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Abstract—Empirical research in science and the
humanities is vulnerable to bias which, by def-
inition, implies incorrect or misleading findings.
Artificial intelligence-based analysis of visual art-
works is vulnerable to bias in ways specific to
the domain. Works of art belong to a distinct
cultural category that often prioritizes such char-
acteristics as hand-craftsmanship, uniqueness,
originality, and imaginative content; works of
art are also responsive to diverse social and
cultural contexts. Ascertaining which features
of an artwork can be rightly ascribed to an
objective “truth,” without which the concept of
bias is not even relevant, is itself challenging.
Incorporating expert knowledge into machine
learning applications can help reduce bias in
final estimates. We review several sources of bias
that can occur across different stages of AI-based
analysis, protocols and best practices for reduc-
ing bias, and approaches to measuring these
biases. This systematic investigation of various
types of bias can help researchers better under-
stand bias, become aware of practical solutions,
and ultimately cultivate the prudent adoption of
AI-based approaches to artwork analysis.

Introduction
With the ever-expanding, open-source collec-
tions of digitized artworks and the rapid ad-
vancement of artificial intelligence (AI) and
deep learning, particularly in the analysis of
visual content, there have been early successes
in AI-based analysis of artworks. Rigorous
application of the techniques of computer vi-
sion, image processing, machine learning, deep

neural networks, and AI, when guided by
art-historical expertise and context, have pro-
vided researchers with insights and answers un-
available via traditional, non-computer-assisted
analysis. Recent contributions in this field can
be understood as falling into three general
areas:

• Computational extraction of representa-
tive features or patterns from corpora of
artworks for subsequent classification or
analysis of style, composition, aesthetic
qualities, and other characteristics [1], [2],
[3].

• Semantic and iconographic analysis of
works of art [4], [5].

• Computer generation of digital images for
simulating a certain artistic style, hypoth-
esizing the appearance of incomplete art-
works, or creating new artworks for visu-
alization and analysis [6], [7].

Although recent research has demonstrated the
applicability and effectiveness of AI for several
tasks in the analysis and creation of art, it is im-
portant to recognize the interplay of algorithmic
processing and analysis by human experts and
how this complex interplay introduces bias.
Generally, algorithmic processing is applied to
digital reproductions of works of art (digital
images or digital surrogates). Here, we fo-
cus on the area that has received the most
attention from researchers: AI-based analysis
of paintings and drawings. Bias may occur
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Fig. 1. Automatic brushstroke extraction for Wheatfield (Arles, June 1888, oil on canvas, 54 cm × 65 cm) by Vincent
van Gogh [2]. Painting image courtesy of the Van Gogh Museum, Amsterdam (Vincent van Gogh Foundation). The
brushstroke map is provided by the James Z. Wang Research Group (The Pennsylvania State University).

at any step in such projects, from the prob-
lem formulation to the eventual performance
evaluation. First, a well-defined research ques-
tion is essential to ensuring machine analysis
yields valid and meaningful results. An ill-
defined problem statement can lead to biased
or ambiguous findings. Next, bias can also be
introduced during data collection and curation.
There are many publicly accessible datasets
of paintings collected for research use, includ-
ing WikiArt, PeopleArt, SemArt, and WikiArt
Emotions. All of these image collections con-
tain a large number of digitized paintings with
semantic labeling or annotations. As useful as
these ready-made collections are, inconsistent
image quality, unbalanced data distribution, and
inaccurate labeling can affect the reliability of
the experimental results.
The next step following data collection and
curation is feature extraction—often based on
handcrafted features but occasionally based on
features learned from the data itself. Hand-
crafted feature extraction can easily introduce
human bias into the process at this point.
For paintings, typical features include color,
edge, texture, shape, and arrangement of brush-
strokes (Fig. 1) [2]. Then a trained classifier
or some unsupervised method (e.g., clustering)
is applied to perform various tasks, for in-
stance, content and style representation, clas-
sification, and content recognition. Recently,

the emergence of Convolutional Neural Net-
works (CNNs) [8] and Generative Adversarial
Networks (GANs) [9] has revolutionized the
task of feature extraction by learning the map-
ping between the input data and the ground
truth labels or between different data domains
directly [10]. Despite their improved perfor-
mance, these methods can nevertheless suf-
fer from biases because the true probabilistic
model for the input and output is unknown [11].
To address this, the selection of representative
samples for testing and choosing objective eval-
uation methods are also indispensable for a less
biased evaluation result.
Here we use “bias” to mean, in a broad sense,
systematic errors, a meaning only indirectly
related to its rigorous use in mathematical
statistics. In statistics literature, bias usually
refers to the expectation of differences between
a true parameter and its estimate. The more
general sense of bias is useful for assessing
the application of AI to visual arts research
because the accurate analysis of bias is essential
to building as faithful a model as possible.
To summarize, there are several types of bi-
ases in the AI pipeline for artwork analysis.
These include unreasonable problem formula-
tion (problem formulation bias), inappropriate
data curation (imaging bias, sampling bias, and
labeling bias), algorithms trained with biased
priors (confounding bias and design bias), and
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Fig. 2. Different types of bias that can occur across the stages of a pipeline for AI-based art analysis.

