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Abstract—Tagged Web images provide an abundance of labeled
training examples for visual concept learning. However, te
performance of automatic training data selection is suscejble
to highly inaccurate tags and atypical images. Consequenil
manually curated training datasets are still a preferred cloice
for many image annotation systems. This paper introduces
‘ARTEMIS’ - a scheme to enhance automatic selection of
training images using an instance-weighted mixture modetig
framework. An optimization algorithm is derived that in
addition to mixture parameter estimation learns instanceweights,
essentially adapting to the noise associated with each exafa.
The mechanism of hypothetical local mapping is evoked so
that data in diverse mathematical forms or modalities can
be cohesively treated as the system maintains tractabilityin
optimization. Finally, training examples are selected fron top-
ranked images of a likelihood-based image ranking. Experirants
indicate that ARTEMIS exhibits higher resilience to noise
than several baselines for large training data collection.The
performance of ARTEMIS-trained image annotation system is
comparable to using manually curated datasets.

Index Terms—training data selection, statistical learning, clus-
tering methods, instance-weighted mixture models, hypottical
local mapping, ARTEMIS.

|. INTRODUCTION

A

UTOMATIC image annotation is a focal problem in im- , A i
age processing and computer vision. Annotation SystemsImageNet is a crowd-sourcing initiative to manually vatila

(d)

Fig. 1. Challenging Flickr examples for the concepstle (a) Incorrectness:
Concept cannot be inferred from the picture, (b) Polysemyifferent object
has the same label, (c) Atypicality: The silhouette of a saadtle is an
atypical example, (d) Incompleteness: A relevant examplelabeled.

@ (b) ©

all images labeled with the concept name and an image
with multiple labels exemplifies co-occurring concepts.eTh
retrieved images could be directly used to train annotation
systems, except that they are often irrelevant from a machin
learning perspective. Fig. 1 shows noisy images associated
with the conceptcastle As many as 85% of Web images
can be incorrectly labeled [33]. Even user-assigned tags ar
highly subjective and about 50% have no relation to visual
content [28]. Tags appear in no particular order of releeanc
and the most relevant tag occurs in top position in less than
10% of the images [35]. Consequently, several strategies ha
been proposed to refine retrieved collections.

can be developed using generative modeling [30], [31], suE?_trieved images [15]. This process results in few errors,

port vector machines [56], visual templates [10], laterdcsp

ut takes years to gather sufficient data for a large concept

models [42], and more recently through joint word-image enyocabulary. Algorithmic training data selection providas

bedding [60], [62], and kernel learning [17], [38]. A majiyri
of techniques depend on pre-selected training images and
vest many hours to collect them.

In recent years, easy access to loosely labeled Web imal

has greatly simplified training data selection. Search reggyi

necessary trade-off between efficient automation and tiatec
agcuracy wherein potentially noisy examples are filteredgus
statistical learning techniques. Noise mitigation may bsqu

sa Classification problem where a support vector machine
SVM) is trained to distinguish images tagged with a specific

retrieve potential training examples by comparing concepPncept from those not tagged with that concept. Alteryatel
names with image labels (user-assigned tags or surroundifig®/evance ranking problem can be formulated where images
text keywords). In this context, a concept is illustrated b§'€ ranked in the order of SVM classification margin or other
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Statistical measures. For example, unsupervised claogtési
useful to learn a concept-specific static distribution ofada
and rank images in the order of the chosen cluster measure
(mixture likelihood or distance from the nearest protofype
Top ranked images can be used to train annotation systems
and low ranked images are discarded as noise.

A. The Problem

The problem of automatic training data selection is similar
to statistical outlier rejection which works on the general
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Fig. 2. A simplified heat-map visualization of training datelection in 2-dimensional feature space (view in cologclEpoint is one of 647 user-tagged
images associated with a common target concept. The coleadf point can be mapped to a concept-specific numeric nelevscore using the associated
color scale (not normalized). The specific selection siéesare as follows: (a) All images are equally relevant solelsed on the presence of the target concept
in user tags; (b) Manual assessment distinguishes noisgesndenoted in blue from relevant images marked in red. Tleeavquantity and distribution

of noise underscores the challenges faced by automatitirtgadata selection; (c) and (d) The image relevance esinby SVM and K-Means falsely
ranks noisy examples higher; (e) A density estimation apgitao select examples from locally dense neighborhoods beapadequate to process complex
distributions; (f) ARTEMIS selects training examples frahe high-likelihood region of distribution density thatttes correlates with manual assessment.

assumption that outliers are sparse and distinguishabla frB. Our Solution
the ‘normal’ data represented by a statistical referencdeho

[22]. The high level of noise associated with user-taggeéjct)l_g tgpproi':lchl IS k;a§ed on hthe observation Ithatf the
images grossly violates this assumption. Istribution of relevant images has a more regular form

. . N compared to noise, thereby resulting in a higher signal to
To illustrate this problem, we created a simplified two P y g g g

. . . T _ ) _noise ratio at the modes of the distribution as opposed to its
dimensional visualization of 647 Flickr images tagged witl

ii Fig. 2 sh | training data sefe oundaries. In that case, the precision of training datctieh
a specific concept. Fig. 2 shows several training data Ctmay be enhanced by tapping the high-likelihood region of the

scenarios using hea_lt—maps where the co_lor of each po_inte:arH tribution. This in turn evokes a causality dilemma beseau
marIJpeI(:j_tognurgen_c trel;vancrz s;:_ore ufswlllg the aissomat_mdc e distribution parameters cannot be robustly determined
scale. Fig. 2(a) depicts the selection of all user-taggea#s .+ suppressing the effect of outliers and outliersnzan

assuming reliability of tags, an agsumptmn that compjet e suppressed without a good reference distribution.
breaks down when compared with the manual relevanc . . : .
e propose a new instance-weighted mixture-modeling

assessment in Fig. 2(b). In this particular example, netbp : ) .

of images are noisy, highlighting the fact that noise need n%cheme that _S|multane_ously estimates mixture paramem_alrs a
' INstance weights. It is namedRTEMIS after Automatic

be sparse or separable

. _ Recognition of Training Examples for Modeling Image
Support vector machines and K-Means clustering do n8bmanticsin this parametric scheme, the reference model

specifically acc_o_unt_for noise in statistical refe_rencerriéag. _for each concept is a mixture model of visual and textual
Tolapply classmcatlon-b_ased SVM, an addltlo.nal collettiofs 5t res computed from images tagged with the target cancep
of images not tagged with the target concept is collected &yijar to K-Means, the ARTEMIS initialization stage assg
the negative class. For SVM classifier to be effective, it igy; a1 weights to all data instances. However, it then desiat
imperative that the chosen negative examples match thg n systematically learning unequal weights to curb the
positive examples or else the classifier may overfit the noisgnipution of noisy images in iterative reference model
Fig. 2(c) shows the SVM scores based on classification MAargih ming. Training data is selected by ranking images in the
Given its computational efficiency and simple implementatecreasing order of mixture likelihood. Fig. 2(f) shows the
tion, K-Means is commonly used to select training examplggitput of ARTEMIS initialized using the same conditions as
based on the proximity of an image from the nearest clusfgrK-Means clustering of Fig. 2(d). The algorithm converges
prototype. Fig. 2(d) shows the output of K-Means algorithig identify the high-density region of relevant images réfy
seeded with 20 clusters in K-Center initialization whererev improving the precision of training data selection.
the noisy examples get a high score due to outlying clustersshe mixture modeling approach of ARTEMIS is suitable
A robust ranking can not be guaranteed due to the sensitivily model complex feature distributions and components
to outliers and initialization conditions. with different densities. As ARTEMIS uses a parametric
probabilistic data model and the ranking is based on theativer
1The outlier inseparability presents an interesting pertipe for manual mixture likelihood, the scores generated by ARTEMIS have

training data selection. Even if manual selection filters alinoisy images, 3 more global interpretation of image typicality. Therafor
subsequent statistical image annotation algorithms magiraee to mistake

similar images for relevant examples, especially in thénfdgnsity region of even thOUQ_h ARTEMIS emphaSizeS. aSSigning higher. chres
feature space - a classic outcome of geenantic gap for points in highly populated regions, image ranking is
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not susceptible to very local and possibly spurious densitye The proposed techniques are generalizable to other
variations. As a further explanation, instance weightifane domains dealing with noisy data.

can be achieved using simple local density estimation where

the score of a data point is the count of neighborhogel Organization of the Paper

points that lie within a pre-determined distance of that
point. However, such approach may be prone to selecti
noise in a spuriously dense local neighborhood before t
true signal from a possibly less dense component. Furth o . ;
the implementation of such counting approach is non-ﬂriviéRTEMlS for training image annotation systems is presented

in determining a suitable distance measure and thresho'lrdssect'on V_with experimental results in Section V1. We

applicable to high-dimensional, multimodal feature s;saceconCIUde in Section VIl with a note on future work.

