architecture on an augmented dataset including
common failure cases (CFC) from our dataset, plus other available datasets including MSCOCO [34]
and ADE20K [77]. Figure 3 illustrates how state-of-the-art object detector (YOLOv3 [54]), human
pose estimator (OpenPose [7]), and scene parser (PSPNet [76]) poorly perform on a CFC set of
images in our dataset compared to qualitative results from our IOD. Because OpenPose misses at
facial photos to detect human parts like the neck in close-up photos and it is not very accurate at
“two” or “group” categories to associate parts overlapping. Non-person detection of YOLOv3 under
34% probability is sometimes not reliable, and PSPNet detection is partially not accurate enough at
photos with many objects, as it partitions the photo into small segments and it never considers
overlapped area. To improve the accuracy of the detectors, we have changed the deep-learning
architecture in terms of reduction layers, transformation parameters such as maximum rotation,
crop size, scale min, and max. Because we can speed up the process by changing the reduction
layers, and higher rotation and bigger portraits are more important in photography.

We adopted our object detector network architecture inspired by the GoogLeNet model [65]
with 24 convolutional layers followed by fully connected layers, but with a simpler reduction to
convolution layers to be faster. The output of the network is the bounding boxes of the detected
objects with their probabilities. In our model, we do not consider non-person objects whose detection
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Fig. 3: Qualitative results show the improvement by our integrated object detector (IOD). Each row
includes the original, YOLOv3, OpenPose, PSPNet, and the results from our IOD.

probability is less than 28%, because any wrong detection affects all pixels in the bounding box.
As a result, we divide the input image into bigger chunks of 5 X 5 grid for higher accuracy, and
smaller objects which are less important for detection as a secondary subject of photography. Our
pose estimator architecture has a multi-stage convolutional neural network with two parallel lines
predicting a limb confidence map and encoding the limb-to-limb association inspired by [7]. We
adjust the transformation parameters of the architecture including maximum rotation degree to 60,
crop size to 500, scale min to 0.6, and scale max to 1.0, since higher rotation degrees and bigger
people are used frequently in our work. To design our scene parser, we ignore confusing labels
like building and skyscraper. We place the related objects in the same object category. Also, our
scene parser architecture exploits a 4-level pyramid pooling module [76] with sizes of 1 X 1, 2 X 2,
3 X 3 and 4 X 4 respectively. We do not consider detecting small objects in the scene since they are
mostly not the main subject of the photographer.

4.1.1  Value Unification. To perform computation on the inference of our customized detectors
in the next steps, we need to unify them in terms of pixel-level tensors. We define their scores as
—log (1 — p) for each pixel of the image. The object-ID and its score for each pixel are represented
as an m X n X 2 tensor. Our object detector, scene parser, and pose estimator infer object-IDs
respectively across 80 objects, 150 semantics, and 18 anatomical part IDs. Thus, for each image
(Inxn) we have:

I,0d _ | 4Lod Lod _ ~Lid ,Iod _ _ _ ,lod

men><2 - [ti,j,k] ’ ti,j,l - Ci,j ’ ti,j,z - lng (1 pi,j )’ (1)
I,sp _|.Lsp Lsp _ 4Lid ,Lsp _ _Lsp

Txnxe = [ti,j,k] i = AL b, = —logy (T=pi0), (2)
I,pe _|,Lpe Lpe _ ;Lid ,(Lpe _ I,pe

Tonxnxa = [ti,j,k] st =T otie = —log (1=p; ), ®)

where [ is an input image, m is the number of rows, n is the number of columns in the image,

T1-°4d is the corresponding tensor of object detector, Cl{’}d € {1..80} is the object-ID of the pixel
at (i, j), pf”;’d is the object-ID probability of the pixel at (i, j), T**P is the tensor of scene parser,
Ag:]i.d € {1..150} is the object-ID of the pixel at (i, 1)) pl{’;p is the object-ID probability of the pixel
at (i, j), T:P¢ is the tensor of pose estimator, ]l.l”;d € {1..18} is the joint-ID of the pixel at (i, j), and

pl{’fe is the joint-ID probability of the pixel at (i, ).
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4.1.2  Hysteresis Fusion. To expand the coverage of the photography idea space in the dataset,
all detectable objects in each image using our detectors are leveraged. We maximize the dataset
coverage while the accuracy is higher than 90%. Our hysteresis fusion optimizes the LOW and HIGH
thresholds of the detection probability which is the average probability (or score in Eq. 1, 2, and 3)
of the pixels of the object X for each (object X, detector Y) binary. If all detectors are below their
LOW thresholds for object X, it means there is no object X in the image. If one of the detectors is
above its HIGH threshold, it means there is an object X in the image. There is a narrow ambiguity
region between LOW and HIGH values which covers a few images that we ignore.