prejudiced evaluation methods (human eval-
uation bias and sample treatment bias). The
terminology for the types of bias is based on
previous work [12] but slightly adjusted to
cater to the particular demands of art analysis.
These biases could undermine the reliability of
any proposed methods by generating unrepre-
sentative features, stereotyping artists’ styles,
failing to capture what the artist tried to convey,
and so on. Biased analysis of artworks could
negatively affect research efforts to answer art-
historical questions and preserve cultural her-
itage.
We now consider closely various types of bias
across different phases of the AI-based artwork
analysis pipeline from the perspective of both
computer vision and art history. We begin with
a survey on the sources of biases, the quantifi-
cation of bias, and the methods to reduce bias,
illustrating a few case studies.

Biases and Their Mitigation
The basic procedure for AI-based analysis of
visual artworks consists of problem formula-
tion, data collection, data cleaning, data anno-
tation, algorithm design, model building, and
evaluation, as illustrated in Fig. 2. Below, we
describe examples of potential sources of bias
at each step of the illustrated pipeline and
review some methods for their mitigation. A
summary of methods for reducing different
kinds of bias is provided in Table I.

Problem Formulation
Bias can arise through an inappropriate formu-
lation of a research problem, which we call

framing effect bias. For instance, there are many
ways to define the “style” of paintings since the
notion of style is naturally difficult to define or
quantify. A severe bias can be introduced when
researchers intentionally or unintentionally de-
fine style to favor the ultimate conclusion they
plan to draw.

A related situation arises when measuring pic-
torial similarity. For example, Zhang et al.
evaluated paintings by John Constable, a 19th-
century British artist noted for his faithful de-
pictions of the sky, by measuring the simi-
larity between paintings and photographs of
clouds. This comparison was motivated by art-
historical disagreement about the basis for the
renowned accuracy of Constable’s renderings
of clouds, possibly due to his familiarity with
Luke Howard’s cloud taxonomy or strictly
based on empirical observation. To assess the
degree to which Constable’s clouds correspond
to Howard’s typology, Constable’s cloud paint-
ings were compared to photographs of the
same type of cloud, with photographs here
serving as a reasonable ground truth for the
actual appearance of a cloud. Zhang et al. also
used the trained model to assess the relative
realism of clouds by Constable and several of
his contemporaries [13]. However, it is perhaps
impossible to reach a consensus for judging
the similarity between two paintings of clouds
(Fig. 3). Conventional similarity metrics for
common photographs, based on features such
as color distributions, texture, layout, shape,
Scale-Invariant Feature Transform (SIFT), and
Histogram of Oriented Gradients (HoG), cannot
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TABLE I
MITIGATION METHODS FOR VARIOUS TYPES OF BIASES.

Bias Type Mitigation Methods Example Research Work

Framing effect bias Multi-model learning / Boosting Pictorial realism evaluation [13]

Imaging bias

Uniform imaging
Brushstroke style analysis [2]

Not relying on color
Virtual cleaning Reflectance modeling [14]
Color restoration Color match [15]

Sampling bias
Label propagation EKG-based artwork classification [16]
Resampling Dataset resampling [17]
Data augmentation Painting style transfer [18]

Labeling bias
Triplet generation Triplet labels for style similarity [19]
Few-shot learning Contrastive learning [20]

Design bias

Feature selection Brushstroke analysis [2]
Using residual connection VGG & ResNet in style transfer [21]
Method integration through
maximum-likelihood estimation

Estimates of location of illumina-
tion [22], [23], [24], [25]

Human evaluation bias Objective quantification Evaluation of generated captions [3]

Sample treatment bias Fair cross-validation Spatial cross-validation [26]

be used to compute the similarity between two
cloud paintings because they do not effectively
capture the underlying weather conditions de-
picted through the cloud paintings. For exam-
ple, two cloud paintings may share similar color
distributions but can represent different types of
clouds.