Fig. 2(e) illustrates the output of the counting approach.

Section Il discusses related work. Section Ill and Section
E@ present the instance-weighted mixture modeling algonit
pd its properties, respectively. An overall framework seu

Il. RELATED WORK

C. Challenges This section presents the specific research on training
data selection from noisy user-tagged images as well as a
brief review of robust statistical learning. The discussio
:Sn instance-weighted clustering and entropy regulacnais

distribution and performs best if the exact distributio eferred until Section lIl-C to contextualize our approach

is captured. It is unlikely that datasets corresponding to Manual selection Image annotatlon research has histori-
cally leveraged smaller but high-quality datasets credugd

different concepts from a large vocabulary will confornn, . . 4
orous manual inspection of images [16]. Some newer ap-

to one model. In fact, Quack et al. demonstrate the variet ' e

by presenting examples of feature distance histogra Soaches cha_mnel human efforts by engaging game-hkemt_er
over large datasets [46]. This makes parametrization ng -Cde? and CI'Ck'thT)UQE data dar:al{)&st t[50].delnuaIIIy :en-_
trivial, particularly if one or more features are irreletan Ied Images can aiso be used 1o bootstrap data selection in

o Optimization of a complex objective function: aCt'VI\? ‘t’F mcremedntal Iearrgndg Iramtetvr\]/o;k [13].’d[33]’ [581.]' q
Estimation of instance-weighted likelihood with varyingage elis a crowd-sourced dataset that provides organzed a

weights is a relatively new problem. Using arbitrary datg°>s to_ hundreds of images _for a _Iarge numbe_zr O.f WordNet
distributions can result in complex objective functionfategorles [15]. Research using this dataset highlighus-pr

which cannot be optimized using closed-form solution £ms In Ia\.rge.-scale training data selection [1.4.]’ [25].
Using slower gradient-descent methods may diminish Clustering: Berg et al. clustered composition features to

the computational advantages over simple clusterir?%.eitb |mag§sK W'thd I%rg::- ?lttuects.before af)plylzg Nr|1eareTt
algorithms that have an analytical solution. rieighbor and K-medoids to filter noisy examples [4]. Manua

: . verification was intermediately employed to enhance pratis
We address these challenges using hypothetical lo y employ b

. . . . Lazebnik et al. lied tri traint i
mapping (HLM) [30] to model and combine multiple feature azebnik S a.. applied geometrc constrain's Vertima

ithout directly deali ih their ob d distributi o refine clustering [47]. Tang et al. developed a semi-
without directly gealing wi €ir observed GISouten o \1omatic technique to assess segment-level tag relevance
HLM together with an entropy regularization of instanc

. . . . . clustering corresponding features using locality dermsi
weights, yields an efficient, analytical, and generahzq% 9 P 9 g y

lution 16 th | Gimizati bl The ref shing and manually verifying the largest feature cluster
solution 1o Ihe compiex optimization problem. 1he releenG, or, o selecting it for training [53]. Fergus et al. used the
models can be stored for re-use.

random consensus (RANSAC) technique to robustly estimate
. the probabilistic model of web images. Outliers were rejdct
D. Contributions by comparing image rankings generated by different triaks a
The contributions of our approach are listed below: identifying images that resulted in inconsistent grougifig].
o ARTEMIS is a unified training data selection framework Support vector machines SVM classifiers can be trained
to handle noisy user-tagged images. It outperformsing tagged images (with or without manual verification)
alternative techniques by using efficient instance weigtd select more training data [28], [51]. One-class SVM
learning and feature combination. On a benchmaf®CSVM) techniques may be used for unbalanced datasets
dataset, ARTEMIS achieves a mean average precisionvafien it is difficult to obtain negative class examples or when
0.47 which compares favorably with 0.41 for K-meansnly very few positive examples are available. Given an inpu
and 0.39 for ranking SVM. Relevant images can beoise-level, OCSVM finds a hypersphere with the minimum
identified from incompletely tagged images. volume surrounding the corresponding fraction of positive
o« ARTEMIS contracts the gap between the quality oflass samples. The hypersphere does not necessarily accoun
training data collected using manual and automatfor the multimodal nature of the data and previous studieg ha
training data selection. Our experiments indicate thavaluated it over very few concepts [9], [39].
an annotation system trained using ARTEMIS performs Tag refinement While the aforementioned techniques are
similar to using manually curated datasets such apecific to training data selection, tag refinement is a edlat
ImageNet and COREL. For the ARTEMIS-trainedapproach to semi-supervised annotation of images without a
system, the accuracy in top ten annotations is 22%. intermediate training data selection step. It is a two-tag

There are two main challenges:

« ldentification of a suitable distribution function:
Mixture modeling assumes data to follow one specif
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technique that first retrieves labeled images visually Isimi I11. I NSTANCE-WEIGHTED MIXTURE MODELING
to the query image followed by a tag refinement scheme
to select labels of the visual neighbors for query image We now present the mixture-modeling algorithm that forms
annotation [57], [62], [65]. The retrieval algorithm mayeusthe core of ARTEMIS. Each concept is represented as a
some form of K-nearest neighbor search (KNN) or graplint mixture model of the visual and textual features of
mining, possibly made efficient using passive-aggressiwe | images tagged with the concept and learned from noisy Web
dimensional embedding models, kernel methods [17], [38], thages. Let an image be representedwas = 1,..., N
feature compression [60], [49]. drawn independently from d-component mixture model of
the concept whose centroids are denoted;ag =1,...,J.
Data selection may also be linked to Web search restlhe fth feature type of an instanee is denoted as; ; and
ranking that focuses on a limited set of top query resultsf a centroidc; as c; r, where f = 1,..., F denotes the
Popular Web ranking techniques such as ranking SVM [27ifferent feature types such as color, texture, shape, andsy
passive-aggressive models [21], and boosting [55] aim fodata pointw; is associated with weight; that reflects its
directly optimize precision in top results using pair-wisgoncept-specific relevance. Without loss of generaliratice
constraints that rank relevant documents higher tharevegit can assume weights to be non-negative and normalized i.e.,
documents. This evokes a quadratic complexity not amenahle > 0,¥i and >, w; = 1. The mixture parameterg¢ and
to large-scale training data selection. instance weight vectdii’ are estimated by jointly optimizing

Different techniques offer different trade-offs for traig weighted data likelihood in space = 6 x V.

data selection. A generative model-based approach such as

. N J
ARTEMIS makes more assumptions about the data but B _
provides computational efficiency in processing unseemyésa log L(®) = Z i IOgZp(U“ ¢;30) @
through stored concept reference models. The scores dgedera = =t
by ARTEMIS represent the overall likelihood of an image 7

which is useful not only for the segregation of noise but &80 For previty, we denotdogZp vi,¢;30) asl;. EQ. 1 can
identify which images are more representative than thersthe

Tag refinement techniques based on nearest neighbor analpsi trivially optimized for flxed uniform or fixed non-uniform
are model-free when they do not create a unique abstractiwgights if the weights are known a priori. However, if weight
or an intermediate reference model of the target concept Sware allowed to vary freely, the solution quickly convergest
techniqgues must access a large pool of labeled imagesd&generate case where the point with the highest likelihsod
determine visual neighbors of the query and to build a taggsigned a unit weight and all other points are assigned zero
ranking model over the corresponding labels. The advantageights. In other words, if the likelihood af; is denoted a$;

of this approach is that multiple tags can be processed &.onand the likelihood of the maximum likelihood pointlis ., it
However, the speed and accuracy of analysis is closely diedcan be easily shown that, w;l; < 1. Therefore, to allow
the size of the labeled dataset that can be efficiently psecesall data points to fairly influence the estimation, we intiod
at run time. As the scores of two images are based on thaipenalty term corresponding to the entropy regularizagibn
local neighborhoods, it is non-trivial to identify which age weight distribution in the objective:

is more representative of the target concept.