To tune the thresholds, we conduct the experiments in Section 6.2.4 and consider detection
probability as the object detector feature, and normalize area as the pose estimator feature. We
get a bi-variate histogram (extendable to N-dimensional histogram for N detectors) in Figure 9
illustrating the frequency of the images smart-binned by the normalized object detector and pose
estimator scores. Following these thresholds, the accuracy of our IOD scheme is 92.02% (higher
than each detector), and 84.7% of the images are covered.

4.1.3  Object Importance. To prioritize the prominence of the objects in the image, we seek to use
the importance map of the objects, because the subject of the image should be more important
even if its detection probability is lower. To rank the order of the objects, we exploit the max score
multiply by a saliency map (S) features with our centric distance (D) feature to get our weighted
saliency map (W).

W) = max (TEGTES) STGDL) ()
DlG,j) = e M-l /g, (5)
ST ).[0.
Jo- 2 S (@))-[ J]’ ©)
XS, ))

where WI(i, ) is our weighted saliency map point-wisely for image I, max(.)y operation is a
hysteresis max on the second plane of the tensors (score matrix), S’(i, j) is a fast implementation
of saliency map of image I [22], and D'(i, j) is our centric distance feature of image I, K is a
tunable constant equal to }; ; eIl for image I, the binary value ¢! is the center of the mass
coordinate, and ||.||; is the k-th norm operator where k = 1 in our experiments. Our weighted
saliency map makes the detected objects prioritized, because we sum up the scores from the
semantic classes, and we end up with a total score for each semantic class. The output of this
step is a weighted vector of detected semantic classes (undetected object has zero weight) in the
query image. We show it as the following vector where the elements represent the importance
(normalized as a probability) of the corresponding object in the image:

Frioa = |f™ £™ . P, (7)
imp 2vpixel(ij) in obj) W (i, /)
£ - o 7 ®)
‘ vi,j W3, J)
where Vk € {1, ..., 210}, f]imp is the importance value of k-th object which is the summation of the

weighted saliency of its every pixel (i, j), and Fy joq is the importance vector of all objects.
4.2 Category Detector (CaDe)

The photo categories in portrait include full-body, upper-body, facial, side-view, two (couple or
two people), group (more than two people), faceless, headless, hand-only, and leg-only, which are
ten classes. In landscape photography, there are sea, mountain, forest, cloud, and urban, which
are five classes. While we focus on portrait and landscape photography genres, we believe that
this work can be extended to other genres as well. Knowing the photo genres and categories helps
our framework guide the photographer more adequately because it retrieves better-related results
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based on the photographer preferences. The downside can be the low coverage or a limited number
of contents on the leaves of this hierarchical tree of the photo styles, but our comprehensive dataset
addresses this potential issue.

4.2.1 Top-down Hierarchical Clustering. To distinguish a portrait from a landscape photo, the
number of people in the image is estimated by the max (union) number of person-IDs higher than
their corresponding HIGH thresholds across the detectors in integrated object detector (IOD). If the
score for detecting a person is lower than a LOW threshold for all detectors in IOD (intersection),
there is no person in the image. Then, if there is a water-like, mountain-like, plant-like, cloud-like,
or building-like object in the image with a total area higher than 26.5% (empirically tuned for
landscape), the landscape category will be recognized as well. Otherwise, the image is ignored
because its subject is not for portrait or landscape photo.

4.2.2  Portrait Multi-class Categorization. To automate an efficient and accurate portrait categoriza-
tion, we formulate the problem as a multi-class error-correcting output code model using multiple
support vector machine binary learners (let say ECOCSVM). The inputs are our feature vector and
the corresponding class labels. Since we are using 10 portrait categories or unique class labels, it
needs 55 (= 10 X (10 + 1)/2) binary SVM learners with radial basis function (RBF or Gaussian)
and a one-vs-one coding design. We have annotated 5% (about 25K+) of portrait photos uniformly
selected at random from the dataset as the ground truth of the portrait categories. Then, we train an
ECOCSVM with the feature vectors and the corresponding labels of 80% (about 20K) of our ground
truth and leave the rest for testing our ECOCSVM. Our feature vector for each photo includes 40
different features as follows:

e General MAX: (1,2) max scores for detected people, and (3,4) max areas for the detected
people from object detector and pose estimator.

e Intersection Area: (5) the area(s) of the people with the highest detection probability, (6,7) the
scores of these people, (8,9) the areas of these people from object detector and pose estimator.

e Number of people: (10,11) number of people higher than the HIGH threshold for each detector,
(12,13) number of people with area higher than 5% for each detector from object detector and
pose estimator, (14) max of feature # 10 and feature # 11, (15) max of feature # 12 and feature
# 13, (16) max of feature # 14 and feature # 15.

e Limb Features: (from 17 to 40) the limbs respectively including nose, neck, right shoulder,
right elbow, right wrist, right hand, left shoulder, left elbow, left wrist, left hand, right hip,
right knee, right ankle, right leg, left hip, left knee, left ankle, left leg, right eye, left eye, eyes,
right ear, left ear, ears which add up to 40 features.