In the above instance, the researchers attempted
to reduce bias by avoiding defining similarity
based on heuristics, i.e., researchers’ previous
experience in dealing with similar image anal-
ysis research problems. Instead, the similarity
between paintings and photographs is evalu-
ated from two aspects: whether the painted
clouds can be accurately classified into corre-
sponding cloud types and the style similarity
between paintings and real photos, as shown
in Fig. 4. Utilizing two different standards to
realize the evaluation from different aspects
can make the computation of this otherwise
poorly defined similarity more reasonable and
trustworthy. First, a supervised CNN model to
classify cloud pictures into different types of

clouds (i.e., cirrus, cirrocumulus, cirrostratus,
altocumulus, altostratus, stratus, stratocumulus,
nimbostratus, cumulus, and cumulonimbus) is
trained using photographs of real-world clouds
with labels provided by an expert meteorolo-
gist. The rationale is that if clouds depicted in
paintings can be accurately classified by the
model, they are likely realistic and similar to
photographs. Additionally, a CNN encoder can
be trained to evaluate the “style” similarity be-
tween a group of paintings and a group of real-
world cloud photographs. Although the findings
using these two standards are not consistent
with each other, formulating this problem from
different aspects helps to draw a less biased and
more reliable and trustworthy conclusion.

Data
The performance of data-driven AI systems
depends crucially on the scale, quality, distri-
bution, and labeling strategies of the collected
data. Here, we categorize data-related biases
into three types and show example remedies in
the art analysis domain to address the perfor-
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Cloud Study, Hampstead, Rome: Study of a Cloudy Sky, View of Barges on the
Tree at Right, 1821, by Pierre Henri de Valenciennes Thames with Henley-on-
by John Constable Thames Beyond, 1830,

by Frederick W. Watts

Dedham Water Meadows Port of Le Havre, 1886, A Windy Day, 1850,
by Lionel Constable by Eugène Boudin by David Cox

Fig. 3. It is extremely difficult to define reliable pictorial similarity metrics among cloud study paintings. Examples
by six different painters are shown. The art-historical question is: did John Constable’s clouds appear more life-like
than those of his contemporaries [13].

mance degradation of trained models.
Imaging bias
An overarching problem for AI-based analy-
sis of art derives from the assumption that
digital images are accurate representations of
the artworks themselves. Such an assumption
can lead to uncritical acceptance of images of
artworks, particularly for images taken from the
Web rather than from museum imaging studios.
Even the most carefully created digital image of
an artwork relies on properties such as lighting,
cropping, staging, choice of color space, digi-
tal quantization, and so on [27]. Additionally,
works of art are made of materials that change
over time: they fade, change color, crack, and
lose pieces; they are also altered, repaired, or
cleaned by former and current owners [14].
While the analysis of color or brightness is
often the most problematic, AI researchers need
to be mindful of how artworks are not static
objects and that digital images of artworks
are the results of human and computational

actions. Classic methods for reducing imaging
bias either directly alter pixel color values,
for example, through the use of a standard
color calibration chart when photographing and
brightness normalization in preprocessing, or
exploit hyperspectral imaging to collect more
information [28].
Color distortion is the main source of imaging
bias that occurs during painting digitization.
Palomero et al. pointed out that the “dirt” layer
covering a painting, which contains oxidized
varnish, dust, and faded pigments, can cause a
digital image of a painting to be discolored or
even appear incomplete after digitization [15].
A neural network is trained to learn the color
transformation between the degraded regions
of a painting (dirt-covered segments) and the
regions that maintained the original appear-
ance due to the protection of the frame (clean
segments). This method successfully cleaned
Fernando Amorsolo’s Malacañang by the River
digitally.
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Fig. 4. An approach for evaluating pictorial realism based on classification accuracy and style comparison using a
CNN-based learning framework [13].

In addition, to avoid imaging bias, one can
photograph artworks under consistent condi-
tions and imaging protocols or not rely on color
in the computational analysis. For instance, Li
et al. developed their methods for comparing
Vincent van Gogh’s brushstroke styles with his
contemporaries based on brushstrokes automat-
ically extracted from monochrome photos of
the paintings, all digitized to a uniform density
of 196.3 dots per painted inch [2]. Figure 1
shows an original painting and the brushstroke
map created by the computer. Rhythmic brush-
stroke patterns can be clearly seen.

Virtual cleaning has been developed as a way to
mitigate imaging bias related to color. Specif-
ically, virtual cleaning is an optical simulation
process to reveal the original appearance of
a painting. Hyperspectral imaging techniques
have enabled the capture of a set of images
in contiguous narrow spectral bands so that
researchers can non-destructively identify pig-
ments, mine painting materials, and study opti-
cal changes caused by varnish discoloration and
pigment fading. Aged varnish and other layers
on the painting exterior are removed com-
putationally from the digitized image. Virtual
cleaning of paintings becomes possible when
the distribution of materials on the surface of a
painting is known. Virtual cleaning can reduce
imaging biases such as inauthentic color and
distorted brightness.