Ensemble-based learningThe classification or clustering- F= Z wil; — nz w; log w; . (2)
based paradigm to outlier rejection is the fundamental @spe j =

of statistical learning from data. However, the stand-alon

algorithm analysis might be insufficient when the effect 'fhe regularization factor< controls the degree to which
noise is deleterious. Random sample consensus (RANSAC }gllers are penal_|zed Ik = oo, all data points are forced
a popular technique to improve parameter estimation wh %hq\/_e equal weights; :_O _corresponds to the degene.rate
multiple trials are conducted, each on a small subset o) ndition. Eq. 2 can be optimized using an EM-type algorithm
data with the expectation that at least one clean subddle expectation step is similar to regular EM and involves
will be generated to yield stable parameters. This proceSdMPuting posterior distribution af; given v;.

can be highly computation-intensive, especially in case of

complex models. Alternately, bagging type of approaches ca Qi(cj) = plejlvis 0) - ®)

be developed where an ensemble of models is used instea
a stand-alone algorithm to generate a more robust predicti
[7], [52]. Angelova et al. used discriminative models suchi
as SVM as base classifiers and filtered examples on which ,

the classifiers disagreed the most [1]. Angluin et. al used th Z Z Qilc
bagging approach to learn a classifier over multiple random
subsets and selected the most consistent rule as predig}ion

Hong et al. used an ensemble of multiple clustering resaltswhere the weight estimation is incorporated as a nested
filter examples yielding inconsistent results [23]. optimization sub-problem in the M-step of each EM iteration

he maximization step updates parameters to optimize the
onstrained weighted likelihood

1ng ’Uhc_]v - K;Zwi logwl ) (4)
j=1 i
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A. Selection of a Probability Distribution Function features are probabilistically combined under the assiompt

As the optimization involves an arbitrarily large number o?f independence as follows,

parameters, using deterministic annealing [48] or gradien p(vile;) = Hp(vi,flcj,f)- 7)
based approaches [37] may cause large computational i

overhead. Therefore, a critical decision lies in the choitcthe
distribution functionp(.). While estimation may be simplified
assuming Gaussian distributed data [64], such assumpt
is often inconsistent with the real statistical distrilouts

For each mixture component, the feature types are inde-
%endent and the corresponding parameters are indepeydentl
op;][imized using the distance distribution within that feat
exhibited by different features [46]. Further, differepttures type. Even though each mixture component estimates a sin-

gle set of parameters for each feature type and the number of

follow different distributions and it is necessary to sbita . . .

. . overall mixture components is the same, the variables are no
combine features for concept modeling. To overcome these . . .
. : ) dependent in general given the complete mixture model. In
issues, we evoke the hypothetical local mapping (HL

technigue from our earlier work [30] ther \./vor_ds,.the complete mixtu.re:\ model can represent com-
. ' . . . eplex distributions as long as sufficient number of composient

The ke_y to hypothetical local mapping lies in th are used, even if the same number of components are used for

relat_longhlp between_ th_e parameters of a hor_no_sce(_:ia & joint representation of different features. When défe

multivariate normal distribution and a gamma dlstrlbutlonfeature types have different complexity in their distrious,

Irx = (Xl.’ XQ"".’ Xi)" € RYis a multlvarlateTnormaI this will be reflected in the parameters for different featur

rando_m varlablg with r;\eam. - (“.1’“2.’ e ’“’“? and types in the mixture model. For instance, a feature type with

covariance matan — ¢ .I (I is the |d2ent|ty matrix), then a relatively simple marginal distribution may have simitea-

the squared Euclidean distani&’ — u|[* follows a gamma rameters across the mixture components, while a featue typ

dlstrlbuttlon (E :2b’25) g'th scale a?ratrrr:etdr_: (%2 zr:]mddshape g/ith a more complicated marginal distribution may have high
parametets = =o=. Lonhsequently, the neighborhood aroun igparity in the parameters across components.
each centroid can be fitted a scaled gamma distribution an

used to infer the parameters of a hypothetical multivariate _ . o
normal distribution whose instances would generate a amiP: Analytical Solution to Instance Weighting
distance profile. Formally the component distribution amu The proposed distribution function provides an efficient
a centroida: can be computed as: solution to the constrained optimization problem in Eq. £ W
0 . first update centroids;,, keeping weights fixed. That is,
9(8) = (L> =T 5) 5 s ?

\/E 0 N e by
_ _ o _ Do ZwiZQi(cj)logHT =0. (8)
where3 is an image for whichy is the nearest centroid. Such 9+ \ ;.= ;=1 i (mby)

approximation corresponds to a one-to-one mapping between

the hypothetical space ari@ that maximally preserves the Maximizing with respect to each feature type,

distances between images and their closest centroids. ZwiQi(Ch>Ui ;

In [30], HLM was proposed for D2-clustering of a . "
non-vector ‘bags of weighted vectors’ feature space. After Ch,f = W : ©)
prototypes were generated, a single run of HLM was applied - slTh

to learn the probability distribution based on the bag dists o )
from the nearest prototypical bags. In our work, HLM il he distribution parameters are updated by computing the ne

evoked for the purpose of efficiency and not so much from tifiStances of data points from their closest centroids aimgus

limitation of non-vector feature spaces. HLM embedded inith Maximum likelihood estimation for gamma parameters [11].

each EM iteration ensures tractable convergence propértie To updatew;, the following constrained optimization is used:

optimization. As different features are highly likely to e maximize Zwili _ szi log w; ,

different distributions, we apply HLM to separately esttma wi 7 7

distribution functions of individual feature types. Theeusf subject to Z“’ 1w >0i=1 N (10)

HLM as a means of feature combination was not touched upon —~ = EE

at all in [30]. The concept of instance-weighted learning an o

the underlying problem of choosing good training imagesaNe;J-he Lagrangian is:

also irrelevant in that work. M = Zwili _ szi logw; + A(1 — Zwi) . (1)
The distribution of feature’ is defined as: P P P

) 25 s e gl Differentiating Eq. 11 with respect t@; and simplifying,
rles ) = D LA
p(v 7f|c.77f) <\/W> € (6) w; =€ = . (12)

where b; and s; are the gamma parameters for thféh Next, Eq. 11 is differentiated with respect Xoand simplified,

feature type. Given a feature type, we assume common A:n(logZe% ~1). (13)
shape and scale parameters for all components. Finally, -
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Substituting Eq. 13 foi in Eq. 12. ) )
wizeli/m/zelm/ﬁ R (14) ;ﬂ: ) . .- ;0:

where recall that; is the log-likelihood of a poinw;. The . s
formula for weights indicates that each data point exegcise (a) Initialization 1 (b) Initialization 2
an influence on density estimation that is proportional $o it
likelihood from the current mixture density. If noise is peat

in one or more feature spaces, the weight of a data po
will be lowered even though the probabilities are bound i #
the range|0, 1]. Consequently, typical examples with highe
weights exercise greater influence and the effect of ostlier

iteratively decreases. Algorithm 1 summarizes the maip$teF, 3 The robust ‘i 4 aloorithm is ilvsttausing tw
f . 1g. o. € ropusiness o € proposed algoritnm Is 1 ausing (o]
of the mixture mOde“ng approach. different initializations with similar convergence.

g 05 T is = 05 o 3
Feature 1 Feature 1

(c) Output of initialization 1 (d) Output of initialization 2

Algorithm 1 Instance-Weighted Mixture Modeling Technique

Initialize cluster centroids. of conditional probabilitiew(y|z) relating inputz to cluster
Assign equal weights to all data points. y is used to avoid hard clustering [48]. Similar regulariaati
Compute initial maximum likelihood estimates of gammés used in [29], [20]. Some approaches extend the reguthrize
parameters [11]. conditional probabilities to automatically determine tiem-
Choosex. ber of mixture components [44], [59]. Entropy regularipati
Initialize objective function using Eq. 2. is also popularly used for feature-weighting [26], [19] these
while objective function increasedo examples, data instances are uniformly weighted.
{E-Step:} Entropy regularization fits naturally with instance-wetigly
Update posteriot) using Eq. 3. and while the regularization looks superficially similartte
{M-Step:} previously discussed techniques, it is fundamentallyedéfit.
Update cluster centroids using Eq. 9. A typical data likelihood does not concern with variable
Compute data distances from the nearest centroids. weights and atypical objective function only optimizes
Update gamma parameters. mixture parameters. ARTEMIS’s objective function is non-
Update weights of data points using Eq. 14. traditional as we aim to not only find optimal distribution
end while parameters but also the weight distribution over sample

points. Consequently, it deals with much larger number
of variables. Instead of model parameters, instance-w&igh

which represent properties of sample data, are constrained
] o _ ) Such regularization is more robust to noise and indirectly
_In the seminal formalization of instance-weighted algqsonirols model parameters leading to a stable estimation.
rithms, Nock gnd Nielson used constr_alned. m|n|m|zat|% the best of our knowledge, entropy regularized instance-
of Bregman divergence to compute weights in a boostiRgsighting has not been theorized until very recently (excep

framework [43]. Their weight estimation module computeg, [64] for the special case of Gaussian distribution). Also
local variations of the expected complete log-likeliho@asl o4 applications have been presented.

increases the weights of those points on which the current
parametrization does not do well. Our goal conflicts wittsthi IV. ANALYSIS OF ALGORITHM BEHAVIOR
scheme as we do not want to increase the weights of outliers

. We present the convergence analysis of instance-weighted
On the contrary, our formulation resembles pseudo-relezan_ . o . . . .
; : mixture modeling in the appendix and find that each iteration
feedback technique used for document retrieval. Such a

proaches typically measure the Kullback-Leibler diveigen c%.ncludes with the M-s_tep |dent|fy|_ng globally ‘?F’“m?"
} . mixture parameters and instance weights for that iteration
between the document representations and the input qug

model and select a fixed number of most similar documenpr&eed’ same as any EM-type algorithm, the overall EM-

to update the query representation [41], [54]. In our Cas%gorlthm here cannot guarantee global optimality. It is

all instances will variably influence the parameter estiorat nécessary to analyze clustering model .S‘?"?‘?“‘?” |:e.cmeg|;a
. - . the correct number of clusters and their initialization.
controlled byx. It also provides a principled alternative to . : . .