The output of this step for an image query is the following unitary vector that shows its category:

FI,cade — [ flfacial foUHbOdY f;upperbody ﬁwo fsgroul) f6$ideview f7leg fénoface ﬁ)hand lr(l)ohead], (9)

where F cade Shows the unitary category vector of the image I by CaDe detector, and only one
of the vector elements is one and the rest are zero. The mean average accuracy of our category
detection is shown in Table 4 in Section 6.2.5 for the dataset images divided by various styles.

4.3 Artistic Pose Clustering (ArPose)

Posing, one of the essential ingredients of portrait photography, could substantially differentiate
between amateur and professional shots. Having little experience in portrait photography, finding
correct postures, or coming up with novel poses is hard for amateur photographers. Hence, it is
vital for our system to have an understanding of different poses and how to categorize them.
Although RTMPPE extracts body joints in images, these joints are merely considered as our
features for pose detection. We use two sets of features on top of joint coordinates to define the
distance between different poses. These sets of features are scale-invariant, thus regardless of the
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Fig. 4: Qualitative results of major clusters derived from our algorithm on the portrait dataset. Each
row represents the top poses of each cluster.
/.

Fig. 5: Qualitative results of major clusters derived from the portrait dataset by DEC algorithm.
Each row represents the top poses in each cluster. The DEC algorithm fails in clustering poses
because the poses in the same cluster are not all consistent.

scale of the human body in images, we measure the similarity of two poses. These features are
defined as follows:

e Joint to Line Distance (distj,r): This distance vector consists of the distances between
each joint and any line that connects two other joints. To have a scale-invariant distance, we
normalize the distances with the maximum distance of each body in the image. Having the
joint j; and the line crossing two other joints, j,, and j,, the disty,, is calculated as follows:

diSt_]tOL(ls m, n) = ZSAlmn/“jm —jn||2, (10)

where Sy, . is the area under the triangle formed by three joints. Based on the total number of
joints in each body, which is 18, and the total number of different distances is 18 X (127) = 2448.

e Skeleton Context (SC): Also, another scale-invariant feature vector from previous work [23,
24] is leveraged. Skeleton context is a polar histogram of each point in the skeleton indicating
the angular and distance distribution of other points in the skeleton around that point. We
benefit from the angular distribution of each point and create an 18 X 18 angular matrix for
each body in the image.

These features are designed to capture the relative position of each joint with respect to other
points, hence, they are used as a measure of distance between different poses. We concatenate these
features together to use the relative distance and polar information of both. Next, we use these
features to cluster images based on various poses.
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4.3.1 Pose Clustering. To rank the professional poses and find similar ones to the pose in the query
image, we use clustering methods that distinguish body postures and group similar ones using
the features explained in Section 4.3. To do so, we use clustering algorithms, k-means and Deep
Embedding [71], and compare the results of these clustering methods. To determine the optimal
number of clusters for the dataset, there are several heuristic methods including but not limited to
elbow [26] and silhouette [57] methods. Having too many clusters would diminish the novelty and
diversity of the results, in the sense that it tries to have samples as close as possible to one cluster.
On the other hand, keeping the number of clusters low would affect the quality of clustering, such
that irrelevant poses might appear in the same cluster. The result of our experiment using the elbow
method shows that the optimal number of cluster heads is around 12-15 as depicted in Figure 10 in
Section 6.2.6.

Then, we set up two clustering algorithms, k-means and Deep Embedding Clustering (DEC).
For k-means, the only adjustable parameter is the number of clusters, but for DEC, we should set
up the autoencoder network in addition to the number of clusters. As suggested by Xie et al. [71]
and tested by ourselves, the network with 4 layers of encoder consisting of 500, 500, 2000, and 10
neurons in each unit performs astonishingly well on the clustering task of different supervised
datasets including but not limited to MNIST [30], STL [13], and REUTERS [31]. Although DEC
works great on these supervised datasets, it has not been tested on an actual unsupervised dataset,
simply because there is not a gold standard to evaluate the performance on those datasets. However,
visual data like the portrait dataset reveals how these algorithms perform, based on human eye
evaluation of the results. Hence, we compare the results of this deep model for clustering with our
feature-based k-means clustering. In k-means, to define the probability that each sample is in the
cluster or the degree to which each sample belongs to a cluster, we use the same quantity in fuzzy

C-means clustering [16]: s

_1_i(||xi—c,||2)ml )
W L\ el
k=1

where x; is the sample, c; is the center of the cluster j, m is a positive real number greater than 1
which defines the smoothness of the function, and g;; represents the probability that the sample
belongs to the cluster. Also, DEC has defined a similar quantity [71] using Student’s t-distribution:

_a
(1 +lzi = ¢;l13/a)™
ij = P (12)
2y (1 +lzi = cplly /)™
in which z; is the embedded version of x;, and « is the degree of freedom in Student’s t-distribution.
Using these metrics we estimate the probability that each sample belongs to a cluster. Hence the

output feature of the ArPose module would be in the form of:

T
_ arpose  p~arpose arpose
FI,arpose - [fl,l 1,2 < JLK ] b (13)

where ff;.pose = qy,; is the probability that the pose detected in image I belongs to the j* h cluster
from our pool of K clusters as defined above.

