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Studying Digital Imagery of Ancient Paintings by
Mixtures of Stochastic Models
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Abstract—This paper addresses learning-based characteriza-
tion of fine art painting styles. The research has the potential to
provide a powerful tool to art historians for studying connections
among artists or periods in the history of art. Depending on
specific applications, paintings can be categorized in different
ways. In this paper, we focus on comparing the painting styles
of artists. To profile the style of an artist, a mixture of stochastic
models is estimated using training images. The two-dimensional
(2-D) multiresolution hidden Markov model (MHMM) is used
in the experiment. These models form an artist’s distinct digital
signature. For certain types of paintings, only strokes provide
reliable information to distinguish artists. Chinese ink paintings
are a prime example of the above phenomenon; they do not have
colors or even tones. The 2-D MHMM analyzes relatively large
regions in an image, which in turn makes it more likely to capture
properties of the painting strokes. The mixtures of 2-D MHMMs
established for artists can be further used to classify paintings
and compare paintings or artists. We implemented and tested
the system using high-resolution digital photographs of some of
China’s most renowned artists. Experiments have demonstrated
good potential of our approach in automatic analysis of paintings.
Our work can be applied to other domains.

Index Terms—Art painting, image classification, image retrieval,
mixture of stochastic models, 2-D multiresolution hidden Markov
model.

I. INTRODUCTION

THERE have been many recent efforts to digitize fine art
paintings and other art pieces. With the World Wide Web,

it is now possible for anyone to gain access to digitized art pieces
through the Internet. It is also becoming possible to analyze art
works at a larger scale. Can we develop computer algorithms
to analyze a large collection of paintings from different artists
and to compare different painting styles? That is the question
we attempt to address in this paper.

This is an important problem not only for computer scien-
tists, but also for the art community. With advanced computing
and image analysis techniques, it may be possible to use com-
puters to study more paintings and in more details than a typical
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art historian could. Computers can be used to analyze fine fea-
tures and structures in all locations of images efficiently. These
numerical features can be used to compare paintings, painters,
and even painting schools. Numerical features can also be used
to assist database managers to classify and annotate large col-
lections of images for effective retrieval purposes. The problem
of studying paintings using computers is relatively new to the
scientific community because paintings have been digitized at
high resolutions since not long ago and advanced image anal-
ysis techniques are becoming available. Content-based image
analysis and retrieval for stock photo databases has been studied
extensively. However, the methods cannot be directly applied
to the study of photographs of paintings. We discuss existing
image retrieval approaches and major challenges later in this
section.

In this paper, we present our approach to study collections
of Chinese paintings. A mixture of 2-D multiresolution hidden
Markov models (MHMMs) is developed and used to capture dif-
ferent styles in Chinese ink paintings. The models are then used
to classify different artists. We conducted experiments using a
database of high resolution photographs of paintings. The al-
gorithms presented here can potentially be applied to digitized
paintings of other cultures.

A. Major Challenges

The majority of work on image analysis is based on realistic
imaging modalities, including photographs of real world
objects, remote sensing data, MRI scans, and X-ray images.
A rough correspondence exists in these modalities between
objects and regions of relatively homogeneous colors, intensi-
ties, or textures. These pictorial features extracted locally can
be clustered in a vector space, yielding a segmentation of the
image. The segmented regions form an effective abstraction
of the image and can be compared efficiently across images.
Many image retrieval systems [21], [26], with the core technical
problem of measuring the similarity between images, rely on
such vector clustering based segmentation. This approach is
also taken in many systems for image classification [16] and
detection of objects of interest [24]. The expressive nature of art
work, however, breaks the link between local pictorial features
and depicted objects. For instance, many Chinese paintings
are in monochromic ink and sometimes do not even possess
gradually changing tones.

Furthermore, art paintings demand unconventional image
analysis tasks. For instance, a significant genre of ancient
Chinese paintings are the so called “mountains-and-waters”
paintings. This genre depicts mountains, trees (an integral part
of mountains), rivers/lakes, and sometimes small pagodas and
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thatch cottages, as shown in Figs. 10 and 11. In terms of image
content, there is little to compare among these paintings. An
important aspect art historians often examine when studying
and comparing paintings is the characteristic strokes used by
artists [7]. Many impressionism masters formed their styles by
special strokes [10]. These include the swirling strokes of Van
Gogh and the dots of Seurat. Zhang Daqian,1 an artist of the
late Qing Dynasty to modern China, is renowned for creating a
way of painting mountains using broad-range bold ink wash.

It is of great interest to study how to mathematically char-
acterize strokes, extract different stroke patterns or styles from
paintings, and compare paintings and artists based on them.
There is ample room for image analysis researchers to explore
these topics. In this paper, we investigate the approach of mix-
ture modeling with 2-D MHMMs [15]. The technique can be
used to study paintings from different aspects. Our current ex-
periments focus on profiling artists.

B. Our Approach

We profile artists using mixtures of 2-D MHMMs. A collec-
tion of paintings by several artists is used to train mixtures of
2-D MHMMs. Every 2-D MHMM in a mixture model, referred
to as a component of the mixture, is intended to characterize
a certain type of stroke. Based on the trained models, methods
can be developed to classify paintings by artist and to compare
paintings and artists. The mixture of 2-D MHMMs is motivated
by several reasons:

1) The 2-D MHMM characterizes statistical dependence
among neighboring pixels at multiple resolutions. The
spatial dependence among pixels is closely related to the
stroke style. For instance, small dark strokes generate
pixels that frequently transit between bright and dark
intensities. Thin strokes tend to generate large wavelet
coefficients at higher frequency bands than thick wash.
Pixels in regions of diluted wash correlate more strongly
across resolutions than those of well defined sharp
strokes.