- . Sl : A common model selection technique is to run the algorithm
empirical weight estimation based on counting the number of . . . 7
neighboring points [24], [32] Several times with different number of clusters and differe

' ' initializations before information criteria such as Akaik
) . information criterion, Bayesian information criterion; their
D. Relation to Other Entropy Regularized EM Methods  yariants can be used to select the simplest model that
Techniques such as entropy regularization are very fundaasonably explains the data. These criteria are partlgula
mental and applied to many critical problems. A seminal dse oseful to ensure a non-parametric algorithm such as K-Means

such regularization is in deterministic annealing whereapy does not get stuck in local optima, however they are not

C. Relation to Other Instance-Weighted Models
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designed for instance-weighted scenarios and their plidr

the proposed algorithm is unknown. Nonetheless if ARTEMIS . |
is run using different initializations, the resulting pareter ?;:Z
estimates lead to similar information criteria values. ) |

Fig. 3 relates to the simplified visualization in Section Han % N R S S
illustrates two separate random initializations with 20stérs Number of Latent Topics

each, that _lead to _SImllar O,Utpm'_ T_he _Converged solutlog% 4. Determining the number of LDA topics for tag represgon.
generate fairly consistent weight distributions. The &thess

of the algorithm can be attributed to the indirect regulatian

of cluster parameters through varying instance weightshEaa. |mage Collection and Feature Extraction

iteration computes a variable weight for each data pointtvhi
in turn affects the prior of associated centroids. Themfor
outliers belonging to isolated data clusters will contirtoe

Iowe_r in weights, subsequently wgakening the contributibn edge direction histogram, 128-dimensional wavelet tex&nd

the |solate.d Cluster to ovgrall “k_e“hO_Od' 225-dimensional block-wise color moment features. Tdxtua
In practice, curse of dimensionality may adversely affeglayres were computed using Latent Dirichlet Allocatiéh [

the algorithm performance. However, it still malntaln_s &he number of topics was set by analyzing 54,000 Flickr

reason_able Ievgl of robustness compared to unwelghq%ges from a benchmark dataset [12] as follows. The

clustering algorithms such as K-Means. We conductegh, nmark images have ground-truth for 81 concepts that

a ranking experiment using the full feature set of 47Q..tes the relevance of a concept to the image. We designed

dimensions (described in Section VI), 977 training imageg, ¢|assification task where the class of each image was

and 647 test images. We applied K-means clustering agdated using the hexadecimal number equivalent of the

the proposed instance-weighted mixture modeling algorithg; jimensional binary ground-truth vector. To overcome th

to f.ifty different random initiglizations to learn resp.a«ai sample insufficiency problem, classes associated withaat le
statistical models. The evaluation was conducted by meBBUI5o, of the samples were used. We then trained naive Bayes

average precision of ranking the 647 test images. We foupfsgifiers using topic model distribution as features. The

that the mean average precision of K-Means was3+0.018 o rtormance was measured by varying the number of topics.
and that of instance-weighted mixture modeling Was8 = i 4 shows the cross-validation performance which peaks
0.005. We also varied the number of components in mixturg"5q topics. Consequently, we computed textual features as
mod.ell estimation from 4 to 40, to find the mean average yigyripution of dimension 50. A fast LDA implementation

precision to be).735 £ 0.007. In other words, as long as thep,<ad on Gibbs sampling was used for inference [45]. Tags

|n|_t|al|zat|on is seeded W|th_ sufﬂqe_nt number of clustetse were pre-processed using stemming and stop-word filtering.
mixture model-based algorithm is likely to be robust.

It is trivial to extend ARTEMIS to ‘out-of-sample’ data. - .
The out-of-sample problem affects all algorithms based (91 ARTEMIS Training Data Selection
the concept of manifold learning such as locality presggvin Fig. 5 shows the flow of ARTEMIS framework which
projections and Eigen analysis. As the learned manifold R§ocesses one concept at a time. The reference model for each
tuned to the training data, it is imperative to compute agpPnceptis learned by applying the formulation in Sectidnal
extension operator that will extend the mapping to new ari@e visual and textual features of images retrieved by theche
possibly out-of-sample points. The difference of HLM fronengine. Next, images (that may or may not be a part of the
such manifold learning methods is that the mapping is onftgference model training) are ranked in the decreasingrorde
hypothetical. The mixture likelihood of any instance can bef likelihood. Training data for the target concept is sedelc
computed using only its distance from the nearest centinid @S a pre-determined number of top-ranked images or using
the original feature space). As the actual point-wise magpia likelihood-based threshold value. We explain our choite o
to the hypothetical multivariate normal space can be bygghssusing a fixed number of images in Section VI. Note that an
the extension operator is trivially available. Secondlye wimage labeled with multiple tags is used in learning refeeen
expect the mixture models learned from different samples f@odels of all those concepts. However, it will be weighted
generate consistent rankings under large sample consljtiodifferently for different concepts. All concept referencedels
leading to statistical generalization. are stored in a database for future use.

A standard text search engine is used to retrieve
Flickr images labeled with each concept in the annotation
vocabulary. We used three visual features: 73-dimensional

C. Training An Annotation System

V. ARTEMIS FRAMEWORK As ARTEMIS processes one concept at a time, it is most
suitable for methods that work with a fixed vocabulary and
To setup an image annotation system using ARTEMI®odel each concept individually. For instance, it would mak
framework requires three modules: (a) image collection asgnse to use ARTEMIS to select training data for annotation
feature extraction, (b) ARTEMIS training data selectionda systems based on SVM classification or generative modeling
(c) annotation system training. as in ALIPR [30].
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Fig. 5. Computing a concept reference model from tagged @siagisual and textual features are extracted. Instanéghtezl mixture modeling is used to

learn a reference model by variably weighting the imagesid@ite images with

V1. EVALUATION

ImageNet and COREL are two popular sources of manually
verified and organized images, but do not provide original
user tags. As automatic training data selection techniques
designed to directly operate on tagged images, ImageNet and
COREL are inadequate for our scenario. Our experiments
predominantly leverage the popular NUS-WIDE benchmark
dataset having 269,648 Flickr photos split into 161,789
training images and 107,859 testing images with origingsta
[12]. One thousand popular words that refer to generic dbjec
scenes, events, locations, actions, and their attribetetezsen
as the annotation vocabulary of the desired large-scalgema
annotation system. NUS-WIDE dataset provides groundhtrut
labels for a total of 81 tags and only 75 of them are common
with the designed vocabulary (listed in the appendix). Give
the rarity of the six excluded tags, there is no statistycall
significant difference in the mean precision if all 81 benelkn Fig.
tags were to be used in reporting experimental reSults

As a comprehensive evaluation of ARTEMIS for large-scale
applications is resource-intensive, we divide the expenis
into two groups that provide a trade-off between the
benchmark ground-truth and manual assessment.

o The first group of experiments is designed to compare
several automatic training data selection approaches.
Performance is measured in a fully automatic fashion
using the ground-truth of 75 benchmark concepts. The
performance of each concept is measured independently
and is not affected by the performance over other words,
in the vocabulary or the vocabulary size (whether 75 or
1000). Three facets are considered.

1) Accuracy We expect ARTEMIS to rank typical
images higher. We explore this in Section VI-A.

2) Coverage The performance on unseen and incom-
pletely tagged images is explored in Section VI-B.

3) Modeling considerationsIn Section VI-C, we
analyze the feature combination, the choicerpf
and scalability of the proposed algorithm.