The qualitative results of the k-means-based clustering algorithm in Figure 4 show the top-
ranked poses in major clusters. Those of the DEC algorithm are in Figure 5. The images are ranked
based on their probability computed in Eq. 11 and 12. As shown in the figures, k-means clusters
surprisingly better than DEC, that is, different clusters distinguish different pose styles and each
cluster represents visually almost similar pose. However, DEC fails to accomplish the goal of the
clustering task based on human poses. Since the input features are intelligently chosen to be related
to the goal, the input space is linearly separable, however, the result of the DEC shows information
loss in the autoencoder. We tried the k-means algorithm with PCA to reduce the dimension of
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the input space to 10 (as it is in the output of the autoencoder in DEC), and still the results of the
k-means surpasses DEC’s. Through that, we successfully cluster the portrait image and retrieve
almost similar poses or novel ideas in that pose cluster based on the probability of the poses.

The other properties such as rating, tags, and gender in the shot are also extracted from the
image and its descriptor. For the low-level features, we collect all 4096 generic descriptors via a
public pre-trained CNN model [10] on ImageNet [15] and the conventional features of Mitro’s
method [42] as shown in the following equation. Note that there is no limit to collect any other
aesthetics-aware information from query image to extend our work depending on photo genre.

— veg veg vee
Frvgg = 1 Jrz - Jraoe| (14)
where Fy, v is a vector containing generic features of image I, and flvfg Vi is i-th generic feature. The
superscript “T” represents the transpose of the vector/matrix. Also, we extract available statistical
data via the image properties including rating, view counts, and gender. Then, we have them as
follows:

ti i
Fra = | 37 55 (1s)
Fl,gender — [ Ir’nlale If:ezmale Il’lglknown] , (16)

. .. o s . . . . . ti .
where FJ ot is a vector containing the statistical data of image I including its rating flri 8 and its
: views ’
view counts f’;

represented by [1 0 0] as male, [0 1 0] as female, or [0 0 1] as unknown.

. Furthermore, F gender is a vector containing the gender specification of image I

4.4 Construction of Composition Model

To aesthetically index all photos in our dataset and easily search by composition features, we
decompose them into the following feature vectors and construct our composition model (CM). In
fact, Fy, vgg, F1,.i0d> FI;, cades Fr;,arpose and other aesthetics-aware information for all (Vi) images are
extracted and appended to corresponding matrices respectively including deep-learned generic
features Mg, (for color, texture, and edges), all detected objects M;oq, photography category Mcage,
artistic pose My, statistical features Mg,: and detected gender Mgng.

FI,- = [FI,-,vgg FI,-,iod FI,-,cade FI,-,ap FI,-,stat FI,-,gnd] > (17)

where i € {1,..., N}, Fy, is the feature vector of the image I;. Then, we compute the corresponding
feature matrix.

T _ T T T
Mfeat - [Fll,feat FIz,feat FIN,feat] ’ (18)
M = [Mvgg Miod Mcade Map Mitar Mgnd] > (19)
T T T T
M = [FLF .. FL], (20)

where ()7 is transpose operation, “feat” is feature type from the set {vgg, iod, cade, ap, stat, gnd},
matrix Mgy is the corresponding feature matrix containing feature vector of each image in each
row. The final feature matrix M is the composition model matrix which is the concatenation of all
feature matrices or equivalently all feature vectors.

5 COMPOSITION OF VISUAL ELEMENTS

Basically, image retrieval methods want to optimize [5, 21] or customize [39] the process of
retrieving images with similar semantics in specified regions, which is not an image aesthetics nor
composition-related procedure. For example, an amateurish image may focus on a less important
semantic as a photo subject or assign a region of interest to a less important semantic, but the
retrieval results from our professional-quality dataset are free of such mistakes.
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The goal of our composition step is to gather all composition elements from the previous step and
recommend related photography ideas from our collected dataset satisfying personal preferences
and aesthetics-aware information of the query image. The input to this step is the decomposed
values of the image query and user-specified preferences (USP) with our composition model (CM).
The output is a collection of well-composed images from the dataset recommended to the user.
For example, if we focus on portraits, we desire feedback that contains well-posed portraits with
similar semantics and category but better composition.