2) The multiresolution hierarchical representation of spatial
dependence employed in 2-D MHMM enables compu-
tationally the analysis of relatively large regions in an
image. This capability is important because patterns of
strokes can hardly emerge in small regions. The compu-
tation advantage of 2-D MHMM over a single resolution
2-D HMM is discussed in [15].

3) The mixture of 2-D MHMMs trained for each artist can
be used not only to classify artists but also to extract
and characterize multiple kinds of stroke styles. Com-
paring with a pure artist classification system, the mix-
ture model offers more flexibility in applications. For in-
stance, a composition of an image in terms of stroke styles
each specified by a 2-D MHMM can be computed. Paint-
ings of a single artist can be compared based on the stroke
composition.

4) A major difficulty in classifying images using generic
classification methods such as decision trees is to define

1Conventionally, in Chinese, the family name is placed first.

a set of features that efficiently represent an entire image.
Much work has been done on extracting features for small
regions in images. How to combine these local features to
characterize a whole image is not obvious. Under the 2-D
MHMM approach, the local features are summarized by
a spatial model instead of an overall feature vector. The
distributions of the local features and their spatial rela-
tions are embedded in the model. Experiments have been
performed on classifying ten categories of photographs
using 2-D MHMM, SVM (support vector machine) [22]
with color histogram based features, and SVM with fea-
tures extracted from segmented regions [6], [25]. The 2-D
MHMM approach yields the highest classification accu-
racy for this application.

C. Related Work

Research problems in concern and methodologies used in this
paper are related to several technical fields, among which in-
clude computer vision, image retrieval, database management,
and statistical image modeling. We do not intend a broad survey.
Instead, we try to emphasize some work most related to what we
propose. The references below should be taken as examples of
related work, not as the complete list of work in the cited areas.

For a general introduction to digital imagery of cultural her-
itage materials and related database management, see [7], [18].
Readers are referred to [12], [26] for introduction to computer
vision and image retrieval. Statistical image modeling has been
explored extensively in both signal/image processing and com-
puter vision. In 1991, Bouman and Liu used Markov random
fields (MRF) for multiresolution segmentation of textured
images [2]. Choi and Baraniuk [8] proposed wavelet-domain
hidden Markov tree (HMT) models for image segmentation in
1999. Readers are referred to [2], [5], [8], [15] for an extensive
review.

How to measure the similarity between images or groups
of images is a core problem for content-based image retrieval
(CBIR). An article published by Smeulders et al. reviewed more
than 200 references [21] on the history of CBIR development.
Readers are referred to that article and some additional refer-
ences [1], [11], [13], [14], [19], [20], [26] for more informa-
tion on recent advances in this area. CBIR systems have focused
on comparing general color photographs. The techniques devel-
oped to measure similarity between such images are hardly suit-
able to the art images studied here.

D. Outline of the Paper

The remainder of the paper is organized as follows. Section II
describes how features are computed. In Section III, the mixture
model of 2-D MHMMs is introduced and its estimation algo-
rithm is presented. The architecture of the system for the par-
ticular application of classifying paintings of different artists
is described in Section IV. In Section V, experiments and re-
sults are presented. Applications of the mixture of 2-D MHMMs
other than classification are discussed in Section VI. We present
our conclusions and suggest future research directions in Sec-
tion VII.
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Fig. 1. Wavelet transform of an image. The wavelet transform decomposes an image into four frequency bands: LL, HL, LH, and HH.

Fig. 2. Pyramid structure of the feature vectors across resolutions. Wavelet coefficients in high frequency bands are used as features.

II. FEATURE EXTRACTION

The wavelet transform is used to extract features from im-
ages. For a basic account on wavelet transforms, readers are
referred to [9]. See [23] for applications in signal/image pro-
cessing. By applying wavelet transforms successively to each
row in an image and then each column, the image is decom-
posed into four frequency bands: LL (low low), HL (high low),
LH, HH, as shown in Fig. 1. The LL band contains a low resolu-
tion version of the original image. 2-D wavelet transforms can
be applied recursively to the LL band to form multiresolution
decomposition of the image. The HL band in large part reflects
horizontal changes in the image. The LH band reflects vertical
changes. The HH band reflects diagonal changes. Because of the
dyadic subsampling, a block of size in the original image
with top left corner located at coordinates ( , ) has its spatially
corresponding blocks in the four bands with size
and location ( , ). The four frequency bands are usu-
ally spatially arranged in the manner shown in Fig. 1 so that
the transformed image is of the same dimension as the original
image.