Trumpy et al. proposed a physical model for
the change of diffuse reflectance to digitally
remove the visual effect of aged varnish [14].

Specifically, let RU denote the diffuse re-
flectance of the uncleaned painting covered by
aged varnish. Here RU is the sum of three
reflections, from 1) the juncture between the
air and the varnish layer, denoted by Ri

V , 2)
the varnish body, denoted by Rb

V , and 3) the
painting body, denoted by Rb

P . The reflection
at the interface between air and the paint of the
cleaned painting is denoted by Ri

P . The trans-
mittance T of the varnish layer is estimated
from the change in diffuse reflectance from
the “bright” and “dark” regions of the painting
before and after cleaning. Then, based on the
two-flux approximation, the diffuse reflectance
RC of the cleaned painting is obtained by the
sum of the reflections Ri

P and Rb
P :

RC = Rb
P +Ri

P

=
RU −Rb

V

T 2 +Rb
V (RU −Rb

V )
+Ri

P .

Although the above methods help reduce imag-
ing bias, they may introduce new types of bias
themselves if applied uncritically. Researchers
thus must carefully assess each situation and
choose appropriate methods accordingly.
Sampling bias
Sampling bias, also called representation
bias [17], arises when collected data do not
obey the distribution of the whole population.
The deviation of the empirical data distribution
from the true distribution exists for many rea-
sons including intrinsic randomness in data and
systematic issues in sampling. The former can
be addressed by increasing the data size, while
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Fig. 5. 200 hand stencils on the wall of Gua Tewet, Borneo [29]. To use AI to help determine the biological sex of
the artists, researchers used modern handprints as training data because it is not possible to acquire labeled handprints
from people of prehistoric times.

the latter is what we usually consider as the
cause of sampling bias.
One extreme case of potential sampling bias is
encountered in the study of handprints on pre-
historic cave artworks, dated to be over 10,000
years old (Fig. 5). The goal is to determine
the biological sex of the artists [29]. Since it
is impossible to collect handprints with gen-
der labels from prehistoric humans, researchers
used labeled handprints of 21st-century humans
to train a model for distinguishing male versus
female handprints. The underlying assumption
is that the characteristics of human hands have
hardly changed since the Upper Paleolithic era,
a plausible assumption in light of the short span
of 10, 000 years as far as evolution is con-
cerned. On the other hand, one may argue that
serious sampling bias can occur because the
training data comes from a different population.
A more common situation of sampling bias
arises when the numbers of instances in each
class are highly unbalanced due to, for instance,
the high cost of data collection, an incorrect
sampling procedure, or simply the lack of
annotation labels for certain classes. In the
analysis of fine art paintings, we have observed
imbalances in terms of painting materials (e.g.,
many more oil paintings than watercolors), art
movements (e.g., Baroque, Impressionist), and
so on.
Biases caused by unbalanced classes can be
mitigated by typical methods including resam-
pling [17], data augmentation [18], and label