As we have collected a dataset containing generally well-composed images, we should dig
into the dataset and look for images with “pretty” similar color, pattern, category, pose, or object
constellation where the term “pretty” is framed by USP to address the user’s needs and subjectivity.
The existence of this professional-quality dataset makes it possible that the retrieved photos have
highly accepted photography ideas by the people. Our image retrieval system is not supposed
to find images with exactly similar colors, patterns, or poses, but it finds images with a better
composition having similar semantic classes, category, or pose. Thus, the location of the movable
objects does not matter, but the detected objects are important.

5.1 Similarity Scores and Normalization

Having our composition model for all images in our dataset and the query image, we first calculate
the similarity score between the query image and any image in the dataset across the detectors. The
similarity metric of generic VGG features (14) is the multiplication of the matrix M,z by the query
vector Fyg,. Similarly, the category detector has a matrix by vector multiplication. For integrated
object detectors, we use the Gaussian function after masking unrelated objects. For statistics and
gender information, it is formulated as follows:

Svge(1,Q) = FIT,vggFQ,vgg’ (21)
Secade(,Q) = Ff uqeF0.cade » (22)
Sid([,Q) = e*(Z(FI,iachign(FQ,iod)*FI,iod))z’ (23)
SaatLQ) = 1" = foa (29)

1, if F, =F
Sgender([, 0) { I, gender 0. gender

—1, otherwise

where FT means the transpose of F, e is a mathematical constant about 2.72, the o operation is
the element-wise multiplication, sign(.) is the sign function operating on each element separately.
Also, Syge(I, Q), ScadeI, Q). Siod(I, Q), and Sga(1, Q) are similarity score values between image I and
image Q respectively for generic CNN descriptors, category detection, integrated object detectors,
and statistics and gender information. The similarity score function is easily generalized to a
function between two different sets of images, i.e., I;;x; and Q,x; can be a set of images not only
one image, and the output will be an m X n matrix. Since we want to score the similarity between
the images in our dataset (say I) and an image query (Q), in the above equations, vector F It der Will
be substituted by matrix Mg, and the output will be a similarity vector, while “det” can be any
detector € {vgg, iod, cade, arpose, stat, gender}.

To make the scores uniform across various detectors, we normalize each detector score vector
by dividing by the summation of the whole output. Thus, each detector’s similarity score is like a
probability distribution over all images. We have:

Sfeat (L Q)

Stear(L Q) = —
feat ZieLqu Steat (i, q)

(26)
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Fig. 6: The dataset properties: (a) the logarithmic distribution of the view counts, (b) the distribution
of the ratings, (c) the logarithmic distribution of the vote counts, and (d) the logarithmic distribution
of the favorite counts.

where Sgat(}l, Q) is a normalized similarity score matrix between each image in I and each image in
Q for detector feat € {vgg, iod, cade, arpose, stat, gender}. Also, we combine the similarity scores
across various detectors to create a tensor of similarity scores for each pair of images from (I, Q).
We have:
N _|oN oN N oN N oN

S (H’ Q) - [Svgg Siod Scade Sarpose Sstat Sgender > (27)
where SN (I, Q) is a tensor of size d X m x n where d is the number of detectors (||feat|| here is 6), m
is the number of images in I, and n is the number of images in Q.

5.2 User Preferences and Ranking

Prior works have explored feature-based, example-based, and list-based personalized ranking sys-
tems for amateur photographs using conventional aesthetic qualities and personal preferences [73].
The example-based and list-based approaches are non-scalable when we have a large dataset as is
in our approach. To rank the exemplar list, we multiply user-specified preferences as a probability
vector containing the importance weights with our compositional primitive feature matrix. Adjust-
ing weight vector can also cover decision tree-based ranking approaches as well. Now, we have:

T
Wusp = [Wvgg Wiod Weade Warpose Witat Wgender] > (28)

where Wygp is a d X 1 vector showing the weights of the user for each detector, and “T” shows the
transpose operation. Then, to retrieve the highest-ranked candidates as the results, the normalized
similarity score matrix is multiplied by the USP vector. Consequently, we have:

Voret(L, Q) = WiipSN(1, Q) (29)

where V(X Q) is the user’s preferred image vector, and if we find the K top-ranked entries
with respect to the vector values, the indexes of these entries represent the best high-quality
recommendations to the image query (Q). The results for some queries with USP are shown in
Figure 11 separated by the query image, the baseline retrieval with equal weights, and the retrieval
with proper USP.

6 EXPERIMENTS

In the following sub-sections, we describe our experimental results which are categorized into
different components of our method including (i) the dataset, (ii) the decomposition step, and (iii)
the composition step. Furthermore, the decomposition step has multiple parts to demonstrate the
effectiveness of our method compared to an available state-of-the-art or our baselines.