For the art images, features are extracted at three resolutions.
The finest resolution (Resolution 3) is the original image. The
coarsest resolution (Resolution 1) is provided by the LL band
after two levels of wavelet transform. The Daubechies-4 wavelet
is used in particular because of its good localization properties
and low computational complexity. Some other wavelet filters

may generate similar results. The middle resolution is obtained
by one level of wavelet transform. At each resolution, a feature
vector is computed for every 2 2 block. Since the number of
rows and that of columns decrease by a factor of two at a reso-
lution one level coarser, the number of feature vectors reduces
at a ratio of four across successively coarser resolutions. Fig. 2
illustrates the pyramid structure of feature vectors extracted at
the same spatial location in multiple resolutions. At a higher
resolution, although the basic element of the image is still a 2

2 block, the spatial division of the image is finer because the
image itself is expanded in both width and height. Equivalently,
if we map images in all the resolutions to the original size, a 2

2 block in Resolution 1 corresponds to an 8 8 block in the
original image. A feature vector extracted at Resolution 1 thus
characterizes an original 8 8 block. At Resolution 2, this 8

8 block is divided into four child blocks of size 4 4, each
characterized by a feature vector. These four child blocks are
in turn divided at Resolution 3, each having its own four child
blocks. To avoid terminology cumbersomeness, we refer to an
8 8 block in the original image and its corresponding 4 4
and 2 2 blocks in Resolution 2 and 1 as a pyramid. Each node
in a pyramid denotes a 2 2 block at a certain resolution.

Next, we consider how to extract feature vectors at every res-
olution. Resolution 1 is used for description without loss of gen-
erality since the same mechanism of computing features is ap-
plied to all the resolutions. The feature vector for a 2 2 block
includes the three wavelet coefficients at the same spatial lo-
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Fig. 3. Pyramid structure formed by spatial registration of blocks in multiple resolutions.

cation in the HL, LH, and HH frequency bands after one level
of wavelet transform. Suppose the coordinates of pixels in the
block are ( , ), , , , . The cor-
responding wavelet coefficients of this block in the LL, HL,
LH, and HH bands are at coordinates ( , ), ( , ), ( ,

), and ( , ), where and are the
numbers of rows and columns in the image. Since the low res-
olution images themselves are obtained by wavelet transforms,
it is unnecessary to compute images in the three resolutions in-
dividually and then apply one-level wavelet transform to each
one. Instead, we can simply apply a three-level wavelet trans-
form to the original image and decompose it into an LL band
and the HL, LH, and HH bands at the three resolutions, shown in
the right panel of Fig. 2. Wavelet coefficients in these frequency
bands can be grouped properly to form the feature vectors at
all the resolutions. Fig. 2 shows how feature vectors are formed
for the pyramid located at the top left corner. The three shaded
pixels in the HL, LH, and HH bands at Resolution 1 denote the
wavelet coefficients grouped into one feature vector for the node
in the pyramid at the coarsest resolution. At the same spatial
location at Resolution 2, there are four wavelet coefficients in
every high frequency band. Consequently, 4 three-dimensional
feature vectors are formed, each associated with one child node.
Similarly, at Resolution 3, 16 three-dimensional feature vectors
are formed, each associated with one node at the base of the
pyramid.

For the current system implementation, as the focus is on
Chinese ancient paintings, only the illuminance component of
pixels is used. There are several reasons for discarding the color
components. First, color was not considered as an essential el-
ement in painting by many traditional Chinese artists who ba-
sically used monochromic ink to paint. Painting was regarded
as an integrated form of art with calligraphy, for which color is
not used at all. Second, even when color was used in ancient
Chinese paintings, there were rather limited varieties available,
hardly enough to provide artists a sufficient amount of freedom
to form their own distinct styles. Third, many paintings have se-
rious color distortions caused by the aging over centuries. Var-
ious factors in the process of digitizing paintings add more color
distortions. Finally, as pointed out by a reviewer of this paper,
by not including color information in the features, we can study
how well the algorithm works without color, which is interesting
in its own right.

To reduce sensitivity to variations in digitization, as readers
may have noticed, only high frequency wavelet coefficients, re-
flecting changes in pixel intensity rather than absolute intensity,
are used as features. It is worth to point out, however, if color
information is desired for characterizing images, it is straight-
forward to add in corresponding features. For instance, we can
expand the feature vectors at the coarsest resolution to include
the average color components of the 2 2 blocks. To incorpo-
rate color information, a three-level wavelet decomposition will
be applied to each color component. The wavelet transform ac-
counts for a majority part of computation in the feature extrac-
tion process. On a 1.7 GHz Linux PC, the CPU time to convert
a color image of size 512 512 to grayscale and compute the
features described above using a three-level wavelet transform is
about 0.83 second. The amount of computation is proportional
to both the number of rows and the number of columns in an
image.

III. MIXTURE OF 2-D MHMM

A. Background on 2-D MHMMs

A detailed treatment of 2-D MHMMs can be found in [15].
The 2-D MHMM is proposed to capture the spatial dependence
among image pixels or blocks and to explore the multiresolution
nature of images. Under this model, an image is viewed as a
2-D stochastic process defined on a pyramid grid. Given a pixel
representation of an image, multiple resolutions of the image
are first computed. At every reduced resolution, the image size
decreases by a factor of two in both rows and columns. A natural
way to obtain a low resolution image is to use the LL (low low)
frequency band yielded from a wavelet transform [9]. The one-
level wavelet transform can be applied recursively to the LL
band, giving representations of the image at successively coarser
resolutions. A brief introduction to this process will be given in
Section II.