propagation [16]. For example, Li et al. pro-
posed a pipeline to reduce sampling bias by
changing the weights of samples [17]. Their
strategy consists of assigning larger weights
to wrongly classified instances and then opti-
mizing the weight distribution of data points
such that the classification loss is minimized.
As another example, Lin et al. and Heitzinger
and Stork exploited style transfer as a means of
data augmentation to reduce sampling bias [18],
[30]. In such studies authors transformed the
style of photos into the style of paintings and
used the transformed images as paintings.
Finally, label propagation is used to address
the shortage of human annotations for collec-
tions of artworks. El Vaigh et al. proposed to
propagate labels from annotated instances to
unlabeled ones using a “Knowledge Graph”
(KG) [16]. The researchers argued that label
propagation and transductive learning can boost
classification performance for small datasets or
inadequate labels.
Let Plabeled be the set of labeled paintings and
Punlabeled the set of unlabeled ones. Denote by
L the set of all possible labels assigned to
paintings in Plabeled. Denote by W all the edges
between a painting and a label. For instance,
an edge between a painting and the label of
a certain artistic genre means this painting be-
longs to this genre. In addition, when based on
conventional art-historical classifications, cer-
tain labels are subcategories of some other
labels. Such relationships are also represented
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by edges connecting two labels. Denote the set
of edges between labels by R. Finally, the KG
is denoted by G = (V,E), where V is the set
of nodes and E is the set of edges. In particular,
V = Plabeled ∪ L, and E = W ∪R.
Specifically, the researchers proposed to build
an Extended KG (EKG) to construct labels for
the originally unlabeled paintings. Denote the
EKG by G′ = (V ′, E′), where V ′ = Punlabeled∪
V and E′ = L′ ∪ E. The pseudo-labels L′ are
obtained by a pre-trained classifier applied to
those unlabeled instances. Then the graph G′ is
updated iteratively using a Graph Convolutional
Network (GCN). The original labels stay the
same while the pseudo-labels are updated when
the graph is refined.
Next, we discuss another type of bias—labeling
bias. As both sampling bias and labeling bias
are closely related to the labels of instances,
they might be confused with each other. We
note that the former is concerned with an in-
adequate number of instances in a certain class
while the latter is concerned with wrong labels
given in the data, for instance due to faulty
human annotation.
Labeling bias
Labeling bias usually results from subjective
opinions or limited knowledge of different an-
notators. Factors such as social location, cul-
tural milieu, and relevant art-historical knowl-
edge can affect the decisions of the annotators.
For example, in the WikiArt Emotions dataset,
the emotion labels for each painting were given
by ten annotators, which can vary somewhat. To
reduce labeling bias, two approaches have been
developed. In the first approach, manual labels
are collected but under certain unconventional
setups [19]. In the second approach, zero-shot
learning [31], [20] is used to generate labels in
replacement of manual labels. We next explain
the two approaches in detail.
Consider the learning task of identifying feature
representations that can characterize similarity
between paintings based on class labels. Deep
Neural Networks (DNNs) are often used to ex-
tract the features. However, due to subtleties in
human perception of similarity, it is inaccurate
or at best crude to assume that paintings in the

same class (whether genre, art movement, or
artist) appear similar while those in different
classes do not. More specifically, one apparent
pitfall of the assumption is that paintings in
the same class are regarded as equally alike,
but we often perceive a considerable amount
of variation in similarity for different pairs of
paintings in the same class.

To address the limitation of relying solely on
class labels, Shaik et al. proposed to exploit
additional annotations when they extracted fea-
tures to capture the styles of portraits [19].
They used triplets representing style similarity
provided by a professional art historian. Let
(Ia, Ip, In) denote a triplet of images containing
an anchor, a positive, and a negative image.
The negative image is less similar to the anchor
image than the positive one. These triplets
are exploited during training to supervise the
extraction of features. The objective function
used in training contains a term to favor small
distances between the learned features of an an-
chor and its positive image but large distances
between those of an anchor and its negative
image. Thus, paintings with similar styles are
encouraged to be closer in the latent feature
space of the neural network.

Some painting annotation tasks are difficult
for a non-expert annotator, in which case a
trained machine learning system may produce
more accurate annotations. Although machine
annotation is a strategy to mitigate the issue of
labeling bias, researchers need to be cautioned
that an automatic annotation system can intro-
duce new biases due to its limited accuracy.
The performance of the system is key to the
validity of this strategy. We use the work of
Conde et al. [20] as an example. The goal is
to generate artistic attributes for each artwork
in the iMet Collection Dataset [20]. Here, an
attribute is a text tag that falls into five cate-
gories: country, culture, dimension (i.e., size),
painting medium (e.g., watercolor, oil), and
miscellaneous (i.e., all the others). For example,
the description “artwork from Japan, made of
paper, big size. related with woman, party, Edo”
contains attributes “Japan” (country), “big size”
(dimension), and “made of paper” (medium). It
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is difficult for a non-expert annotator to provide
such a detailed description of a painting. Conde
et al. [20] proposed the use of contrastive
learning to generate a mapping from images
to text descriptions. Their system was trained
using images that have been assigned with text
descriptions.

Model Design
Confounding bias
In some artwork analyses, researchers try to
discover causal relationships among quantities.
A common bias encountered in causal dis-
covery is called the confounding bias, which
arises if common factors with a causal rela-
tionship with both inputs and outputs are not
accounted for in the model. Suppose factor X
is a common cause of Y and Z, often called a
“confounder” of Y and Z. A strong correlation
between Y and Z may exist due to X .
Consider confounding bias in the task of cap-
turing the style of an artist. The “art movement”
variable, denoted by X , is a confounder for
the “artist,” denoted by Y , and the “artwork,”
denoted by Z. The causal effect of artist Y on
artwork Z reflects the artist’s influence on the
artwork, defined as the “style” of this artist.
As art movement X affects the relationship be-
tween Y and Z, a reasonable approach should
study the probabilistic relationship between Y
and Z separately under every art movement.
To accurately model the causal effect of Y
on Z, every art movement in which the artist
participated must be considered in order to
avoid confounding bias. For example, we no-
ticed that a proposed model, ArtGAN [32],
seemingly successful at capturing and imitating
artists’ styles, overlooked confounders such as
“art movement” and “emotions” when model-
ing artists’ painting styles. It is thus unlikely
that the “style” identified for an artist accurately
represents the causal effect of the artist on the
artwork.
Design bias
Design bias refers to the intrinsic deviation of
a machine learning model from the optimal
formulation of the prediction function. If con-
sidered under a probabilistic framework, the op-
timal prediction function is determined by the