6.1 Dataset Properties

We have collected the images in the portrait and landscape categories from 500px Website and saved
them as smaller images where their highest dimension has been resized to 500 pixels. Then, we have
collected available metadata for each image including the number of views, the average ratings,
the number of vote clicks, and the number of favorite clicks. We conduct statistical experiments to
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Method MAP person seat plant animal car
YOLOvV3[54] 51.5 72.5 394 328 69.7 54.0
Faster R-CNN[56] | 527  73.9 40.6 342 710 54.2
Ours 60.1 77.8 53.1 46.6 69.5 57.7

Table 1: The accuracy comparison between our object detector model versus the YOLOv3 and Faster
R-CNN on our dataset to detect some known objects.

Method MAP hea sho elb wri hip kne ank
OpenPose[6] | 70.2 86.5 79.8 71.2 62.6 683 63.9 60.4
HRNet[64] 73.7 92.0 844 735 663 713 656 61.0
Ours 75.6 925 86.8 758 66.1 71.7 68.6 64.6

Table 2: The comparison between our pose estimator versus OpenPose and HRNet on our dataset
to detect body parts.

get the properties of the collected dataset. Because some of these properties change dramatically in
linear scale, their trends are captured intuitively better in the logarithmic x-axis. Figure 6 illustrates
the distributions of the view counts, ratings, vote counts, and favorite counts of the dataset. Each
bar represents a bin where its interval is from the corresponding number written under the bin to
right before the number written under the next bin. Figure 6 shows that most of the images have
been seen more than 100 times, i.e., 500px Website has a live community while many images have
at least 1-10 votes or favorite clicks. Having a rating higher than 10 is considered high because
the rating trend changes its slope direction from bin 0-9 to bin 10-19 negatively, and after that, the
slope will positively grow until bin 40-49. Most of the images in the dataset have a rating of more
than 40 which is a very high rating, and it indicates that the 500px community of the photographer
has many highly-rated photos.

6.2 Decomposition Analysis

To show the effectiveness of our decomposition step, we conduct the following experiments on the
object detector, the human pose estimator, and the scene parser used in our framework. Also, we
examine the hysteresis fusion, the category detector, and the pose clustering.

6.2.1 Object Detection. Our object detector network contains 24 convolutional layers with two
fully connected layers (mentioned in Section 4.1). We train it on ImageNet [15] and 8K+ images
from our dataset, and three times on an annotated subset of 768 common failure cases (CFC) from
our dataset. We evaluate and compare our model with YOLOv3 [54] and Faster R-CNN [56] on a
test set of 2K+ images from our dataset. We use the regular MAP on all intended objects. Table 1
shows the MAP and the average accuracy of some objects (person, seat, plant, animal, and car)
for our trained model versus YOLOv3 model. The “seat” average accuracy is the average for “seat,
bench, and chair”, “plant” average accuracy is the average for “plant, tree, and grass”, and “animal”
average accuracy is the average for “bird, cat, dog, cow, and sheep”.

6.2.2 Pose Estimator. We train our pose estimator model on MSCOCO[34], MPII[1], 4K+ images
from our dataset, and three times on our 317 CFC. To evaluate the performance of our pose estimator
model on a test set of 1K+ images from our dataset, we leverage MAP of all limbs. The comparison
results of the MAP performance between OpenPose[6], HRNet[64], and our approach on a subset
of 507 testing images from our dataset are shown in Table 2, where the left limb and the right limb
are merged.
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Method Pixel Accuracy (%) Mean IoU (%)
PSPNet[76] 74.9 40.8
DeepLab[11] 77.6 42.2
Ours 79.2 43.8

Table 3: The accuracy comparison between our scene parser versus PSPNet and DeepLab with
101-depth ResNet on our dataset.
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Fig. 7: The distributions of (a) the score obtained from the pose estimator, (b) the normalized area
obtained from the pose estimator, and (c) the detection probability obtained from the object detector,
and (d) the normalized area obtained from the object detector for our ground-truth images with a

or and the object detector.
0.5
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Fig. 8: For the ground-truth images without any “person”, the distributions of (a) the highest score
(if any) obtained from the pose estimator, (b) the highest normalized area of the highest score object
(if any) obtained from the pose estimator, and (c) the detection probability for the dominant object
(if any) obtained from the object detector, and (d) the normalized area of the dominant object (if
any) obtained from the object detector.

6.2.3 Scene Parser. To train our scene parser model, we use the ADE20K dataset [77], 4K+ images
from our dataset, and 576 common failure cases annotated by LabelMe [58]. To evaluate scene
parsing performance on a test set of 1K+ images from our dataset, pixel-wise accuracy (PixAcc)
and mean of class-wise intersection over union (CIoU) are measured. The performance values of
our scene parser model versus PSPNet [76] and DeepLab[11] with ResNet-101 are shown in Table 3
which indicates better PixAcc and CloU is achieved on our dataset.