Due to the localization property of the wavelet transforms,
pixels in the image at multiple resolutions can be registered spa-
tially to form a pyramid structure. To reduce computation, in
the modeling process, the basic elements of an image may be
nonoverlapping blocks rather than pixels. Hence, terminologies
to appear in the sequel are phrased in terms of blocks. The spatial
registration of the blocks across resolutions and the pyramid ab-
straction are shown in Fig. 3. A node in the pyramid at a certain
resolution corresponds to a basic processing block of the image
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at that resolution. A block at a lower resolution covers a larger
region of the image. As indicated by Fig. 3, a block at a lower
resolution is referred to as a parent block, and the four blocks at
the same spatial location at the higher resolution are referred to
as child blocks. We will always assume such a “quad-tree” split
in this paper, since the extension to other hierarchical structures
follows directly.

For every node in the pyramid, depending on particular ap-
plications, features may be computed based on pixel values in
the node or in a neighborhood of the node. These features form a
vector at the node and are treated as multivariate data. Details on
feature extraction are presented in Section II. After applying fea-
ture extraction at all resolutions, the image is converted to a col-
lection of feature vectors defined on a multiresolution pyramid
grid. The 2-D MHMM attempts to model the statistical depen-
dence among the feature vectors across and within resolutions.

The 2-D MHMM assumes that the feature vectors are proba-
bilistic functions of an underlying state process defined on the
pyramid. Given the state of a node, the feature vector is assumed
to be conditionally independent of all other nodes in all resolu-
tions. The conditional distribution of the feature vector is as-
sumed to be multivariate Gaussian. The states are modeled by
a multiresolution Markov mesh (a causal extension of Markov
chain into two dimensions) [15]. They are purely conceptual and
unobservable, playing a similar role as cluster identities in unsu-
pervised clustering. In clustering analysis, samples are assumed
independent, and hence so are the underlying cluster identities.
For image analysis, since we intend to explore the spatial depen-
dence, the states are modeled by a Markov mesh instead of an
i.i.d. (independent and identically distributed) process, as nor-
mally assumed in clustering analysis. An important motivation
for imposing statistical dependence among nodes through states,
instead of directly on feature vectors, is to strike a good balance
between model complexity and the flexibility of the marginal
distribution of the feature vectors.

Next, we detail the assumptions made on the state process.
First, let us consider a single resolution 2-D HMM. Denote the
state at block ( , ) by . We say that block ( , ) is before
block ( , ) if either or both and , and write

. We assume that given the states of all the nodes
before node ( , ), the transition probabilities of only depend
on the states immediately above ( , ) and adjacent to the left of
( , ), i.e.,

For the multiresolution HMM, denote the set of resolutions
by , with being the finest resolution. Let
the collection of block indices at resolution be

where or is the number of blocks in a row or column at the
finest resolution. An image is represented by feature vectors at
all the resolutions, denoted by , , . The

underlying state of a feature vector is . At each resolution

, the set of states is . Note that as states
vary across resolutions, different resolutions do not share states.

Statistical dependence across resolutions is assumed to be
governed by a first-order Markov chain. That is, given the states
at the parent resolution, the states at the current resolution are
conditionally independent of the other preceding (ancestor) res-
olutions. The first-order dependence, in contrast to higher or-
ders, is often assumed in multiresolution image models [8], [15]
to maintain low computational complexity and stable estima-
tion. By the chain rule of a Markov process, we have

At the coarsest resolution, , states follow the Markov mesh
assumed in a single resolution 2-D HMM. Given the states at
resolution , statistical dependence among blocks at the finer
resolution is constrained to sibling blocks (child blocks de-
scended from the same parent block). Specifically, child blocks
descended from different parent blocks are conditionally inde-
pendent. In addition, given the state of a parent block, the states
of its child blocks are independent of the states of their “uncle”
blocks (nonparent blocks at the parent resolution). State transi-
tions among sibling blocks are governed by Markov meshes, as
assumed for a single resolution 2-D HMM. The state transition
probabilities, however, depend on the state of their parent block.
To formulate these assumptions, denote the child blocks at res-
olution of block ( , ) at resolution by

According to the assumptions,

where can be evaluated

by transition probabilities conditioned on , denoted by

. We thus have a different set of transition prob-
abilities for every possible state in the parent resolution.
The influence of previous resolutions is exerted hierarchically
through the probabilities of the states, which can be visualized
in Fig. 3.

As shown above, a 2-D MHMM captures both the inter-scale
and intra-scale statistical dependence. The inter-scale depen-
dence is modeled by the Markov chain over resolutions. Specif-
ically, given the states of blocks at a parent resolution, the states
of blocks at the child resolution are independent of resolutions
preceding the parent. The intra-scale dependence is modeled by
the HMM. At the coarsest resolution, feature vectors are as-
sumed to be generated by a 2-D HMM. At all the higher res-
olutions, feature vectors of sibling blocks are also assumed to
be generated by 2-D HMMs. The HMMs vary according to the
states of parent blocks. Therefore, if the next coarser resolution
has states, then there are, correspondingly, HMMs at the
current resolution.

The 2-D MHMM can be estimated by the maximum likeli-
hood criterion using the EM algorithm. The computational com-
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plexity of estimating the model depends on the number of states
at each resolution and the size of the pyramid grid. Details about
the estimation algorithm, the computation of the likelihood of an
image given a 2-D MHMM, and computational complexity can
be found in [15].