2The excluded concepts are (number of training images in kbtjc
computer (305), map (211), swimmers (282), tattoo (284)aled (304) and
elk (335). Thus the excluded six tags are used 1721 timesativtly or 287
times on an average. On the other hand, the remaining 75 papgsa138,789
times collectively or 1851 times on an average.

high likelihood are retained to traim@ation systems.
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6. Tagging characteristics of benchmark concepts ghewchallenging

nature of the NUS-WIDE dataset.

Section VI-D presents a controlled annotation experiment
considering only the 75 word vocabulary, also evaluated
automatically using the ground-truth information.

The purpose of these experiments is to establish a
preference for ARTEMIS among all automatic training
data selection approaches. The annotation experiment
shows that ARTEMIS-driven annotation system is second
only to the manual training image selection.

The second group of experiments is driven by the general
expectation that the utility of automatic training data
selection can be sufficiently proved if its performance
is comparable to manual selection. In Section VI-E, we
compare the 1000-word image annotation systems trained
using ARTEMIS with those trained using ImageNet and
COREL by manually checking the validity of proposed
annotations. We do not repeat the other automatic training
data selection baselines due to the labor-intensive nature
of manual assessment and because the earlier experiments
already established a preference for ARTEMIS. The
strategy to increase the scope in terms of the number of
concepts and to narrow the focus in terms of the number
of baselines allowed us to complete the evaluation in 320
man-hours per reviewer.
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TABLE |

To study the noisy nature of tagged images using the NUSpgrrorMANCE OF TRAINING DATA SELECTION ON THE TRAINING AND

WIDE dataset, we recorded three numbers for each of the

TESTING PARTITION OFNUS-WIDEDATASET

75 tags: (a) the numbédr of images labeled by users using

the tag, (b) the numbe® of images where the ground-truth | Al9°rithm Training Testing
assessment indicates that the tag should be relevant, and (¢ P R MAP P R MAP
. ; ARTEMIS | 0.628 | 0.309 | 0.474 | 0.623 | 0.306 | 0.468
_The numberC of images _that are correctly tagged i.e., an | v .xvkc | 0603 | 0293 | 0427 | 0594 | 0291 | 0.421
intersection of collections in (a) and (b). Then for a coricep KMKC | 0587 | 0.278 | 0409 | 0579 | 0.283 | 0.412
the fraction of inaccurately tagged images is computed a§ svymRank | 0580 | 0.276 | 0.392 | 0.572 | 0.271 | 0.382
(U — C)/U. The fraction of incompletely tagged images is SVM 0.574 | 0.274 | 0.376 | 0.571 | 0.272 | 0.374
computed agG — C')/G. Fig. 6 shows the concept-wise plots | OCSVM | 0.595 | 0.302 | 0.409 | 0.607 | 0.297 | 0.396
of incorrectly or incompletely tagged image fractions. The | TagProp | 0.561 | 0.265 | 0.369 | 0.563 | 0.271 | 0.388
overall percentage of incorrectly tagged images is 43.9% an | YserTag | 0.467 | 0.224 | 0.278 | 0.464 | 0.225 ] 0.275

that of incompletely tagged images is 46.8%.

The number of images for each benchmark tag in the dataset
ranges from a few hundred to many thousands. Also, the
percentage of noisy images in different concepts variethén
context of ARTEMIS, it is trivial to incorporate a trainingath
selection strategy that filters out all images with likelildo
values lower than a prescribed threshold. However differen
baselines generate arbitrary ranges of scores and a fixed
number of images need to be selected for fair comparison.
To account for the limited number of images in the NUS-
WIDE dataset, we used a liberal 50% of top-scoring images to
ensure sufficient training data for even low frequency cpige
The performance is quantified using mean average precision
(MAP), precision (P) and recall (R) of the ranked subset.

Baselines:Our experiments focus on a set of representative
public-domain baselines. We also implemented an instance-
weighted version of the K-Means algorithm.

« ‘UserTag’: Non-algorithmic baseline using original tags

K-nearest neighbor-based technique that is represeatativ
public-domain, and ensures fair application to all experi-
mental settings [57]. Training examples are selected to be
those images whose refined tag descriptions contain the
target concept. We also experimented with another, more
recent technique based on sophisticated graph embedding
and label correlation [63]. However, this resource-heavy
approach could process only about 5% of the training
data at a time (the original paper uses 345 dimensional
features and processes 10,000 images at a time). Further,
the label correlation is computed specific to the selected
vocabulary and any incorporation of novel concepts re-
quires re-learning of the visual embedding from scratch.
Therefore, we did not select this approach over TagProp.
Section VI-A also presents a limited comparison with the
approaches by Zhu et al. [65].

to select training images without any human verificationn the context of training data selection, SVM and KMKC

‘KMKC": K-means clustering initialized with the K- clustering are the most widely used alternatives. To the bes
center strategy. Images are selected in the order off our knowledge, no instance-weighted algorithms, initigd
increasing distance from the nearest prototype. IW-KMKC, have been applied to the training data selection
‘IW-KMKC': An instance-weighted version of the K- problem, yet it is included as a link between K-Means
means clustering initialized with the K-center strategsind ARTEMIS. For SVM and SVMRank, negative examples
[64]. Within each iteration, the weight of a data pointre selected from images not labeled with the target tags.
is updated in proportion to a regularized function of itThe SVMRank algorithm presents a proxy to the PAMIR
distance from the nearest centroid. When the algorithsystem as their performance on single-word queries is aimil
converges, training images are selected in the decreasjag]. However, due to its quadratic complexity, SVMRank is
order of weighted proximity from the nearest centroid. expected to be slower. ARTEMIS is compared with manual
‘SVM’: A LIBSVM classifier for each concept that selection alternatives in Section VI-D and in VI-E.

scores images using the classification margin [8]. The

regularization cost parameter was empirically set. . )

‘SVMRank’: Joachims’ implementation of ranking svmsh Accuracy of Training Data Selection
with pair-wise constraints that force positive class Table | shows the data selection performance on the training
examples to have a high score compared to eaahd the testing partition of the NUS-WIDE dataset. Results
negative class example [27]. Training examples amh the training partition are important in practice, be@us
determined using the ranking score. The cost parametbe set of images used in reference model learning will also
was empirically set. be ranked to complete training data selection. A consistent
‘OCSVM’: A LIBSVM implementation of one-class performance on the testing partition shows generalization
SVM with the noise parameter set to 0.5. The learnatbvel images. ARTEMIS reference models generate the best
hypersphere contains about 50% of the training instancegking with a MAP value of 0.47 and precision of 0.62. The
as signal and classifies the remaining as noise. next best baselines IW-KMKC, KMKC, and OCSVM achieve
‘TagProp’: A large body of recent tag refinement apeonsiderably lower MAP values.

proaches are not public-domain or easy to implement with Ranking is further analyzed by segmenting the ranked lists
the same mathematical precision and experimental rigof each benchmark concept into ten parts and measuring
as their developers. Consequently, we used TagPropthe fraction of inaccurate images in each segment (10% of
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Top four examples selected by ARTEMIS to train imagaadation models of specific concepts.

Il TagProp

Noise Fraction

noise distribution in all segments and not plotted for bxevi
For concepts with SNR1, ARTEMIS has a steeper noise
fraction curve that starts as low as 0.15 for the first segment
and ends in 0.51 for the last segment. For concepts with
SNR<1, the improvement is not as marked. Fig. 8 shows the

examples of most relevant images for a few concepts.

