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Abstract—The British landscape painter John Constable is considered foundational for the Realist movement in 19th-century
European painting. Constable’s painted skies, in particular, were seen as remarkably accurate by his contemporaries, an impression
shared by many viewers today. Yet, assessing the accuracy of realist paintings like Constable’s is subjective or intuitive, even for
professional art historians, making it difficult to say with certainty what set Constable’s skies apart from those of his contemporaries.
Our goal is to contribute to a more objective understanding of Constable’s realism. We propose a new machine-learning-based
paradigm for studying pictorial realism in an explainable way. Our framework assesses realism by measuring the similarity between
clouds painted by artists noted for their skies, like Constable, and photographs of clouds. The experimental results of cloud
classification show that Constable approximates more consistently than his contemporaries the formal features of actual clouds in his
paintings. The study, as a novel interdisciplinary approach that combines computer vision and machine learning, meteorology, and art
history, is a springboard for broader and deeper analyses of pictorial realism.

Index Terms—Pictorial realism, John Constable, cloud classification, feature fusion, style disentanglement.
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1 INTRODUCTION

IN this paper, we propose a new machine learning paradigm for
studying the European art style known as realism. The specific

case study we report here is the work of John Constable (1776-
1837) whose landscape paintings are considered foundational for
the Realist movement. Constable was especially renowned for
his skies. Although there is general agreement that Constable’s
sky paintings are persuasive in their realism, the precise ba-
sis for his realism continues to be debated. The feasibility of
quantitative analysis for studying pictorial realism, as exemplified
here, demonstrates that computational approaches may augment
traditional approaches to art-historical research.

Fig. 1: Two Cloud Study oil paintings by John Constable (1822).
Left: Yale Center for British Art. Right: The Frick Collection.

1.1 The Art-Historical Questions
In 1821, Constable undertook a sustained campaign of “skying,”
as he called his outdoor sketching of clouds. There is general art-
historical agreement that Constable’s painted clouds became more
life-like around this time (Fig. 1) [1], [2]. The significance of this
period of concentrated effort has been debated [2], [3], [4]. Some
see Constable’s cloud paintings of this period as confirmation that
the artist’s powers of observation improved as a consequence
of prolonged study, enabling him to execute more convincing
clouds [5]. Yet faithful visual documentation of clouds is challeng-
ing because they are constantly changing. It seems reasonable to
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posit that Constable relied on certain artistic conventions or formal
patterns for his paintings of these ever-shifting motifs, as painters
often did. It has also been argued that the 1821 skying campaign
was a belated response to the 1803 publication of Luke Howard’s
typology of clouds into cumulus, cirrus, stratus, etc. [6], though
there is no direct evidence that Constable consulted Howard’s
publication [7]. Scholars remain in disagreement about the degree
to which Constable relied strictly on empirical observation, on
visual formulae that might escape the notice of human viewers, or
on a new understanding of how to distinguish and thus represent
different types of clouds [2], [3], [4]. To some extent, scholarly
disagreement arises from the fact that human viewers may not
perceive or may perceive only with difficulty qualities like cloud
accuracy or visual conventions that have been naturalized through
regular use by European artists. Our goal is to contribute to a more
accurate understanding of Constable’s realism via three paths of
inquiry:

1) Do Constable’s clouds correspond with the system of
cloud typology introduced in 1803 by Luke Howard?

2) How closely do Constable’s paintings emulate the appear-
ance of actual clouds when compared to photographs of
clouds?

3) How does the empirical accuracy of Constable’s clouds
compare with that of his contemporaries when judged
against photographs of clouds?

1.2 Overview of Our Approach
These judgments about realism from art historians are highly
subjective insofar as they record the opinion of a particular viewer
at a particular moment. The perceived fidelity of a painting to
the natural phenomena it represents cannot always be clearly
explained, because it is guided by an immediate, intuitive response
to a particular painting. This is especially true of hard-to-describe
phenomena like clouds or crashing waves: for most human view-
ers, paintings of these subjects simply “look right” or not. To
provide a more objective assessment of realism, we introduce a
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machine-learning-based analysis procedure. As shown in Fig. 2,
this method comprises two components: classification of painted
content (cloud in this case) and evaluation of painting style. In a
nutshell, we evaluate pictorial realism by assessing the similarity
between paintings and photographs in terms of both the painted
content and painting style, which makes our evaluation system
more thorough and unbiased [8].
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Fig. 2: The proposed machine learning paradigm for studying
pictorial realism.