Since at the coarsest resolution, the states are related through
a 2-D HMM, blocks in the entire image are statistically depen-
dent. In practice, however, it is computationally expensive to
assume a 2-D HMM over the whole image at Resolution 1 (the
coarsest resolution). Instead, we usually divide an image into
sub-images and constrain the HMM within sub-images. Sub-im-
ages themselves are assumed to be independent. For instance,
an image contains 64 64 nodes at the coarsest resolution. In-
stead of assuming one HMM over the 64 64 grid, we may
divide the image into sub-images. At the coarsest
resolution each sub-image contains 8 8 nodes modeled by an
HMM. Consequently, the image is not viewed as one instance
of a 2-D MHMM defined on the entire pyramid grid but as
64 independent instances of a 2-D MHMM defined on smaller
pyramid grids. In fact, as long as the size of sub-images allows
the analysis of sufficiently large regions, division into sub-im-
ages causes little adverse effect. Besides computation reduction,
another advantage of using sub-images in contrast to treating
the whole image will become clear in the next section where
the mixture of 2-D MHMMs is introduced. Using the mixture
of 2-D MHMMs, we can obtain a composition of an image in
terms of different stochastic processes, a basis for comparisons
between two images.

B. Mixture Model

The purpose of using 2-D MHMMs to model art images is
to capture the styles of artists’ strokes. Capturing each style
demands for the analysis of relatively large regions in the im-
ages. As it is constraining to assume that an artist has a single
stroke style, we propose a mixture of 2-D MHMMs. For every
sub-image, one of the component 2-D MHMMs is invoked and
the feature vectors in the sub-image are assumed to follow the
stochastic process specified by this MHMM. The idea parallels
that of the Gaussian mixture [17]. When a single Gaussian dis-
tribution is insufficient to model a random vector, we may as-
sume that the random vector is produced by multiple Gaussian
sources. To produce the vector, a Gaussian source is randomly
chosen. Then the vector is generated according to its distribu-
tion. Here, instead of being random vectors, every sub-image
is a 2-D stochastic process. Therefore, every source specifies a
2-D MHMM rather than simply a Gaussian distribution. Based
on the mixture model the 2-D MHMM most likely to generate
a certain sub-image can be determined. Thus, a composition of
an image in terms of the 2-D MHMMs can be obtained by asso-
ciating each sub-image to the most likely mixture component.
This composition is useful for detailed comparisons between
images, a point to be elaborated upon in Section VI.

A mixture of 2-D MHMMs, denoted by , is parame-
terized by the prior probabilities of the components, , and
the individual 2-D MHMMs , . We denote
the collection of feature vectors in a sub-image by . Then the
probability of under the mixture model is

Assume the training sub-images are . To
estimate the mixture model, the standard EM procedure is used
to update the ’s iteratively by the following two steps:

1) E step: Compute the posterior probabilities of the mixture
components for each sub-image

where
.

2) M step: update the prior probabilities

and the MHMMs , using weights .
Note that are prior probabilities estimated in previous itera-
tion. The update of MHMMs with weights can be performed by
the estimation algorithm for a single MHMM described in [15].

An alternative estimation to the maximum likelihood estima-
tion by EM is the so-called classification maximum likelihood
(CML) approach [17], which treats the mixture component iden-
tity of every sub-image as part of the estimation. The corre-
sponding version of the EM algorithm is referred to as the clas-
sification EM [4] (CEM) algorithm. CEM modifies EM by re-
placing the “soft” classification into mixture components in the
E step by a “hard” classification. After computing , the th
sub-image is classified to the MHMM with maximum over

. In the M step, each MHMM is estimated using sub-images
classified to it. Or equivalently, is set to 1 if ,
for all and 0 otherwise. CEM reduces the computa-
tion of EM by estimating each component model using only
sub-images classified to this component. In contrast, EM esti-
mates every component model based on all the sub-images, each
weighted by a posterior probability. The advantage of CEM is
especially appealing when it is computationally intensive to es-
timate the component models. The CEM algorithm is used in
estimation in our current system.

IV. SYSTEM ARCHITECTURE

In this section, we introduce the architecture for classifying
paintings of different artists. In training, a set of paintings from
each artist is collected and multiresolution features are com-
puted for each image. These multiresolution features, with their
spatial location information, are input to estimate a mixture of
2-D MHMMs, profiling the artist. The spatial information is
needed since the feature vectors are not treated as independent
samples. On the other hand, the transition probabilities in the
2-D MHMM only depend on the relative spatial location of
feature vectors between and within resolutions. The amount of
computation needed to train the mixture model is proportional
to the number of sub-images in the training images.

To classify an image, it is first converted to a set of mul-
tiresolution feature vectors. The classification of an image is
based on the classification of its sub-images. The likelihood
of a sub-image , , under each component 2-D
MHMM of each artist’s profiling mixture model ,

, is computed. The sub-image is labeled by class
if a component of yields the maximum likelihood among
the components of all the mixture models. A majority voting
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Fig. 4. Three resolution model used in the system. An image is divided into
sub-images of size 64� 64. For each 8� 8 block in a sub-image, feature vectors
extracted at the three resolutions form a pyramid shown above. The 8� 8 blocks
within the sub-image are statistically dependent because the root nodes of their
pyramids are assumed to follow a 2-D HMM.

scheme using the class labels of all the sub-images determines
the class of the image.