A number of tag refinement studies have been evaluated on
the NUS-WIDE dataset [50]. Of these, Zhu et al. treated the
refinement problem as that of matrix rank minimization where

i a matrix was constructed using the correlation between émag
Clocsvm features and tags [65]. They used the same visual features as
ARTEMIS. Since tag refinement includes a binary decision on
relevance, we thresholded the likelihood-based imageimgnk
with respect to each concept to determine if the conceptldhou
appear in the image’s refined description. The threshold was

(b) SNR<1 selected to maximize the F-score of tag refinement on trginin
Fig. 7. The ratio of inaccurate images (noise fraction) in é®nsecutive part_ltlon. U'_SI_ng the same set of benchmark concepts and
segments of ranked lists shows an increasing trend. Thisdites the desired testing partition, the F-score of ARTEMIS 0.396 compares
aggregation of relevant images at the top of ranked list ffind is more  favorably with the F-score of 0.353 of Zhu's approach. The
prominent for concepts with SNRL. F-score of some concepts is as follows: horses (0.74), sky
(0.65), bear (0.62), and statue (0.05).
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Bl TagProp

Noise Fraction
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images). The original noise level for each concept is messur o )
as a ratio of the number of correct images to that of incorreBt Coverage of Training Data Selection

images using the ground-truth. This is essentially theaign \ye next evaluated the performance with tag incompleteness,
to noise ratio or SNR. S_NR of 1.64 fpr the concefger o \when the target concept is missing from image
means that out of 264 images, 100 images are irelevaghs yserTag baseline could not retrieve such images,
and 164 images are relevant. In this case, the overall nojg&yever other systems were applicable if textual features
fraction is 0.38 and each of the ten segments is expectedyiherate similar topic distributions. The entire testiagtition
contain 0.038 of_the noise fraction _|f dlstrlbuted_unlfopml disregarding the images labeled with the target concept was
When ARTEMIS is used to rank the images, the first segmeni i ed and assessed using ground-truth on missing labels.
contains 0 noisy examples and the last segment contains algy g shows the performance of selecting a fixed number of
9.22 noise fraction. This s.upports the idea that top-rankeghst likely images for each target tag. ARTEMIS achieved
Images represent good training examples. We note that Higy, precision in the top 100 images. In the top 1000 images,
ranking performance degrades for concepts with very low SNRq hrecision reduced to 7.2% however 9.7% of incompletely

values e.g., the conceparthquakavhere the number of N0ISY (59464 images were correctly recovered. The performance of
images is about nine times the number of relevant imagesher baselines was sub-optimal in comparison.

Overall 63% of benchmark concepts have SNR greater than
or equal to one. Fig. 7 shows the mean and standard deviation
of the noise fractions across all segments, computed Seﬂ;arac
for concepts with SNB 1 and SNR<1. The increasing trend
reflects accumulation of good images in the first few segmentsWe now illustrate (a) the feature combination, (b) the dffec
The UserTag baseline is expected to produce a near-unifopfrregularization factor, and (c) scalability.

Modeling Considerations
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Fig. 9. Performance on incompletely tagged images showsARAEMIS may identify relevant images even when they are specifically tagged.

TABLE I . . .
PERFORMANCE OFINDIVIDUAL FEATURES INWEIGHTED-EM plot can be used in the same spirit as the grid-search based
parameter estimation of SVM.
Feature P R MAP 3) Scalability: Due to its analytical optimization frame-
Edge 0.572 | 0.271 | 0.405 work, the computational complexity of the proposed method
Wavelet 0.571 1 0.283 | 0.406 is comparable to that of the traditional K-Means algorithim.

Color moment|| 0.578 | 0.272 | 0.409
Words-LDA 0.592 | 0.296 | 0.442
SIFT 0.593 | 0.286 | 0.412

N denotes the number of training examples anithe average
number of mixture components per reference model, each it-
eration of weighted-EM requir@(NJ) computations where

J < N. We limit J to at most 20, wheread ranges in the
order of many hundreds to a few thousand images per con-
cept. The performance is measured on a single Intel processo
with 2.66 GHz speed and 24.4 GB memory. To load, cluster
and rank 10,000 images with pre-computed features takés 32.
seconds with a C implementation. To process 100,000 images
takes 126.76 seconds - a significant speed-up over manaal dat

. ‘ ‘ ‘ ‘ ‘ ‘ ‘ I collection or SVMRank.

T e The time cost of clustering-based baselines (ARTEMIS,
IW-KMKC, and KMKC) is linear in the number of data
points and in the number of clusters. The overall trainintada
selection time for 75 benchmark concepts using clustering-
based methods ranged between 10 to 15 minutes. As TagProp

1) Feature combinationTable Il shows the ranking ability US€S pair-wise distances to find visual neighbors, the time
of individual features with the LDA-based tag representati COSt scales quadratically with the number of data point@ Th
having the highest MAP performance. Referring to Tabled, training data selection using TagProp took slightly over 11
performance of feature combination improved on individudloUrs: The SVM implementation is super-linear in the number

features. The SIFT experiment was conducted at a later atag@f data points with a time cost of 1 hour 10 minutes. The time
the suggestion of a reviewer by leveraging the 500-dimerasio [@ken to frain OCSVM was about 3 hours. Finally SVMRank
bag of SIFT features available in the NUS-WIDE datasetc@les quadratically in the number of constraints as itrgite
When SIFT was combined with the remaining four featurel® Minimize the number of pairs of training examples that are
the performance somewhat dropped to 0.571 (P), 0.275 (R happed with respect to the_|r positive or negative classltab
and 0.381 (MAP), possibly due to the curse of dimensionalif)is was the slowest baseline and took 13 days and 9 hours
for the low-frequency concepts in the NUS-WIDE datasefor training data selecthn. T_he above time costs excluée th
Consequently, we did not further incorporate SIFT featuresCOMmon feature extraction time.

2) Effect of weight regularization parametetlhe regular-
ization factorx is the only tunable parameter in ARTEMISD. Automatic versus Manual Data Selection
to control the shape of instance weight distribution. Wivene  Broadly, there are three ways to use tagged images to train
the ground-truth is available, the value ©fmay be selected image annotation systems. Either all tagged images may be
using cross-validation. However in real-world scenariosl a used without any selection criterion, or a subset of images
especially for a large concept vocabulary, we cannot expenty be selected after automatically or manually verifying
to know the ground-truth in advance. In that case, a purdlyeir relevance. In this section, we present a controlled
heuristic approach may be taken. We repeated the rankikg tagperiment to support two claims: i) Automatic and manual
with different values of: 1, 5, 10, 50, 100, 1000, and 10000selection are better than no selection at all, and ii) Of all
Fig. 10 plotslogio(x) versus MAP value. The performancehe automatic selection techniques, ARTEMIS-driven image
initially increases, peaks at= 50, and then drops as weightsannotation system has the best performance.
are forced towards a uniform distribution. Note that theugibr ~ All baselines are tasked with selecting training data from t
slope change of performance curve is a result of testingdfewNUS-WIDE training partition for a controlled vocabulary of
values in a logarithmic scale. The performance in fact woultb benchmark tags. The ‘Manual’ baseline is computed using
smoothly vary over a small continuous neighborhood. khethe ground-truth labels. A common image annotation system

Fig. 10. Effect of varying the regularization facterindicates the advantages
of instance-weighted learning over unweighted mixture eliod.
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TABLE Il
COMPARISON OF75-WORD IMAGE ANNOTATION SYSTEMS TRAINED WITH
DIFFERENT DATA SELECTION METHODS

about 800 man-hours per reviewer. Given the subjectivity
of manual review, we used two reviewers to evaluate the
relevancy of an annotation and a third review to break the

Scheme || Mean P | Mean R tie in case of a disagreement between the two reviewers.
ARTEMIS 0.029 0.960
IW-KMKC 0.027 0.920 Given the huge amount of manual participation, it is difficul
KMKC 0.025 0.900 to rigorously quantify the performance on 1000 concepts.
SVMRank || 0.026 0.897 Consequently, we use the conclusion of the earlier expertisne
SVM 0.024 0.892 to select ARTEMIS as the preferred automatic training data
OCSVM 0.028 | 0.904 selection approach. In this section, we compare the 1000-wo
LTJaSgeTTng 8'823 8'222 image annotation systems trained using ARTEMIS with those
Manual 0.036 0.973 trained using manually curated datasets such as Imageldet an

COREL. We do not re-evaluate the other automatic training
data selection baselines, thereby reducing the evalutitien

. . . . . ... _to 320 man-hours per reviewer.
ALIPR is trained using all baselines. ALIPR is a stausucaP One limitation of this setting is that because the prefesenc

modeling technique that quels a _cor_lcept using mIXtUFgr ARTEMIS is not determined using all 1000 concepts, it
models of color and texture discrete distribution featy8s§. . . S : .
is, possible that the selected training data is not necégsari

A test image is annotated by visual feature extraction and .
concept likelihood computation, both in real time. Ten toOpt'maI for all 1000 words, but optimal only for 75 concepts.