After obtaining a labeled dataset containing both photographic
images of clouds and a collection of sky paintings, we first train
a machine learning system using these photographs to classify
cloud categories. We then apply this classifier to our painting set
to predict their cloud categories. In the meantime, classification
labels are created for the paintings by experts (meteorologists).
The classification accuracy for the paintings is then computed
and compared with the accuracy achieved for photographs. Our
basic assumption is that the classification accuracy of paintings
that imitate observed reality well will be close to that obtained
for the photos. Further comparison can be conducted between dif-
ferent collections of paintings, allowing assessment of the relative
fidelity of various collections to nature. One type of comparison
across collections is between works by different artists. Our
labeling relies on the expertise of meteorologists to categorize
clouds documented in photographs and paintings according to
the types defined by Howard [9]. We propose a semi-supervised
learning model for cloud classification that merges classic features
with edge features. The classification of clouds in Constable’s
paintings according to the standard typology allows for a more
precise comparison with his contemporaries. By contrasting the AI
system’s predictions with the expert-created ground truth labels,
we obtain an objective assessment of the degree to which painters
are (knowingly or unknowingly) differentiating cloud types. Given
the highly specialized skills and knowledge required to classify
cloud types, the AI system offers an insight unattainable by the
average human viewer.

Furthermore, to further explore painting styles, we exam-
ine pictorial realism from another perspective of painting style.
Specifically, we first extract the encoded style features from each
painter’s collection by training a content-style-disentanglement
model [10]. Using our newly developed evaluation metrics, we
assess the pictorial realism based on these extracted style features.
This allows us to compare the relative realism of various painting
styles in our dataset against that of John Constable. These style
features act as direct representations of the unique pictorial charac-
teristics of each painter’s collection in comparison to photographic
images.

The key contributions of our work include:

• Interdisciplinary framework: We proposed a machine
learning framework to study realism in art from an ex-

plainable and interdisciplinary perspective by leveraging
computer vision techniques, meteorology expertise, and
art history insights.

• Methodology: We developed several tools and mod-
els: a sky-ground segmentation algorithm, a new semi-
supervised CNN model (named SFF-CNN) for cloud-type
classification, and new evaluation metrics to quantify the
style differences between images. Notably, this is the first
effort to harness unlabeled sky photos to enhance cloud
classification.

• Dataset: We curated a unique dataset consisting of 363
paintings featuring skies by John Constable and six of his
contemporaries. Two expert meteorologists professionally
annotated each piece, making it the inaugural dataset of
paintings designed for computational analysis of skies.
We are sharing our sky segmentation results and detailed
annotations with the broader research community.

• Insights: Our findings furnish the art history domain with
compelling evidence: Constable’s systematic adherence to
cloud typologies is pivotal for the pronounced realism in
his cloud artworks.

1.3 Related Work

We briefly introduce related work on the art-historical study of
Constable’s sky paintings, computerized cloud-type classification,
and content-style disentanglement.

Modern art-historical scholarship on Constable’s clouds began
with Kurt Badt’s 1950 book on the subject [7]. Prior to this,
accounts of Constable’s clouds were largely descriptive as opposed
to analytical, attributing their realism to Constable’s emotional
connection with nature, his devotion to sketching outdoors, or
his largely rural childhood [11]. Badt was the first to argue that
Constable’s proficiency with painting realistic clouds was due to
his familiarity with the recent development of a typology of clouds
created by British chemist Luke Howard. Howard’s typology was
published in 1803 and was widely disseminated during Consta-
ble’s lifetime, so it was available to him. But there is no evidence
that Constable possessed Howard’s typology, and the artist’s extant
correspondence makes no direct reference to Howard [12]. More
recent scholars tend to cite instead Constable’s dedication to
sustained periods of empirical observation of clouds [1], [5] and
his familiarity with earlier paintings of naturalistic landscapes by
artists like Claude Lorrain or Willem van de Velde the Younger,
both of whom were well represented in English art collections
during Constable’s lifetime [12], [13]. In addition, a Romantic
explanation for Constable’s naturalism likewise persists in the
scholarly literature to this day, attributing his naturalism at least
in part to an emotional or spiritual impulse toward accuracy in his
depictions of natural phenomena [2].

We regard the accuracy of cloud-type classification as strong
evidence of Constable’s familiarity with Howard’s typology, so
building a trustworthy cloud-type classifier is indispensable. Re-
cently, researchers have started to adopt CNNs for cloud-type
classification. Zhang et al. [14], [15] built a large ground-based
cloud dataset, called Cirrus Cumulus Stratus Nimbus (CCSN)
with cloud type labels, and a CNN model for cloud classification.
Huertas et al. [16] proposed a feature fusion model combining
CNN features and handcrafted low-level textural features to boost
classification accuracy. Departing from this fusion model, our
approach aims to extract more task-relevant features such as the
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contours of clouds to improve classification on both the photo and
painting datasets.

Another problem that we address is the lack of labeled cloud
photos. The emergence of semi-supervised learning can enhance
classification performance by utilizing a great amount of unlabeled
data during the training process. The common semi-supervised
classification models can be categorized into self-learning [17],
co-training [18], graph-based semi-supervised learning [19], and
semi-supervised supported vector machine [20]. Following the
idea of self-learning, we generate pseudo labels (detailed in
Section 2.1.3) for two unlabeled sky photo datasets and then add
these new data to the labeled CCSN dataset to achieve dataset
expansion.