Fig. 4 illustrates the forming of the pyramid of feature vectors
in our system. An image is divided into sub-images of size 64
64. Sub-images from the same artist are assumed to be generated
by a fixed mixture model . However, the mixture component
identity, i.e., which MHMM is active, varies with sub-images.
Every 8 8 block in a sub-image becomes a 2 2 block at the
coarsest resolution (total of 3 resolutions), which is the basic
processing element associated with one feature vector. The 8

8 blocks are statistically dependent because their associated
feature vectors at the coarsest resolution are governed by a 2-D
HMM. At the coarsest resolution, the feature vector of an 8
8 block corresponds to a root node of the pyramid. At the next
higher resolution, the root node splits into 4 child nodes, each
in turn splitting to 4 nodes at the highest resolution. Hence, the
basic processing elements from resolution 1 to 3 correspond to
8 8, 4 4, and 2 2 blocks in the sub-image. If more than
three resolutions are modeled by the 2-D MHMM, sub-images
of larger sizes can be analyzed. However, larger sub-images are
not necessarily desirable since each sub-image is assumed to be
generated by one component 2-D MHMM and possess a single
stroke style.

V. EXPERIMENTS

A. Background on the Artists

We developed the system to analyze artistic paintings. As
initial experiments, we studied and compared Chinese artists’
work. We digitized collections of paintings by some of the most
renowned artists in Chinese history at spatial resolutions typ-
ically of 3000 2000 pixels. Fig. 5 shows a random selec-
tion of six images from the database. To validate the proposed

method, we first used collections of five artists. For each artist,
about one third of his collected paintings in the database are
used as training images to estimate the mixture model, and the
rest are used as testing images to evaluate classification perfor-
mance. The training and testing images are both scaled so that
the shorter of the two dimensions has 512 pixels. As explained
in Section IV, the basic processing element at the lowest res-
olution corresponds to a block of 8 8 pixels at the highest
resolution. If the longer dimension of an image is not divisible
by 8, a narrow band (the width is smaller than 8) of pixels at one
side of the image is discarded to guarantee divisibility by 8.

A brief introduction of the artists is given below. Complying
to the naming tradition of Chinese paintings, the following
terminologies are used to refer to the main categories of
Chinese paintings: mountains-and-waters (landscape), flowers
(a.k.a. flowers-and-birds), trees-and-grass, human figures, and
animals.

1) Shen Zhou (1427–1509) of the Ming Dynasty: There are
46 of his paintings in the database. Most of them are of
the mountains-and-waters type; a small number of them
are of flowers.

2) Dong Qichang (1555–1636) of the Ming Dynasty: There
are 46 of his paintings in the database; all are of the moun-
tains-and-waters type.

3) Gao Fenghan (1683–1748) of the Qing Dynasty: There
are 47 paintings of his in the database: some of moun-
tains-and-waters and some of flowers.

4) Wu Changshuo (1844–1927) of the late Qing Dynasty:
There are 46 paintings of his in the database, all of
flowers.

5) Zhang Daqian (1899–1983) of the late Qing Dynasty
to modern China: Zhang was one of the few artists of
modern China who inherited comprehensive skills from
mountains-and-waters painters in the Ming and Qing
Dynasty. He painted diverse topics: mountains-and-wa-
ters, flowers (mainly lotus), and human figures. There
are 91 paintings of his in the database, encompassing all
main categories of Chinese paintings.

B. Extract Stroke/Wash Styles by the Mixture Model

For each of the five artists, a mixture model with 8 compo-
nents is trained. Every component 2-D MHMM has 3 resolu-
tions, with 2 states at the each resolution. As described in Sec-
tion IV, images are divided into sub-images of size 64 64.
Every sub-image is assumed to be generated by one component
MHMM in the mixture. After a mixture model is trained for an
artist, sub-images in his paintings can be classified to one of
the component MHMMs by the criterion of maximum poste-
riori probability. Assuming equal priors on the component, the
criterion is equivalent to choosing the MHMM that yields the
maximum likelihood of a sub-image. Computation of the likeli-
hood is discussed in Section III. As Zhang has relatively diverse
painting styles and topics, we examine and compare in detail
sub-images classified to the 8 MHMMs in his paintings. Figs. 6,
7, and 8 show regions in his paintings classified to each of the 8
MHMMs. Since sub-images are the classification elements, all
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Fig. 5. Random selection of six images from the database.

Fig. 6. Regions in Zhang’s paintings classified as stroke style 1�2.

the regions extracted are groups of connected sub-images clas-
sified to the same MHMM. The 8 MHMMs appear to have cap-
tured relatively distinct stroke or wash styles, described in detail
below.

1) Swift, thin strokes on relatively smooth background: This
type appears mainly in paintings of lotus and human fig-
ures. Some regions with Chinese characters written in
pale ink are also classified to this group.
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Fig. 7. Regions in Zhang’s paintings classified as stroke style 3�5.

Fig. 8. Regions in Zhang’s paintings classified as stroke style 6�8.
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Fig. 9. Distributions of the three features in the two states at the first resolution of one component 2-D MHMM. (a) In every panel, the Gaussian distributions
of one feature in both states are plotted. Solid lines: State 1, dash lines: State 2. (b) By approximating the means of the Gaussian distributions by zero, the square
of each feature follows a scaled � distribution. The distributions of the squares of the three features in both states are plotted.

TABLE I
TRANSITION PROBABILITIES BETWEEN THE TWO STATES AT THE FIRST

RESOLUTION OF ONE COMPONENT 2-D MHMM

2) Flat controlled strokes: These appear mostly in the paint-
ings of mountains and waters.