X . Indeed the initial experiments sufficiently prove only thiag
likely words are used to annotate the test image. In thi . S .
. . her automatic training data selection methods are not as
experiment, the test images were selected from the NUS: ~ . e ;
. - . .—effective as ARTEMIS within the controlled setting. Howeve
WIDE testing partition and automatically evaluated using . o
. iS approximation is necessary to reasonably scope tge-lar
the corresponding ground-truth. Table Il shows that next . L :
Oscale evaluation. This idea of using the results on a small se

‘Manual’ baseline, ARTEMIS is the best performing method. T :
- . . ~.0f benchmark concepts as an indicator of the results in farge
The overall low precision and high recall of annotation is

i . o Scale applications is a fairly common approximation used by
attributed to forcing ten predictions from a small vocalyla several research works, many of them very recent [36], [40],

[34], [3]- Because Section VI-A, VI-B, and VI-C measure the
performance independently for each concept, the perfocean
gver one concept is not affected by the concept vocabulary

E. Training Real-World Image Annotation Systems

In this section, we establish ARTEMIS as a viable trainin
data selection approach for large-scale applications. T &€ or the performan_ce over c_>ther concepts. .
annotation system with 1000 words is trained by selecting V¢ US€ the semantic modeling framework of ALIPR image
training data independently for each of the 1000 conceffignotation to conduct the main experiment where only the
corresponding to the 1000 words. That is to emphasize tHapUt raining images are chosen from different sources.
even though the previous evaluation focuses on 75 benchmark ALIPR This is the original ALIPR semantic modeling
tags, the training data selection itself is not limited tot@§s. framework trained using 60,000 COREL images, orga-
When 1000 words are considered, the usability of ARTEMIS  nized into 599 categories and described using 332 words.
can ideally be established in one of two ways. The annotations of test images are generated by directly

« The NUS-WIDE dataset has ground-truth labels for 75 9uerying the system at http://alipr.com/. .
concepts in the chosen vocabulary. The evaluation of* ALIPR-I: ALIPR-l is the ALIPR semantic modeling
training data selection can be extended by generating the framework trained using images from the ImageNet
label ground-truth for the remaining concepts. However, ~dataset. The ‘I"in the title is a reference to ImageNet.
this is a prohibitively expensive task. For instance, the 1he ftraining images for each concept are collected by
reported effort in the generation of the ground-truth of ~ duerying the ImageNet AP at http:/www.image-net.org/.
81 tags is 3000 man-hours [12]. To generate the ground- !f @ query matched multiple synsets, up to five popular

truth for remaining concepts, it would take approximately ~ SYNsets were incorporated in the training data. If a query
34000 man-hours. did not match any synset, it was dropped from the

The second approach is to manually check the annotations
generated by a system trained with the data selected
by ARTEMIS. Comparison with other baselines can
be made by similarly training different versions of the
same annotation system, each with the training data
selected by one baseline. As our experiments involve

ALIPR-I vocabulary.

ALIPR-S is the ALIPR semantic modeling framework

trained using ARTEMIS-selected training images from
the NUS-WIDE dataset. It is possible to augment the
collection by crawling more Web images in the future.
The ‘S’ in the title is a reference to social tagging.

eight automatic training data selection algorithms and two The annotation performance was measured by manually
additional sources of manually curated data - ImageNetspecting the top ten annotations assigned to 4000 iméajes:
and COREL, it would be a hugely laborious effort t®2000 random images from the NUS-WIDE testing partition,
complete this task. For instance, to manually inspect tlaed (b) 2000 independent Flickr images. The different
top ten annotations assigned to 4000 images, it would takeasures collected were: a) the mean precision in top ten
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TABLE IV TABLE V
SETUP OF LARGESCALE IMAGE ANNOTATION SCHEMES LARGE-SCALE ANNOTATION PERFORMANCE USING A BENCHMARK
ASSESSMENTAND B) MANUALLY VERIFIED ANNOTATIONS
Facets ALIPR ALIPR-I ALIPR-S | A-ARTEMIS
Training data || COREL | ImageNet| ARTEMIS ARTEMIS System Benchmark Manual
Features D2 D2 D2 EWCm P R P (NUS-WIDE) | P (Flickr)
Vocabulary 332 830 1000 1000 ALIPR 0.072 | 0.179 0.218 0.215
Time (seconds) 14 2.3 2.9 63 ALIPR-I 0.093 | 0.080 0.204 0.213
ALIPR-S 0.090 | 0.103 0.243 0.221
_________________________________________________ A-ARTEMIS || 0.107 | 0.094 0.265 0.242
E Offline Training
] -
: 1 c 1 “UALIPR
L | emne || Viuatteare | e || Annotaton e
: . modeling database '-gL RN ‘-v__..‘.‘ == A-ARTEMIS|
;r | Se— g ol ‘_‘_.‘." "o |
E Run-time Query g i T e _______ . i
: L % . ""' ------- :..__‘"
E Test images N Vizl;:'g;i;zre Annotations ] 0 50 100 150 200 'Zl'saog ID300 350 400 450 500
E — Fig. 12. Fraction of correct annotations by different woidshe vocabulary

""""""""""""""""""""""""""" shows diversity of annotation offered by A-ARTEMIS and ARFS.

Fig. 11. A-ARTEMIS annotation system uses the instancehted learning

approach for training data selection as well as semanticefirgdof concepts. .
generic words.

In the manual evaluation of top ten annotations, only 187
annotations; b) the annotation diversity; C) the percmjm words of the 332-word ALIPR Vocabulary resulted in at
images correctly annotated by thé” word (n = 1,...,10) least one correct prediction. For ALIPR-I, ALIPR-S, and A-
and' d) the percentage of images Correct|y annotated BBTEN”S the number of words with at least one correct
at least one of the tom words. We also conducted aprediCtion are 548, 508, and 518, respectively. Flg 12 show
supplementary assessment of annotation precision andl refiz¢ fraction of correct annotations by a word in the vocatyyla
over 33 benchmark concepts shared by all annotation systeffyted in the descending order for each scheme. The area unde
Note that the assessments are also approximate given thatateurve is indicative of annotation correctness and ditiersi
systems have annotation vocabularies of different sizags T Fig. 13 presents the accuracy and coverage of annotation
limitation arises from the practical constraint of extiagt systems. The first annotation of A-ARTEMIS was accurate
comparable training data from limited dataset resources. For nearly 35% of the images, and at least one correct tag
example, COREL dataset uses a total of only 332 words, soi@s assigned to 90% images. ALIPR-S has about 85% overalll
of them missing from the ImageNet dataset. coverage and 30% accuracy for the first annotation. Table VI

ALIPR, ALIPR-l, and ALIPR-S are useful to separate thélustrates annotations for example images. More resudts c
effect of training data selection from the sophisticatioh doe viewed at http://wang.ist.psu.edu/artemis.
the annotation system itself. However, with the same tnaini
data, different annotation systems can yield differentiliss

For illustration purposes only, we developed another image o4 BLPR
annotation system based on different visual features and a o3 Bairrs
semantic modeling framework. We term this systemAas Tod ]
ARTEMIS - Annotation by ARTEMI#&here the semantic 3

modeling framework also uses the instance-weighted mextur o |H | |H I |
modeling technique as shown in Fig. 11. The visual features o— L R R AR A e
used for annotation are edge direction histogram, wavelet Tg Rank

texture, and block-wise color moment (EWCm). A-ARTEMIS (&) Accuracy

should strictly be compared with only ALIPR-S for an insight 10 ‘ ‘

into how different annotation systems could leverage the AALPR- [UURNSS 5 s {

-8~ ALIPR-S g B
=+ A-ARTEMIS| e

@
S

selected training data differently. Table IV records thatfiees
of all the image annotation systems. A-ARTEMIS appears to
be slower due to more complex feature extraction at run-time

Coverage Rate (%)
@
3

From Table V, we find that ALIPR-S compares favorably e R
with ALIPR-I and ALIPR-C for a general vocabulary. The (b) Coverage rate

benchmark performance is an under-estimation be_Cause OIE”_:}/ 13. Performance based on manual evaluation. (a) AcgurRercentage
the ground-truth concepts can be evaluated. The highell regfiimages correctly annotated by thé” word; (b) Coverage - Percentage of

of ALIPR may be partially attributed to the frequent use ofnages correctly annotated by at least one of thertopords.
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TABLE VI
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ANNOTATIONS BY ALIPR, ALIPR-I, ALIPR-S,AND A-ARTEMIS ON EXAMPLE IMAGES WITH CORRECT ANNOTATIONS MARKED IN BOLD

sport, success, food, indoor, cui- people indoor, man-madegloth,

ALIPR sine, tree, landscape texture,face, natural
manhattan lighting, light, fruit, ~ Mernatonal, ~woman, cafe,
ALIPR-I ngnting, light, ! walk, backpack, restaurant,
autumn, sepia, chile
frozen
ALIPR-S red, silhouette, yellow, sun, col- girl, style,hands, agent, cheering,
. orful, auto,gold paint, man
orange, yellow, vivid, glow fruit, petals, excellence, lily, rose, tulip,
A-ARTEMIS vegetablesred flower, macro
a2
= (1Y
oz 4
' ™ A=
- S Ty
s
K R
ALIPR animal, indoor, thingman-made, food, indoor, texture, candies,
art, dinosaur,drawing cuisine, dessertandscape
ALIPR-I style, square, pair, flood, cold, toy, vegetableged, chinese, man-
B frame, white hattan, rice, rome
ALIPR-S drawing, illustration, maps, nature, spring, red, colorful,
. charts, snow, flightdesign orange, fruit, insect ]
A-ARTEMIS drawing, maps, chartsjllustra- leaves vegetablesautumn, fruit,