Content-style disentanglement has been extensively applied
for feature decoupling, with both the content and style feature
representations useful for downstream problems, such as semantic
segmentation [21], [22], image retrieval [23], [24], and image
style transfer [25], [26]. In image translation, most CNN-based
methods aim to learn latent space representations by extracting
content or style information using autoencoder variants. However,
utilizing these disentangled features for similarity or discrepancy
comparison among paintings from different artists–as we have
done in this study–is a relatively uncharted territory.

(a) John Constable, Study of Sky and Trees, 1821

(b) Eugène Boudin, Etaples, les Bords de la Canche, 1891
Fig. 3: Sky and ground segmentation illustrated with two paint-
ings. Left: Original paintings. Right: Homogeneous patches (rep-
resented by different colors) generated using the A3C algorithm.
Regions within the thin white contours are the sky regions after

regression.

2 ALGORITHMS

As we have discussed in Section 1.2, our paradigm for studying
pictorial realism (Fig. 2) provides a novel perspective for compar-
ing artworks with photographs and addresses the subjectivity of
experts’ opinions. Below, we elaborate on the technical compo-
nents in the analysis pipeline.

2.1 Semi-Supervised Cloud-Type Classification
Our classification model consists of two main steps: clustering-
based sky segmentation and classification by a semi-supervised
feature fusion CNN (SFF-CNN) model. The sky segmentation step
reduces the impact of irrelevant parts of an image on classification.

SFF-CNN contains two streams of feature extraction, aptly called
the classic feature extractor and edge feature extractor. The
former generates features from low-level textures or patterns to
high-level object-related characteristics, while the latter focuses
on edge information. The fused features from the two encoders
are utilized together for the ultimate class label prediction. We
are motivated to extend a typical CNN model by incorporating
edge features because (1) the contour information of cloud bases
and updraft turrets is valuable for meteorologists to determine
the cloud type, and (2) CNN models tend to focus on texture
rather than shape for recognition [27] while paintings and photos
have different texture characteristics. Our extended CNN model
is trained iteratively by generating pseudo labels for unlabeled
images and then refitting the model.

2.1.1 Sky Segmentation
The land, mountains, or other irrelevant regions in a painting can
negatively affect cloud classification. Because only sky regions
are used in the training photos, we eliminate the impact of other
irrelevant parts in the paintings by excluding pixels outside the
sky region from subsequent classification analysis. Specifically, a
painting is segmented into two classes: sky versus non-sky (mostly
land). The entire non-sky region of a painting image is replaced
by black pixels and the modified image becomes the input to the
CNN model, which we refer to as the sky-selected image.

Our sky segmentation algorithm includes two major steps:
segmentation into homogeneous patches (aka, segment) and classi-
fication of each segment into sky versus non-sky. For the first step,
we used the Agglomerative Connectivity Constrained Clustering
(A3C) algorithm [28]. For the second step, we perform logistic
regression on the features extracted from each segment to deter-
mine whether the segment is sky or non-sky. For each segment, a
10-dimensional feature vector including location and color-based
features is computed. Details about the sky detection algorithm
and some example results are provided in Supplementary Mate-
rials. Fig. 3 shows the clustering results of two paintings and the
sky versus non-sky classification results of the segments.

2.1.2 Cloud-Type Classification
The sky-selected images are classified into different cloud types by
the SFF-CNN model. Our neural network is custom-designed for
cloud-type classification by incorporating pre-learned edge fea-
tures into the layers of a typical CNN model as edge information
is crucial in differentiating various types of clouds. The neural
network consists of a bottom stream for classic feature extraction
and a top stream for edge feature extraction. The classic feature
extractor aims at extracting useful features from low-level textures
or patterns to high-level object-related quantities, while the edge
feature extractor only captures the characteristics of edges in the
same input image. Both feature extractors take the three-color-
channel sky-selected images as the input.

Classic Feature Extraction: Denote the kth sky-selected
image by Ik. The encoder for classic feature extraction takes
the three-color-channel image Ik as the input. The first two
convolutional blocks both consist of two Conv-BatchNorm-Relu
layers and are followed by a 2×2 pooling layer to downsample the
input feature maps (400× 400). The convolutional layers in these
two blocks all have stride set to 1 and the kernel size 3 × 3. The
next two blocks are residual blocks with two convolutional layers
with stride set to 1 and 2, respectively, and the same kernel size
3×3. Each of these blocks spatially downsamples the input feature
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maps to half of their size. The third residual convolutional module
follows the same structure as the first two but sets stride to 1 for
both convolutional layers. Then three fully-connected layers with
feature dimensions 4096, 1024, and 10, respectively, are connected
to the Resconv modules. The final layer of Softmax activation
produces a distribution over the ten output probability classes for
each category. Lastly, the cross-entropy (CE) loss [29] is applied
to train the network.