true joint distribution of the input and output. A
variety of choices in algorithm design at various
stages can cause design biases. For instance,
feature extraction and selection, neural network
architectures, hyperparameters of neural net-
works, and optimization objective functions all
affect the prediction model and thus are sources
of bias. Classic methods for reducing design
bias include but are not limited to bagging and
boosting [33], feature selection [2], and model
refinement [21].
The trade-off between bias and variance to min-
imize average estimation error is well known in
statistics. A reduced model bias comes at the
cost of higher variance. Hence, a biased model
is not always detrimental to accurate prediction.
In fact, the widely used shrinkage techniques in
statistical parameter estimation introduce bias
into the model. Whether a bias is problematic
depends on its severity, or, more precisely,
the existence of effective control of its extent.
When the dataset is small, we may have no op-
tion other than a biased model. For instance, we
may rely on manually defined easy-to-explain
features to carry out an analysis. Although such
features reflect the subjective opinions of the
researchers, their explainability is crucial for
validating results in the case of small datasets.
Next, we describe a classic example of analyz-
ing artworks in a small collection using highly
explainable features. The aforementioned study
on van Gogh’s styles [2] shows a case of ac-
cepting bias likely to occur in feature extraction
in order to maintain the validity of the analysis
on a small dataset.
Motivated by the work of art historians, Li
et al. [2] hypothesized that van Gogh’s brush-
strokes differed statistically from his contem-
poraries’. Although van Gogh’s brushstrokes
often strike an immediate impression on a
viewer, as with many computer vision tasks,
what seems apparent to the human eyes is
hard to define computationally. Automatic ex-
traction of brushstrokes poses an enormous
technical challenge. The researchers developed
an algorithm to extract brushstrokes and then
defined eleven features to capture the geometric
characteristics of individual brushstrokes, for
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example, broadness homogeneity, straightness,
and size, as well as characteristics of the spatial
arrangement of brushstrokes, such as the num-
ber of brushstrokes with similar orientations
in a neighborhood and orientation standard
deviation for brushstrokes in a neighborhood.
Experiments show that one set of features best
distinguishes van Gogh’s work from his con-
temporaries and another set best distinguishes
his early and late periods. The distinction be-
tween van Gogh and his contemporaries lies
mainly in the arrangement of brushstrokes—
van Gogh’s brushstrokes are more rhythmic
(organized but not homogeneous throughout the
canvas). Rhythmic brushstrokes are a hallmark
of van Gogh’s work across his early and late
periods. The distinction of his work in different
periods relies instead on the appearance of
individual brushstrokes. These findings are easy
to explain and hence can either back up the
beliefs of art historians, provide new insights,
or both.

Design biases tend to degrade performance
when models for one task are used impru-
dently for different tasks. For example, Wang
et al. noted that the residual connection, which
is a crucial trait of the Residual Network
(ResNet) [34] for outperforming the Very Deep
Convolutional Network (VGG) [35] in some
traditional computer vision tasks, is a poor de-
sign choice for image style transfer and should
be omitted [21]. As another example, Liu et al.
found that removing instance normalization in
the content encoder generated worse content
representations [36]. Generally speaking, mod-
els proposed for artwork analysis are task-
specific and do not perform well when adopted
directly for different tasks. A typical case of
task shifting occurs with the change in data
collection, for example, oil paintings versus
watercolors, or earlier versus later periods of an
artist. Transfer learning and domain adaptation
approaches have been developed to alleviate
such design biases. Next, we discuss a few
cases which counter design biases in other
ways.

Different techniques for estimating some prop-
erty of an artwork—the identity of its author,

the location of its central vanishing point, the
location or distribution of illumination through-
out a depicted tableau, and so forth—may have
inherent biases. An extremely widely used tech-
nique in reducing the bias of a final overall
estimate is to use multiple different estimation
methods and combine their results in a statisti-
cally principled way. If the estimates are biased
in different directions, taking the average of
them typically reduces the bias. If the estimates
are statistically independent, assuming that they
have roughly equal variance, taking the average
of them will reduce variance.