6.2.4 Hysteresis Fusion. The coverage of the photography ideas is improved by hysteresis fusion
which allows the union of all images above HIGH thresholds across the detectors. We show how
we configure these tunable thresholds, while we trade-off between the coverage and the accuracy
across the object detectors. When we have more than one detector with common detectable objects,
we fuse multiple features from the detectors to enhance common object detection. For example,
“person” is a common object between object detector and pose estimation. We perform our pose
estimator on our ground-truth images with a person or without any person from the dataset, and
calculate (a) the detection score (as mentioned in Eq. 3) and (b) the normalized area (i.e. the detected
object area divided by the image area) of the dominant person (i.e. the person with the highest
score) detected in each image as our pose estimator features. Also, we perform our object detector
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Fig. 9: The 2D MAP surface w.r.t the normalized area of the pose estimator and the detection
probability of the object detector as a heat map.

on those images and compute (c) the detection probability and (d) the normalized areas of the
dominant person (i.e. the person with the highest probability) detected in each image as our object
detector features.

The distributions of the features obtained from our pose estimator and our object detector for
“person” as a common object for the pose estimator and the object detector has been shown in
Figure 7. In some images, no person is detected by the pose estimator and the object detector,
because the pose estimator or the object detector has a detection error or there is no person in the
image. We consider such detection as non-person object detection. Figure 8 shows the distributions
of those features obtained from our pose estimator and our object detector when there is no person
in our ground-truth images, but they detect a person. We have removed the frequency of the first
component, i.e., score or area = 0, from all of the curves in Figure 8, because the probability of zero
score/area is very high and we want to bold the probabilities of the other score/area values.

Figure 7a shows pose estimator’s score does not have enough sensitivity to detect a person,
because the distribution is similar to a uniform probability mass function (PMF). Similarly, Figure 7d
shows object detector’s normalized area does not have enough sensitivity to detect a person, because
the distribution is pretty uniform. But, the object detector’s probability in Figure 7c and the pose
estimator’s normalized area in Figure 8b are not similar to a uniform distribution, and we can infer
the cut-off thresholds from them. First, we derive the 2D probability density function (PDF) of these
mutual features including the normalized area by the pose estimator and the detection probability
by the object detector. Second, we determine the 2D MAP surface w.r.t these two parameters as
a heat map. Finally, we search on the heat map to find the optimal point for these two mutual
features. As shown in Figure 9, it can be inferred from the 3D histogram of these two features that
the optimal HIGH cut-off thresholds are object detector’s probability 40% and pose estimator’s
normalized area 10%. Similarly, the LOW thresholds are object detector’s probability 28% and pose
estimator’s normalized area 4.5% that leads to the dataset coverage 84.7% and the detection accuracy
92.02% which is higher than any other detector accuracy solely.

6.2.5 Portrait Category Detection. As mentioned in Section 4.2, we start with top-down hierarchical
clustering to specify the genre of the input image, and then we do multi-class categorization for
portrait images. We train our model having 40 suggested features on a set of 20K+ annotated
portraits from our dataset, and we test the model on another set of 5K+ annotated portraits. The
mean average accuracy of the model is listed in Table 4 categorized by various styles.

Also, we just consider the first 16 features for object detectors including general max and number
of detected people in the image as mentioned in Section 4.2 and train a model using the same
ground truth as before. The current model is our baseline model because it can be used for any

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:18 Farhat et al.

facial full-body group hand leg noface side view two upper-body
Our CaDe 96.13 94.52 89.80 61.73 80.42 84.64 75.02 78.57 92.93
16-feat Baseline 66.58 80.24 68.35 N/A N/A N/A N/A 59.42 55.28

Table 4: The accuracy results of our category detector (CaDe) for ground-truth images compared to
a 16-feature-based baseline.

Extractor Effect Baseline % over baseline
10D object-aware max(detectors) 17.30
CaDe category-aware 16-feat version 32.54
ArPose pose-aware DEC 25.7

Table 5: The summary of the methods used in CAPTAIN with respect to extraction algorithm, effect
on retrieval, and improvement over baseline.
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Fig. 10: The result of the elbow method on the dataset. We could spot the elbow around 13-17

clusters. We are also showing the first derivative of the distortion, to show where it is going to
flatten out.

other object detector, as the features can be defined in other object detector domains as well. To
compare rationally with this baseline, we test the same set of images from our ground truth. The
second line in Table 4 listed the baseline results. Because we remove limb features, the baseline
cannot detect sub-genres such as hand-only, leg-only, no-face, and side view.