Edge Feature Extraction: Visualization results using the
Grad-cam method [30] (shown in Supplementary Materials) ver-
ified our expectation that edge information is important for clas-
sifying cloud types, which motivated our strategy to fuse edge
features in the CNN. We compute the edge features by a pre-
trained encoder named holistically-nested features for edge detec-
tion (HED) [31]. The side-output layer of each convolution module
of HED generates an edge feature map at a particular receptive
field size. These maps are concatenated with those generated
by the CNN at corresponding layers. The two feature maps are
ensured to have the same size (horizontally and vertically) such
that the features at any location on one map can be combined with
features at the same location on another map before convolution.
In particular, we use the same setting for the HED and CNN
architectures so that at every layer, their respective feature maps
are generated with the same receptive field size. The augmented
feature map is the input to the next convolution layer.

2.1.3 Semi-Supervised Learning
To further enhance cloud classification accuracy, we employ semi-
supervised learning to leverage a large set of 9,883 unlabeled
cloud photos from the SkyFinder dataset [32] and FindMeASky
dataset [33]. We also apply data augmentation following the
schemes of FixMatch [17]. For each unlabeled image, its flipped
and shifted versions, called weak augmentation images, are cre-
ated. Additionally, the so-called strong augmentation images are
created by another two operations, namely, CTAugment followed
by Cutout [17]. We first apply the classifier trained using only
the labeled images to classify the weak augmentation images. The
class that has the maximum predicted posterior probability is cho-
sen as the predicted class (also called the one-hot pseudo label).
To counter the negative effect of possibly incorrect pseudo labels,
the maximum predicted posterior is compared with a pre-chosen
threshold. If the threshold is not exceeded, this unlabeled image
and its augmented versions will not be used further. Otherwise, the
pseudo label is treated as the true label for the strong augmentation
images, which we refer to as high-confidence unlabeled images.
Finally, another round of training is performed using both labeled
and high-confidence unlabeled images. The cross-entropy between
the true class and the labeled images and between the pseudo-class
generated from the weak-augmented images and the predicted
class posteriors using the strong-augmented images are defined
as the loss to train the model.

2.2 Style Disentanglement

In addition to comparing paintings based on how well they can
be classified, we propose a methodology to assess the similarity
in the “style” features of pictures. In MUNIT [10], an image
is decomposed into two representations: content versus style.
Both the content and style features are extracted by an encoding
CNN, and they can be combined as input to a decoding CNN
to reconstruct the original image. Roughly speaking, the content

features capture the shared characteristics between two sets of
images, whereas the style features pinpoint the unique attributes
of each set. The encoders and decoders for both image sets are
trained together to ensure that the content features correspond to
traits shared by the two sets.

In our analysis, we treat the set of paintings of every artist as
domain A and the set of cloud photographs as the reference do-
main P. This training process yields a content encoder and a style
encoder for each artist. The training algorithm generates photo-
realistic images IA2P from images in domain A or painting-like
images IP2A from those in domain P, an operation called “cross-
domain style translation.” The translation is achieved by keeping
the content features but adopting style features generated for an
image in the other domain. These cross-domain features are fed
into a decoder to reconstruct a translated picture. The training
objective function used in [10] has been modified slightly in [34]
by removing the learning regression loss because the authors of
the latter found that better separation of content and style can be
obtained and the style and input image will be more correlated.
In subsequent discussions, we will refer to the style features
computed via a style encoder simply as the “style” of an image.

2.2.1 Style Similarity Between Artists
First, to evaluate style similarity between artists, we consider two
sets of paintings denoted by A and B. Suppose A = {ai :
i ∈ {1, 2, ..., nA}} contains nA pictures and B = {bj : j ∈
{1, 2, ..., nB}} contains nB pictures. Denote the content and style
encoder trained based on style transfer from painting set A to
photo set P = {pk : k ∈ {1, 2, ..., nP }} by EA

C and EA
S ,

respectively. Likewise, the encoders for B are EB
C and EB

S . For
an image ai ∈ A, denote its style features computed by EA

S by
F ai

S . Similarly, for any bj ∈ B, let its style computed by EB
S

be F
bj
S . If A and B are similar in style, we would expect F ai

S

and F
bj
S to be close on average. Use the normalized square of the

L2 norm of a style feature vector to indicate the signal strength:
Iai

S = ∥F ai

S ∥2/d, where d is the dimension of the style feature
vector. The Mean Squared Error (MSE) between F ai

S and F
bj
S is

simply ∥F ai

S − F
bj
S ∥2/d. For each image ai ∈ A, we define its

average distance to images in B by

Dai

A =
1

nB

∑
bj∈B

MSE(F ai

S , F
bj
S )

Iai

S

. (1)

Conversely, for each image bj ∈ B, we define its average
distance to images in A as D

bj
B likewise. Finally, define DA =

1
nA

∑
ai∈A Dai

A , DB = 1
nB

∑
bj∈B D

bj
B , and

Dstyle(A,B) =
1

2
(DA +DB). (2)

The distance Dstyle is taken to measure the style difference
between sets A and B.