tion, caribou, ceiling, oilfield flowers, fall, colorful

=
-
10

(a) False negative detections (concéygbon’)

landscape, building, historical,
ocean,man-madeg train, beach

wild._life,
landscapepeople sport

building, street, refugees, busi- sea, landscape, church, croksl|-

animal, grass, tree,

ness, nose, firefightearmy idays, beach, mountain

colorful, garden, vineyard, fun,
nature, motorcycle, beautiful
skyscraper, cathedral, cactus,
gothic, facade flags, church

mall, houseboat, naturejeapons
arch, bravoofficers

trunk, tomb, soldiers woods,
cemetery, ancient, mural

insect, building, man-made rock, ani-
mal, texture, natural, people
international, photojournalism, so-
cial, firefighter, april, host, runway
textile, botany, blue, business, oil,
street, subway

furniture , apple, bathroom, mac,

kitchen, office,room

animal,

rural,
grass, plant, butterfly
oregon, green, bright,
meadow, needles, pebbles
nature, park, plant, portfolio, sum-
mer, bravo,green

barnyard,
ohio,
lines,

abstract, geometry,

colours, yellow, ling vivid

P

?5‘ l.

(b) High intra-concept variability and large backgroundricept'Flags’)

Fig. 14. The failures identified in image ranking experinsepbint to potential pitfalls in ARTEMIS.

VII. CONCLUSION AND FUTURE WORK

The need for image annotation techniques and benefits

of automatic training data selection are well known. In
this paper, we presented ARTEMIS, an approach to harvest
training data from noisy user-tagged images. To deal with
noise, we developed an instance-weighted mixture modeling
algorithm and efficiently solved the optimization problem
using hypothetical local mapping. The selected training
data was evaluated with numerous baselines on standard
benchmarking datasets and used to develop real image
annotation systems. However, some potential pitfalls need
to be addressed before further developing a comprehensive
image annotation systems using larger training data asasell
annotation vocabulary.

« Because image selection is based on a global likelihood,

ARTEMIS may aggressively prune the long tail of
relevant image distribution along with noise. Fig. 14(a)
shows false negative detections in the concempton’.
Additional processing may be required to enhance the
treatment of long tailed distributions.

The performance of ARTEMIS is prone to extreme
noise levels. Fig. 14(b) shows examples of one such

object which means that features introduce more noise
than signal. In this case, the best strategy to select trgini
examples was in fact a simple tag-based retrieval and all
statistical modeling techniques performed poorly.

The system operates on a single heuristically tuned
parameter, which should ideally be tuned in a concept-
specific manner to improve performance. We believe that
an interactive visualization tool to analyze the effects of
x and relevance feedback can give practitioners more
control on the selection behavior.

While we incorporated an LDA-based tag representation
as a feature for mixture modeling, the data selection
process for each tag is independent. In our continuing
work, we are considering the integration of external
knowledge databases such as WordNet to share semantic
evidence between training data selection tasks of two
labels. For instance, the ranking of an image for a concept
‘animal’ should be boosted when it is already highly
ranked for a related concept such as ‘bear’.

APPENDIX
BENCHMARK CONCEPT LIST

The list of benchmark concepts used in our experimeatsort, animal, beach,

concep‘lﬂags’, where the object of interest appears iN @ear, birds, boats, book, bridge, buildings, cars, castt, cityscape, clouds, coral, cow,

variety of color, shapes, sizes, and background. Onlyﬂg‘

cing, dog, earthquake, elk, fish, flags, flowers, food,ffost, garden, glacier, grass,
bor, horses, house, lake, leaf, military, moon, moumtaighttime, ocean, person,

small portion of each image is actually covered by thﬂane, plants, police, protest, railroad, rainbow, refiect, road, rocks, running, sand,
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sign, sky, snow, soccer, sports, statue, street, sun, suwmsg temple, tiger, tower, town,
toy, train, tree, valley, vehicle, water, waterfall, wedglj window, zebra

(1]
(2]
(3]

CONVERGENCE PROOF

The convergence of the proposed algorithm can be proved) Zgmgwill's Global
Convergence Theorem (GCT) in the classical framework pteseby Wu [61].
Theorem 1 (Global Convergence Theorem):et M be a point-to-set map on
@ that given a point¢(?) generates a sequendes® }°, through the iteration
dt D e M(¢®). Let a solution sel” € @ be given, and suppose that
1) There is a continuous functiom on ® such that
a) if¢ ¢ T, thena(e’) > a(¢), Vo' € M(¢) ,
b) if ¢ € T, thena(¢’) > a(¢), Vo' € M(¢) .
2) Map M is closed over the complement bf.
3) All points ¢(*) are contained in a compact sstC .

Then, all limit points of any convergent sub—sequevﬁdé” }i=, are in the solution set
I anda(¢™) converges monotonically ta(¢) for someg € T.
To apply GCT, we first propose following equivalences:
o Let @ denote the joint domain of sample weights and distributiarameters i.e.,
P =W x 6.
e Let M : & — &P denote the instance weighted EM algorithm whose single
iteration is a sequence of one expectation and two conditioraximization steps.
o Let a denote the objective i.e., the constrained weighted likgld functionF'.

(4
(5]
(6]
(7]
(8]

El

In what follows, we prove monotonic ascendance, closurd,@mpactness. [10]
Monotonic ascendanceRecall the objective function, which is evidently contirus
and differentiable.
N J N [11]
F(V;0,W) = Zwi logZp(vi,cﬂﬁ) - KZwi logw; .
i=1 j=1 i=1
The monotonic ascendance is explained using three lemmdisjdually dealing with [12]
the single expectation and two conditional maximizaticepst
Lemma 1. The expectation step maximizds by settingQ; (c;) = p(c;|vq).
Proof: This lemma is an extension of the classical EM analysis.omgete data log- [13]
likelihood scenario, the objective can be re-written as
N J N
F = Zwi logZyUp(vi,Cj\Gj) — szi log w; . (15) [14]
i=1 j=1 i=1
[15]

wherey;; = 1if v; is generated by;, elsey;; = 0. Consequenthy>=, y;; = 1
andy;; > 0,Vj. Sincey;; are unobserved, the expectation step learns a continuous
distribution @@ over values ofy to maximize

[16]
B N J N
F = Z w; log Z Qi (Cj)p(vi,cjl0;) — K Z w; logw; .
i=1 j=1 i=1 [17]
Clearly, the objective will be maximized ; (c;) is proportional toP (v;, ¢;|0).
Normalizing to unit sum, we find that" will be maximized if Q;(c;) =
P(vi.c;l0) [18]

5 Plose; oy = Plealvis 0).
Lemma 2 If Vi, j, w; and Q;(c;) are fixed, the objective reaches a unique global
maximum if and only ifc, 5 = M .
h.f > wiQilep)_ [19]
Proof: In this case, the Hessian matrix of" with respect tocp, s is —2x
diag(>", wiQi(c1), >, wiQi(c2), ..., >, wiQi(cy)). The matrix is evidently [20]
negative definite which means the objective reaches a urgtplEal maximum if and

only if ¢p,,; = 725':121;1’(‘2:;’10 .

Lemma 3 If Vi, 7, c; ‘and Qi(c;) are fixed, the objective reaches a unique globa[21]
maximum if and only ifw; = e'i/*/ Z elm/®

m
Proof: In this case, the Hessian matrix Bfwith respect taw; is diag(— w1, . . ., —wy,).

It is evidently a negative definite diagonal matrix. Therefothe objective reaches a (22]
unique global maximum if and only ifv; = e'i/%/ 32 elm/*

Each lemma is unique and deals with an independent compaofieht Further, the [23]
iteration mappingV () : ¢ — ¢(*+1) does not depend anh Therefore, the lemmas
put together, prove that a bounded sequeRte(*)) ascends monotonically.

Closure of M: An algorithm M : & — & is closed if there exisp € I"and¢ € T [24]
such thatt ) — ¢ as¢® — ¢, and¢™® e M (o)) implies that¢ € M ().

In each iteration of the proposed algorith/ is a point-to-point map given the [25]
monotonic ascendance to global optimum. As a special cagmiof-to-set maps)M
is trivially closed for point-to-point mapping because ¢tion continuity is a sufficient
condition to imply closure. [26]

Compactness of M: Each iteration of the algorithm converges to a unique dloba
optimizer and map\/ contains a single point. Therefore, all points*) are contained
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