3) Heavy and thick wash: This style is used mainly to paint
lotus leaves and trees on mountains.

4) Straight, pale wash with some vertical lines: These are
used mostly for painting rocks.

5) Smooth regions.
6) Small dark strokes: Regions with Chinese characters and

trees painted in detail tend to be classified to this group.
7) Sharp lines and straight washes: This style is mainly used

to paint rocks.
8) Pale and diluted wash: This is used mainly to convey a

vague impression, such as mountains in the distance.

Next, we illustrate the numerical result of a trained mixture
model by examining the first resolution of one component 2-D
MHMM in the mixture. In particular, the mixture model with
eight components trained on Zhang’s paintings is used. The
transition probabilities , , , , 2, are listed in
Table I. For this example, the state of a block tends to be the
same as the state of its left neighbor, regardless of the state of
the above neighbor. The tendency of staying in the same state
as the left neighbor is stronger when the above neighbor is also
in this state. The Gaussian distributions of the three features
in both states are plotted in Fig. 9. For all the three features,
their variances in State 1 are significantly higher than those in
State 2 respectively. The mean values, in contrast, are all close
to zero. This indicates that the states differ mainly in the energy,
reflected by the squared values, in high frequency bands gener-
ated by the wavelet transformation.

C. Classification Results

Classification results obtained by mixture models with dif-
ferent numbers of components and a decision tree based method
are compared. In particular, we tested the mixture of one 2-D
MHMM, four 2-D MHMMs, and eight 2-D MHMMs, respec-
tively. For the decision tree method, every sub-image of size
64 64, instead of an entire image, is treated as a sample
because the number of training images is very limited and it
is difficult to extract an efficient feature vector for an entire
image, especially one in grayscale. The training data set thus
comprises feature vectors extracted for the sub-images in the
training images. The class label of a feature vector is if it is
computed from a sub-image in artist ’s paintings. To classify a
test image, its sub-images are classified using the trained deci-
sion tree and a majority voting scheme is performed afterwards.
CART [3] (Classification and Regression Trees) is used to train
decision trees. Features for a sub-image are computed using the
three-level wavelet decomposition shown in Fig. 1. For each of
the 9 high frequency bands (LH, HL, and HH bands at the three
levels), the average absolute value of the wavelet coefficients in
this band is used as one feature.

Three cases of classification have been studied. The artists
classified in case 1, 2, 3 are respectively: 1) Shen and Dong,
2) Shen, Dong, Gao, and Wu, 3) Shen, Dong, Gao, Wu, and
Zhang. Shen and Dong are compared with each other because
they were both artists in the Ming Dynasty who focused
on mountains-and-waters painting. Zhang possessed diverse
painting styles and topics. His paintings are most likely to be
confused with the others’ work, as will be shown shortly. We
thus examined the classification results with and without him
as one class.

Table II summarizes the classification accuracy for each artist
using different methods. For all the three cases of classification,
the highest average accuracy is achieved by profiling every artist
using a mixture of 4 or 8 2-D MHMMs. Comparing with the de-
cision tree method, the mixture modeling approach yields con-
siderably better classification on average in the case of classi-
fying Shen and Dong and the case of classifying the five artists.



350 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 3, MARCH 2004

TABLE II
COMPARING CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS IN

THREE CASES. THE MIXTURE MODELS WITH 1, 4, AND 8 COMPONENT 2-D
MHMMS ARE EXAMINED. EACH COLUMN LISTS THE CLASSIFICATION

ACCURACY FOR EACH ARTIST OBTAINED BY A PARTICULAR METHOD

TABLE III
THE CLASSIFICATION RESULT OBTAINED BY THE MIXTURE OF 8 2-D

MHMMS. EACH ROW LISTS THE PERCENTAGES OF AN ARTIST’S PAINTINGS

CLASSIFIED TO ALL THE FIVE ARTISTS. NUMBERS ON THE DIAGONAL ARE THE

CLASSIFICATION ACCURACY FOR EVERY ARTIST

When a single 2-D MHMM is used to characterize each artist,
the classification accuracy is substantially worse than that ob-
tained by a mixture of 4 or 8 components in all the three cases.
This reflects that a single 2-D MHMM is insufficient for cap-
turing the stroke/wash styles of the artists.

To examine whether the features extracted using the three-
level wavelet decomposition lead to better classification in com-
parison with those extracted using only the one-level decompo-
sition, the decision tree method is also applied to sample vec-
tors containing merely the features computed from the wavelet
coefficients in the three high frequency bands formed by the
one-level wavelet transform. The average classification accu-
racy achieved in the three cases is 72%, 59%, and 20% respec-
tively. The three-level decomposition results in the higher accu-
racy of 77%, 68%, and 30%, as shown in Table II.

Table III provides the detailed classification result for the five
artists obtained by the mixture model of 8 components. Each
row lists the percentages of an artist’s paintings classified to all
the five artists. Numbers on the diagonal are the classification
accuracy for each artist. The classification accuracy for Zhang
is high (85%). However, other artists’ paintings tend to be mis-
classified to his work, which is consistent with the fact he had

diverse painting styles and topics. If classification is performed
only among the other four artists, the accuracy for Wu, Gao,
and Dong increases from 55% to 94%, 68% to 77%, and 52%
to 65% respectively. That for Shen decreases slightly from 50%
to 47%. Zhang’s diverse stroke styles require a relatively large
number of mixture components to capture. Table II shows that if
only four components are used, most images of Zhang are mis-
classified to the other artists.