2.2.2 Style Similarity Between an Artist and Photos
Next, we propose to use the metric “Information Over Bias
(IOB)” [34] to measure the difference between the paintings of
an artist and real photos. For an image ai ∈ A, where ai is treated
as a vector, let its style feature vector be F ai

S . IOB(ai, F
ai

S )
is defined to quantify the amount of information in ai which
is captured by F ai

S . Specifically, the informativeness of F ai

S is
measured by the ratio between MSE(ai, ãi

′) and MSE(ai, ãi),
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where ãi
′ is a reconstructed image from an uninformative constant

substitute style vector 1 combined with ai’s content feature vector,
while ãi is generated from the informative style vector F ai

S
and the same content vector. Thus, we define IOB(ai, F

ai

S ) by
IOB(ai, F

ai

S ) = MSE(ai, ãi
′)/MSE(ai, ãi). With a slight abuse

of notation, we also use IOB(A) to denote the average IOB values
for the images in A, i.e., IOB(A) = 1

nA

∑nA

i=1 IOB(ai, F
ai

S ).
A lower value of IOB(A) indicates that the style representa-
tion of the image is less important since a substitute default
style vector can result in reconstruction with a similar level
of disparity from the original image. Because the style feature
vectors capture the distinct characteristics of one set of images
from another set, less informative style vectors reflect a higher
similarity between the two set of images. To form a basis of
comparison, we also compute IOB for a mixed set containing both
paintings and cloud photographs. Specifically, we first compute
IOB(A) for a set of paintings by an artist using the style transfer
process from paintings to photographs. Then we mix images
from the painting set A and the photo set P to form a new set
M = {ai : i ∈ {1, 2, ..., nA}, pk : k ∈ {1, 2, ..., nP }}.
Again by the style transfer process from set M to P , we can
compute IOB(M). Finally, the style distance between an artist
and the photographs is defined as Rstyle(A) = IOB(M)/IOB(A).

3 EXPERIMENTAL RESULTS

3.1 Painting and Photo Datasets

We curated a dataset of oil paintings by John Constable (1776-
1837) and six of his near-contemporaries: Pierre Henri de Valen-
ciennes (1750-1819), David Cox (1783-1859), Frederick Richard
Lee (1798-1879), Frederick W. Watts (1800-1870), Eugène
Boudin (1824-1898), and Lionel Constable (1828-1887). All of
these images are either high-resolution scans of existing reproduc-
tions or digital photographs of landscape paintings with “finished”
clouds or pure cloud studies.

Cloud types and detailed meteorological information for each
painting in the dataset were labeled by two meteorologists with
expertise in cloud classification. One annotator possesses basic
knowledge of the history of European landscape painting, while
the other does not. Post their initial round of labeling, the two
experts reached consensus on 75.5% of the labels. They both
recognized that the majority of different annotations were due to
borderline cases. Following a discussion between the experts, the
labels used in the subsequent experiments were mostly based on
the senior annotator’s annotations, while the labels of 15 paintings
were in accordance with the junior annotator’s opinion. Finally,
an open dataset containing 363 images with detailed labeled
metadata was established, which will be shared (to the extent
that image licensing allows) in order to facilitate further analyses
of the relation between painted clouds and actual meteorological
phenomena.

We used the CCSN dataset to train the cloud classification
model. The CCSN dataset contains 2,543 cloud images, in which
cloud photographs were labeled into 10 cloud categories, thus we
formulated cloud-type classification as a 10-class problem. For
semi-supervised learning, we leveraged the SkyFinder [32] and
FindMeASky [33] datasets, which came with the sky segmenta-
tion masks but no cloud-type labels. After eliminating duplicate
images, our unlabeled dataset comprised 9,883 photos.

3.2 Cloud Classification on the Paintings

To evaluate our sky segmentation algorithm, we manually labeled
sky regions for all 363 paintings, which serve as the ground truth.
We then computed pixel accuracy, mean accuracy, and mean IoU
as evaluation metrics, which were 0.9804, 0.9613, and 0.9427,
respectively. Such accuracy levels are regarded as high.