An example of such a method concerns claims
about the lighting within the tableau in Christ in
the Carpenter’s Studio, a work by the Baroque
master from the Lorraine, Georges de la Tour.
David Hockney proposed that some Western
artists, as early as 1430, secretly used optical
projectors during the execution of their works
and adduced de la Tour’s painting as evi-
dence [37]. The simplest computational method
for estimating the location of the point-source
illuminant within the tableau is cast-shadow
analysis [23], [22]. The researcher simply iden-
tifies points on occluders and points on their
corresponding cast shadows and draws a line
between them. Although the painting is com-
pellingly realistic, there is no reason to as-
sume that this hand-made painting is slavishly
mimetic to the scene, obeying the physics of
optics. As such, we can assume that some of the
cast-shadow estimates for the illuminant will be
too high, and others too low.

A second method is based on the pattern of
light over the floor. We assume the floor is dif-
fusely reflecting, or Lambertian, and compute
an appearance model of the brightness over the
floor as a function of the (as yet unknown)
location of the illuminant [23]. This appear-
ance model has three unknown parameters, the
albedo or reflectivity of the floor, the tip angle
of the floor, and the two-dimensional location
of the source. We estimate these parameters
using gradient-descent. Such analysis shows
that it is most likely that the illuminant is near
the candle, surely not outside the frame of the
painting.
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A third method is a general occluding-contour
algorithm [24], which was first applied in art
analysis to Johannes Vermeer’s Girl with a
Pearl Earring [38]. This algorithm estimates
the direction of illumination that best explains
(in a sum-squared-error sense) the pattern of
lightness along the outer boundary or occluding
contour of an object. In Christ in the Carpen-
ter’s Studio, such contours included those on
the faces of the figures, their arms and legs, and
chests. Each such contour gives an estimate,
represented as an arrow, and the best estimate
of the source of illumination within the painting
is the position where these lines cross most
closely. There is an extremely strong agreement
of the lines at the position of the candle in the
tableau.

A fourth method for estimating the location
of the illuminant—more specifically deciding
whether the illuminant is in place of the de-
picted candle or instead “outside the picture”—
relies upon creating a computer graphics model
of the tableau [25]. During the creation of the
computer graphics model of the tableau, the re-
searchers crafted the model to match the three-
dimensional geometry but not the effects of
lighting, thereby avoiding biasing the model on
the question at hand. This method avoids bias
in lighting [39]. Next, the researchers adjust
the position of the virtual illuminant within
the tableau to candidate locations for testing
the claim at hand. In the current case, the re-
searchers place a point source at the geometric
location of the candle and again in place of
one of the figures (for instance Saint Joseph), as
explicitly claimed. Then they visually compare
the rendered virtual tableau with the artwork
(for cast shadows, highlights, and so on) to see
which of the two light location hypotheses is
best consistent with the image in the painting.
In this way, the source of illumination was
found to be most consistent with the position
of the candle.

Once we have estimates from multiple methods,
we must integrate them to yield a final estimate
in service of answering our art-historical ques-
tion. A leading principled integration method is
through maximum-likelihood estimation.

Evaluation
Human evaluation bias
For some learning tasks, the evaluation of a
trained system requires user studies (sometimes
called perceptual studies). As with the anno-
tation process, subjectivity can be a problem
during the evaluation process. The evaluator’s
knowledge and cultural background, among
other factors, can influence their judgment,
sometimes to the extent that their assessment is
significantly different from the average opinion
of an anticipated population. Aesthetic evalu-
ation of visual arts is especially sensitive to
individual differences, which has been observed
by Kao et al. [40]. Bias in evaluation is some-
times caused by inaccurate labels given to test
points, and hence can be categorized as label-
ing bias. However, since human evaluation can
be different from or more diverse than labels
provided for training data points, we separate
human evaluation bias from labeling bias. One
common idea to avoid human evaluation bias is
to favor more objective and quantitative metrics
for evaluation if these metrics are relevant to
the art-historical question at hand. However, in
some applications, objective metrics can hardly
reflect users’ experience, the very reason for
using human evaluation despite the potential
bias.
An example of mitigating this bias can be found
in ArtEmis, a large-scale dataset containing
paintings with annotated emotion labels and
explanations for why the annotator assigned
any emotion label [3]. The researchers used this
dataset to train a set of neural speakers capable
of generating captions to predict emotions trig-
gered by visual stimuli, along with automatic
explanations. Instead of using human annota-
tions as the “ground truth,” they trained an
emotion classifier using the data. As part of the
evaluation for the trained neural speakers, the
deduced emotion from a generated caption is
compared with this machine-generated “ground
truth.” The advantages of this approach are
its attention to the mitigation of human bias
and the availability of labeled test instances.
However, an interesting question is whether the
machine-predicted labels are accurate enough
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for a reasonable evaluation.
Sample treatment bias
It is a common practice to split data into a
training set and a testing set when estimating a
machine learning model. The former is used
for model estimation, while the latter is for
evaluation. Data must be fully shuffled before
being separated into two groups, a common
practice to avoid sampling bias and evaluation
bias. Otherwise, the evaluation of the model can
be overly pessimistic or overly optimistic. We
call the bias caused by mistakes in the usage
of the sample dataset sample treatment bias.
Another common way to reduce sample treat-
ment bias is to conduct cross-validation based
on a random split of the data into multiple folds.
When data are not independent samples, split-
ting them into training and testing sets for the
most accurate final performance can be subtle.
In an interesting work by Salazar et al. [26],
this problem was investigated for spatially cor-
related data. It is found that ignoring the spatial
information can cause considerable bias in eval-
uation, in particular overoptimistic assessment
due to the spatial correlation between the test
and training data. They proposed a method for
splitting data to avoid such problems.