VI. OTHER APPLICATIONS

In the previous section, the mixture of 2-D MHMMs is used
to classify images into their artists. With a set of trained mixture
models, we can perform other types of analysis. A few possibil-
ities are discussed in this section.

Comparisons among paintings can be made within one
artist’s work. Suppose we index the MHMMs in each mixture
model from 1 to 8 (recall that 8 is the number of MHMMs
in a mixture used in the experiment). By classifying every
sub-image in an image into one of the MHMM in the mixture
model, a map of the image into an array of MHMM indices
(referred to as the stochastic model map) is obtained. These
stochastic model maps form a basis for comparing images. A
basic approach is to examine the percentages of sub-images
classified to each MHMM. Consider two images , 2.
Suppose the percentage of sub-images in image classified
as the th MHMM in the mixture is , .
Similarity between images can be measured according to the
closeness of the two probability mass functions (pmfs)
and , . A well-known measure of the disparity
between two pmfs is the relative entropy defined as

is nonnegative and equals zero if and only if and
are identical. Another “distance” tested is formulated as follows:

The “distance” ranges from 0 to 1 and equals 0 if and
only if and are identical and 1 if they are orthogonal. In
Fig. 10, 4 pairs of Zhang’s paintings are shown. For each pair,
the right image is the most similar one to the left according to the

“distance.” The relative entropy yields the same result except
for the image on the top left, for which another human figure
image is chosen as the most similar one.

To obtain a crude numerical assessment of the similarity
measures, we divide Zhang’s paintings into three categories:
mountains-and-waters, human figure, and lotus flowers. For
each image, the most similar image is chosen from the rest
according to the relative entropy or the “distance”. If the two
images are in the same category, we mark a match. By deciding
whether a match is achieved for every image of the artist, the
total number of matches can be compared with the expected
number of matches if random drawing is used. The number of
images in each of the three categories, mountains-and-waters,
figure, flowers, is , , respectively
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Fig. 10. Four pairs of Zhang’s paintings. For each pair, the right image is the most similar one to the left according to the J “distance.”

(total of ). The expected number of matches is 38.7,
computed based on the following formula:

The number of matches provided by the relative entropy “dis-
tance” is 45; that by the “distance” is 49.

When we compare two artists, it is often desirable to find
paintings of each that most (or least) resemble those of the other.
Since the artists are profiled by mixture models, to compare a
painting of one artist versus the overall style of the other, we
compute the likelihood of the painting under the profiling mix-
ture model of each artist. Close values of the two likelihoods,
or even a higher likelihood given by the other artist’s model, in-
dicate that the painting may be similar to the work of the other
artist.

Fig. 11 shows three mountains-and-waters paintings from
Shen as well as Dong. The three from Shen are identified
by computer as most similar to the style of Dong, and vice

versa. Under the same spirit, we can find paintings of an artist
most distinguished from the other artist’s work. Fig. 12 shows
paintings of Zhang that are most different from Shen’s work.
Human figures and lotus flowers are painted in these images,
which are indeed topics only depicted by Zhang and involve
quite different painting skills from the mountains-and-waters
type. At the current stage of research, we cannot provide a
rigorous evaluation of the result as it demands the expertise of
artists.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored how to extract stroke styles of
paintings using the mixture of 2-D MHMMs. We have demon-
strated that different types of strokes or washes of an artist can
be extracted by the mixture modeling approach. Several applica-
tions can be built upon the trained mixture models: classification
of paintings into artists, finding similar or distinguished paint-
ings of one artist to or from another artist’s work, and measuring
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Fig. 11. Comparison between Shen and Dong’s paintings. (a) and (b) Paintings of Shen/Dong identified as most similar to the other’s work.

Fig. 12. Comparison between Zhang and Shen’s paintings. The above paintings by Zhang are identified as most distinguished from Shen’s work.

similarity between images of one artist. We have performed ex-
periments on a collection of paintings from Chinese artists. For
several reasons, color information and sometimes overall inten-
sity are not helpful for characterizing Chinese paintings. We
have shown that based upon high frequency bands of the wavelet
transforms of the illuminance component, different styles of
strokes can be distinguished. Using the mixture model, experi-
ments on several painting analysis problems have demonstrated
promising results.

There is great room for future work in several directions.
First, more art-related image analysis tasks should be identi-
fied and explored by the developed method. Second, the mod-
eling approach can be advanced. One interesting issue is to au-

tomatically determine the complexity of the model. At the cur-
rent stage, the number of parameters in the mixture model is
pre-chosen. Model selection techniques can be applied to adap-
tively choose the number of parameters according to the style
diversity of an artist’s paintings. The diversity of an artist’s
work is itself an interesting aspect to investigate. The developed
methodology of the mixture of 2-D MHMMs would provide a
basis for forming model selection schemes. Finally, applying
this technique to multimodal imaging of art works or images of
other domains can be interesting.

Much work needs to be done on the applications of such tech-
niques to assist art historians or users of art image databases.
Potentially applications can be developed, incorporating image
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analysis techniques, to allow users to find similar paintings or
paintings of similar styles. Applications can also be developed
to help art historians to find possible connections among paint-
ings. We will work with the user communities in the future on
this.
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