Applying the trained SFF-CNN to the test photo images (20%
of the CCSN dataset), we obtained a classification precision of
97.2% and recall of 96.9%. Detailed results on the test photos
are provided in Section 3.5. Then, we re-trained the classification
model on the entire CCSN dataset, which was then applied to
the paintings. Because the painting dataset was small and the
prevalence of different cloud types was highly unbalanced, to
compute classification accuracy for the paintings, we only discrim-
inated at the granularity of five common cloud types: cumuliform
(cumulus), cumulonimbiform (cumulonimbus), cirriform (cirrus),
stratiform (stratus, cirrostratus, altostratus, and nimbostratus), and
stratocumuliform (cirrocumulus, altocumulus, and stratocumulus)
[35]. The classification accuracy of each painter using the SFF-
CNN model with or without feature fusion is shown in Fig. 4.
For the accuracy achieved with feature fusion, the confidence
interval for the accuracy at the significance level of 0.05 is shown.
Except for Cox, all the other artists had a confidence interval
of accuracy well above 60% (higher than the percentage of the
most dominant cloud type), indicating that the clouds they painted
correspond with Luke Howard’s system of cloud categorization
to a great extent. Moreover, clouds painted by Constable were the
easiest to classify (highest accuracy) with a classification accuracy
of 0.8452. Additionally, in Fig. 5, we show the classification
confusion matrices for each artist’s paintings. Constable’s clouds
achieved the highest classification accuracy in the cumuliform.
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Fig. 4: The comparison in terms of classification accuracy of
all seven painters using the SFF-CNN model with or without
feature fusion. The error bars denote the confidence interval for
the classification accuracy at the significance level of 0.05 for
each painter.

To compare Constable with each of the other artists, we
conducted hypothesis testing with the alternative hypothesis: Con-
stable’s paintings can be more accurately classified than those of
other artists. We assigned identification numbers with Constable
represented by 1 and the other artists labeled as 2, 3, ..., 7. We
modeled the classification decision on a painting of the ith artist
by a Bernoulli random variable with 1 indicating the correct
classification and 0 otherwise. Let pi be the probability of correct
classification. Thus, the distribution for the number of correctly
classified paintings of artist i is a Binomial distribution. The null
hypothesis we formulated is p1 ≤ pi, i ̸= 1. We used the one-tail
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Fig. 5: The confusion matrices represent the classification results of all seven painters using the semi-supervised feature fusion model.
The vertical axis represents the ground truth, while the horizontal axis represents the predicted labels. The abbreviations Cu, Cb, Cs,
St, and Sc stand for cumuliform, cumulonimbiform, cirriform, stratiform, and stratocumuliform, respectively.

Z-test [36] with continuity correction. The p-values obtained for
Valenciennes, Lee, Watts, Lionel, Boudin, and Cox were 0.332,
0.189, 0.128, 0.147, 0.024, and 0.189, respectively. At the sig-
nificance level of 0.1, Constable’s paintings were more accurately
classified than Boudin’s works, but not others. We conducted the
same hypothesis testing to examine whether the inclusion of edge
features could significantly improve the classification accuracy for
any artist. The lowest p-value was 0.122, obtained for Constable,
while the other p-values exceeded 0.25. This result indicates that
the edge features improved classification most significantly for
Constable.

From the results, it is evident that Constable’s clouds cor-
respond well with the system of cloud typology devised by
Luke Howard. The 5% confidence interval for the classification
accuracy of Constable’s paintings was [0.768, 0.923]. The average
classification accuracy was highest for Constable’s paintings. Are
Constable’s clouds more reminiscent of photographs of real-world
clouds than those of his contemporaries? The answer is mixed. At
the significance level of 0.1, as indicated by the aforementioned
p-values, Constable’s clouds were more accurately classified than
Boudin’s, but not more than those by Valenciennes, Lee, Watts,
Lionel Constable, and Cox. A potential explanation for the in-
significant difference between Constable and these artists could be
the limited number of paintings each of them had in the dataset.

We posit that Constable’s technique, which involves strong
contour lines rendered with a relatively continuous brushstroke,
contributes to the realism of his clouds. In contrast, some artists,
such as Boudin, tended to use dots and dashes in lieu of the
clear-edged and smooth contours that define cloud shapes. Our
computer model–trained on photographs–found Constable’s cloud
representations easier to classify and thus to recognize by viewers.
Attention to precisely the morphological differences that Luke
Howard highlighted when crafting his cloud typology in 1803
endowed Constable’s clouds with a sufficiently striking degree
of realism to set him apart from other landscape painters, at
least in the eyes of his contemporaries–and in the eyes of our
computer models. While our findings cannot confirm definitively
that Constable was acquainted with Howard’s cloud classification,
they do confirm that systematic categorization is key for the visual
impact of his realism.

3.3 Style Similarity Analysis
To train the style encoder for each artist, we used the MUNIT
model [10] as the network backbone. We excluded Learning
Regression loss during training as suggested in [34] for better
disentanglement of content and style features. All the paintings
of an artist formed set A, and a subset of cloud photographs
formed set P . We selected 300 cloud photographs and ensured

that the number of images in each cloud category was the same.
For the paintings, instead of the original images, we used their sky-
selected images. After obtaining the style encoders, we computed
Dstyle and Rstyle.

3.3.1 Style Distance Between Artists’ Clouds and Cloud
Photos
We computed Rstyle (defined earlier) for each of the seven painters.
To assess variation in Rstyle caused by randomness in the input
images, for each painter, we randomly sampled five paintings to
form a set and computed Rstyle for this set. The calculation was
repeated for multiple random samples of five paintings. As our
collection only contained nine paintings by Cox, there were a
maximum of 126 different combinations of five paintings by Cox.
We thus randomly sampled subsets of five paintings 126 times for
every artist. Table 1 shows the average values of Rstyle for each
artist as well as the standard deviation.