6.2.6 Artistic Pose Clustering. Regarding artistic pose clustering, we conduct an experiment to
cluster similar professional poses using our features explained in Section 4.3. We do the clustering
with a various number of cluster heads, and we find the optimal number of cluster heads for
our dataset using the elbow method [26]. That being said, we use the elbow method and do the
clustering 40 times with the different number of clusters ranged from 1 to 40. This method calculates
the sum of squared errors (the distance of each point to the center of its cluster) and it is expected
to see an elbow pattern in the plot of this error when the number of clusters is increasing. The
result of this method on our dataset is depicted in Figure 10, which indicates that the best choice
for the number of clusters in this dataset is between 13 and 17. Since we integrate many features
with different extraction algorithms, Table 5 summarize these features in aspects like extraction
method, effects, the improvement over baseline.

6.3 User Study for Composition

There exists no directly similar or comparable system in the literature to compare with our proposed
framework. The studies [48-51, 53, 68] in related work have different goals because they should
get a known landmark with its meta-data to extract photos with similar geo-location, weather, and
time, and process them to find the best view or camera parameters. But we retrieve exemplars from
our 500K+ portrait and landscape dataset based on aesthetics-aware primitives of the given photo
including IOD semantics, VGG generic, CaDe, pose, and gender features.

To fairly evaluate the functionality and performance of our method, and measure how much
the recommended photos are relevant to the query and helpful to the photographer, we conduct a
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Query Results from [9] Ours (with equal weights) Ours with USPs

Fig. 11: Qualitative results of the composition step compared to [9]. Each row shows query image,
results from [9], our method with equal weights, and ours with user-specified preferences (USP).
The USP with respect to each row is: (1) Weade = Wgender = 0.5, (2) Weade = Wogg = Wioa = 0.33,
(3) Wgender = Wygg = Weade = 0.33, (4) Weade = Wiod = 0.5, (S)M/cade = Wgender = Wioq = 0.33, (6)
Weade = Wvgg = Wioa = 0.33, (7) Weade = Wiod = 0.5 and (8) Weade = Wvgg = Wioa = 0.33.

quantitative user study to compare our method with other reasonable approaches. The first method
directly finds good composition from scenes (called Chang’s method [9]). The second method is
a retrieval method based on the color, shape, and texture features (called Mitro’s method [42]).
The third and fourth ones are from a state-of-the-art semantic and scene retrieval method [47]
with better convolutional networks (CNN) including the VGG-19 model [61] and ResNet-152 [19].
To create the last two baselines, all generic descriptors of the last pooling layer pre-trained on
ImageNet [15] are evaluated for our dataset images as well as the features of the non-CNN-based
method [42], and it is used as feature matrix M., in Eq. 20. The similarity scores and normalization
are calculated following the composition step (section 5), and user preferences are specified uniform
across all competitors. The qualitative results of the composition step for some queries with user-
specified preferences (USP) are illustrated in Figure 11. Each row includes query image, results
from method [9], our method for equal weights, and ours for USP-aware retrieval.

We select a variety of image queries (Figure 12) based on background scene and semantics, single
versus group, full-body, upper-body, facial, standing versus sitting, and male versus female. We do
not use USP-aware queries as shown in Figure 11, and we focus on the diversity of image queries.
Also, the same question throughout the study is asked, and therefore, we do not convey any side
information. Using a PHP-based website with usage guidance, the outputs of the methods are
randomly shown in each row to be chosen by 103 participants.

The expected value of the accepted recommended photos by the participants with respect to
the total number of recommendations including the baselines is 65.74%. More accurately, the
histogram of the acceptability rate for the queries of the user study is shown in Figure 13. The
x-axis shows the acceptability rate ranged from 0 to 1 with 0.1-width bins, i.e, what percentage of
the participants has accepted our recommended photos for those queries. The y-axis shows the
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Fig. 12: A subset of image queries used for user study based on different types of categories such as
semantics, single vs group, full-body, upper-body, facial, male vs female, etc.
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Fig. 13: The histogram of the acceptability rate based on the recommended photos versus the total
number of recommendations (recommendation probability) compares ours with other methods.

frequency of our accepted recommendations by the total number of the examined corresponding
queries (i.e. probabilities) which fall into each bin. The histogram has indicated that 16.07% of our
recommended photos were accepted by over 80% of the participants, 67.86% of them with over 60%.
Consequently, the majority of our recommended photos are accepted with a mean of 65.74%.

7 CONCLUSIONS

We have introduced a new framework for composition assistance that guides amateur photogra-
phers to capture better shots by providing exemplars. We have experimented with the proposed
approach using a large dataset for portrait and landscape photography ideas that we have collected.
This study leverages the integration of deep-learning-based detectors, hysteresis fusion, portrait
categorization, and artistic pose clustering which makes the whole process automatic. As the
number of photography ideas increases, retrieving the exemplars from the dataset becomes more
challenging. Furthermore, the retrieval system not only finds similar images but also searches for
images with similar semantic constellations with better composition through decomposition and
composition steps. The performance of our framework has been evaluated by a set of experiments
including comparisons with some competitors and a user study.
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