Quantifying Effects of Bias
A common way to examine the effect of bias
in AI-based artwork analysis is to evaluate how
the final performance changes when the bias
is removed from the model, referred to as an
ablation study. The difference in experimental
results with or without the bias estimates its
magnitude. Specifically, we may obtain test re-
sults with or without label propagation, certain
restrictions, or changes in the network structure.
We describe below an approach in a particular
context to measure the effect of bias more
directly than comparing the final results.
As shown in Fig. 3 of the paper by Srinivasan
et al. [41], the style of an artist is affected by
several factors, which fall into two categories:
concrete variables (e.g., art material, art move-
ments), and abstract variables (e.g., religions,
emotions). Confounding biases can be expected
to arise when variables with causal relation-
ships with both artists and paintings—such as

art movement, genres, and art materials—are
not included in the analysis. They proposed a
direct measure for the effect of art movements.
By training a classifier for art movements, the
authors identify features pertinent for charac-
terizing the art movement to which a painting
belongs. Denote this set of features by F .
To measure the effect of art movements on
a particular artist, say artist A, A’s paintings
are compared with other artists’ paintings in
the same art movement. In the meantime, A’s
paintings are compared with paintings artifi-
cially generated by GAN (trained using A’s
work). The comparison of paintings is based
only on the features from F , those deemed
relevant for characterizing art movements. Then
the ratio between the average distances is used
to measure the effect of art movements. The
rationale is that if the art movements do not
matter for how the artists created their works,
the ratio is likely small since paintings from the
same artist tend to be more similar than those
from different artists.

Concluding Remarks
AI-based analysis of visual artworks can pro-
vide new perspectives on the study of art and
answer art-historical questions that are oth-
erwise difficult to answer. Computers excel
at finding patterns in complex data and can
help art historians uncover new avenues of
inquiry [42]. However, given the unique, het-
erogeneous nature of works of art, there are
many potential sources of bias in computational
methods when applied to the analysis of visual
artworks. In this article, we have reviewed
these sources of bias and described appropriate
mitigation approaches that have been attempted
in the AI research community.
Having surveyed the types of biases that can
arise, we want to stress that there are unsolved
challenges in the AI-based analysis of visual
artworks. The results obtained from a data-
driven analysis must be interpreted cautiously,
taking into consideration all the assumptions
and limitations along the pipeline. Researchers
should rigorously evaluate any model (for ex-
ample, using less-populated categories to test
it) before drawing conclusions. If the testing
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data match poorly with the training data, a
careful discussion of limitations will help avoid
misleading users (e.g., art historians and the
general public). This is especially important for
analyzing visual artworks because we often do
not have the consistency, quality, quantity, or
representativeness of data that exist for other re-
search areas. For example, when discussing AI-
based analysis of paintings, many people con-
sider the detection of counterfeits an interesting
application. However, we must realize that it is
impossible to collect a representative counter-
feit dataset for any painter because there can
be many unknown forgers possessing skills too
diverse to model. A computational approach for
counterfeit detection would provide insights to
the extent its “reasoning” is interpretable [43].

To properly conduct AI-based analysis, re-
searchers need to not just be mindful of the
biases discussed in this article. Working closely
with art historians and other relevant profes-
sionals can help surface bias across all areas,
from problem formulation to evaluation, and
can help devise mitigations that don’t engender
new problems as part of their solution. Close
collaboration with experts in different fields
on AI-based research projects is an important
way to mitigate bias and involving art-historical
expertise early on can ensure that projects avoid
flawed problem formulations that render the
whole analysis useless.
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