To assess whether the distance metrics vary significantly
among artists, we conducted hypothesis testing with the alternative
hypothesis: these distances are significantly different between the
artists. Denote the set of paintings from each of the seven artists
by Ci, with i = 1, 2, ..., 7, and the sampled subsets by Cn

i ,
where n = 1, 2, ..., 126. Let the set Rstyle(Ci) = {Rstyle(C

n
i ) :

n ∈ {1, 2, ..., 126}}. Assume that the distribution of Rstyle(C
n
i )

for each set Ci follow a Gaussian distribution N(µi, σ
2
i ), where

µi and σ2
i indicate the mean and variance, respectively. Our

null hypothesis is: µ1 = µ2, ...,= µ7. We use an F -test for
a one-way analysis of variance. With an F -statistic of 21.15
and a p-value below 2e − 16, the null hypothesis (the sets have
the same mean value) is rejected at the significance level 0.05.
Then, we conducted another hypothesis test using the T -test to
test if the paintings of Constable exhibit a style more akin to
photographs compared with other artists. Let µ1 denote the mean
value of Constable’s painting set. We conducted six hypothesis
tests with the null hypothesis: µ1 ≥ µi for i = 2, 3, ..., 7. Table 1
shows both the T -statistics and the corresponding p-values. At
a significance threshold of 0.1, John Constable’s painting style
appears more similar to photographs than that of Boudin, Lee,
and Cox. However, we cannot reject the null hypothesis that his
painting style is less photo-like than that of Valenciennes, Lionel
Constable, and Watt. In addition, we conducted the same T -test to
determine whether, on average, Rstyle of Valenciennes surpassed
that of the other artists. All the p-values fell below 0.1. This result
suggests that Valenciennes’ painting style is the most reminiscent
of actual photos when compared with the other six painters, at
a significance level of 0.1. Furthermore, the Pearson correlation
coefficient between classification accuracy and style similarity is
-0.782, with a p-value of 0.039. This strong negative correlation
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between the measurement of stylistic difference (paintings versus
photos) and the accuracy of cloud classification aligns well with
our heuristic understanding–paintings similar to photos tend to be
classified more accurately into cloud types.

TABLE 1: Rstyle of the painting sets of each painter and T statistics
of T -test about the difference of Rstyle between John Constable
and other artists.

Artist Rstyle (mean ± std) T -statistic p-value

Valenciennes 1.163± 0.132 1.590 0.944
Lionel Constable 1.188± 0.141 0.165 0.566
John Constable 1.191± 0.147 - -
Watts 1.210± 0.146 -1.029 0.152
Boudin 1.254± 0.143 -3.448 3.310e-04
Lee 1.298± 0.151 -5.699 1.689e-08
Cox 1.319± 0.156 -6.703 6.775e-11

TABLE 2: Style distance Dstyle between painting set of John
Constable with himself or others and T statistics of T -test about
the difference of Dstyle.

Pair Comparison Dstyle (mean ± std) T -statistic p-value

John Constable 0.351± 0.092 - -
Lionel Constable 0.359± 0.095 -0.679 0.249
Valenciennes 0.373± 0.109 -1.730 0.042
Boudin 0.405± 0.108 -4.270 1.387e-05
Cox 0.408± 0.110 -4.462 6.225e-06
Watts 0.421± 0.113 -5.390 8.312e-08
Lee 0.439± 0.102 -7.190 3.797e-12

3.3.2 Style Similarity Between Paintings by Constable and
His Contemporaries
Next, we used Eq. (2) to compute the style similarity between pairs
of painters. The results are shown in Table 2. Again, we conducted
hypothesis testing to verify whether these style distances were
significantly different. We used C1 to denote the set of paintings
by John Constable, and Ci for those by another artist i. Similar
to the approach in the previous subsection, we computed Dstyle

between randomly sampled subsets of paintings by two artists.
The same subsets used to generate Rstyle were used here. For
the pair of sets C1 and Ci, we obtained 126 values of Dstyle:
Dstyle(C1, Ci) = {Dstyle(C

n
1 , C

n
i ), n ∈ {1, 2, ..., 126}}. To

establish a baseline, we also computed Dstyle for subsets of paint-
ings within John Constable’s collection. Specifically, in addition to
the 126 subsets Cn

1 that were already created, another 126 random
subsets were sampled from C1, each containing five paintings.
Denote these new subsets by Cn

1,2nd, n ∈ {1, 2, ..., 126}. Then,
Dstyle(C1, C1) = {Dstyle(C

n
1 , C

n
1,2nd), n ∈ {1, 2, ..., 126}}. If

Constable’s style significantly diverges from that of other artists
in terms of Dstyle, we would expect the values in Dstyle(C1, Ci)
for i ̸= 1 to surpass, at least on average, those in Dstyle(C1, C1).

Denote the mean of Dstyle(C1, Ci) by µ′
i. In the first test, the

null hypothesis is: µ′
1 = µ′

2, ...,= µ′
7. Similarly, we used the

F -test for one-way analysis of variance. The F -statistic obtained
was 12.69 with a p-value of 9.21e− 14, suggesting a significant
difference in the style features among these paired artists.

The style distances between other artists and John Constable
are provided in Table 2. We also conducted a T-test between two
data sets Dstyle(C1, C1) and Dstyle(C1, Ci), where i ∈ {2, ...11}
to test if artist i’s painting style is similar to John Constable’s. The

null hypothesis is: µ′
1 ≥ µ′

i for i ̸= 1. We tested at the confidence
level of 0.95. The T -statistic and the corresponding p-value for
the 6 tests are listed in Table 2, and we can observe that p-values
are all below 0.05 except for Lionel Constable. We can therefore
claim that Lionel Constable’s paintings are the most stylistically
similar to John Constable’s of the group.

3.4 Insights for Art History

The key art-historical findings are: (1) John Constable’s clouds can
be more accurately classified than those of his contemporaries,
which sustains the possibility that Constable possessed some
knowledge of Luke Howard’s classification of clouds but does
not serve as definitive proof. (2) Fusing edge features boosts
the classification performance of Constable’s clouds more than
it does for other artists. This underscores the significance of the
pronounced structure in Constable’s clouds as a contributing factor
to their realistic portrayal. (3) John Constable’s paintings are
not the most realistic among the artists evaluated if realism is
defined by relative approximation in appearance to a photograph.
Valenciennes, according to our experiments, created clouds that
bear the closest resemblance to photographs. (4) In terms of
painting style, Lionel Constable aligns most closely with John
Constable. This is consistent with his known practice of emulating
his father’s style.

3.5 Classification Results on Cloud Photos

We randomly selected 20% of the images from the CCSN dataset
for testing. The other 80% of the labeled images from the CCSN
dataset and all the unlabeled images were used together during the
self-learning process. In the training process, only parameters in
the encoder for classic feature extraction were learned by back-
propagation, while the parameters of the edge feature encoder
were fixed. We chose Adam as the optimizer with a learning rate of
0.0001 and batch size of 16, which provided the highest accuracy.
We compared the classification results obtained by our model with
two advanced methods, CloudNet [14] and ensemble-learning-
based classification [16]. Our SFF-CNN model achieved the best
performance with a precision of 0.972 and a recall of 0.969.
The confusion matrix is shown in Fig. 6. In contrast, CloudNet
(Ensemble learning) achieved a precision of 0.891 (0.953) and
a recall of 0.868 (0.902). We also conducted the ablation study
on the SFF-CNN model with results shown in Table 3. The
improvement of the classification accuracy of SFF-CNN can be
attributed to sky selection, the usage of unlabeled data, and edge
feature fusion.

Ci Cc Cs Ac As St Sc Ns Cu Cb

Ci

Cc

Cs

Ac

As

St

Sc

Ns

Cu

Cb

25 1 1
1 52

56 1
44

1 1 34 1
39 1

1 67
1 53

1 1 34
48

Fig. 6: Confusion matrix of the test results on the CCSN dataset
using our SFF-CNN model.
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TABLE 3: The ablation study of our model.

Method Precision Recall

SFF-CNN (w/o feature fusion) 0.955 0.953
SFF-CNN (w/o semi-supervised learning) 0.944 0.940
SFF-CNN (w/o sky selection) 0.938 0.934
SFF-CNN 0.972 0.969

4 CONCLUDING REMARKS

Moving beyond investigating this artistic movement solely through
traditional methods of art history or via computer-aided stylo-
metric analysis, we engage with meteorology both as a means of
gaining ground truth and as a historical discipline that may have
influenced visual arts.

Following the assumption that the more realistic the cloud
painting is, the easier it is for the AI to determine its cloud type, we
developed a new, specialized computer-based cloud-type classifi-
cation method to determine if Constable’s clouds or those of his
contemporaries can be correctly categorized into different cloud
types. Additionally, by content-style disentanglement, we defined
two metrics to evaluate the style similarity between paintings and
photos as well as the similarity among artists.

Further avenues for art-historical inquiry are indicated by
our research. The stylistic similarity between Valenciennes and
Constable invites a reconsideration of their relationship. Our
experiments suggest that even artists closely associated with
naturalism like Boudin were working in a less photographic mode
than like-minded predecessors who died just before photography
was invented. This raises the interesting possibility that a kind of
photographic realism was highly prized around 1800, but was soon
seen as less realistic when applied to painting once photographs
were more or less ubiquitous after the 1850s. These possibilities
can be investigated further using the presented style similarity
analysis.
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