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Abstract—Tagged Web images provide an abundance of labeled
training examples for visual concept learning. However, the
performance of automatic training data selection is susceptible
to highly inaccurate tags and atypical images. Consequently,
manually curated training datasets are still a preferred choice
for many image annotation systems. This paper introduces
‘ARTEMIS’ - a scheme to enhance automatic selection of
training images using an instance-weighted mixture modeling
framework. An optimization algorithm is derived that in
addition to mixture parameter estimation learns instance-weights,
essentially adapting to the noise associated with each example.
The mechanism of hypothetical local mapping is evoked so
that data in diverse mathematical forms or modalities can
be cohesively treated as the system maintains tractabilityin
optimization. Finally, training examples are selected from top-
ranked images of a likelihood-based image ranking. Experiments
indicate that ARTEMIS exhibits higher resilience to noise
than several baselines for large training data collection.The
performance of ARTEMIS-trained image annotation system is
comparable to using manually curated datasets.

Index Terms—training data selection, statistical learning, clus-
tering methods, instance-weighted mixture models, hypothetical
local mapping, ARTEMIS.

I. I NTRODUCTION

A UTOMATIC image annotation is a focal problem in im-
age processing and computer vision. Annotation systems

can be developed using generative modeling [30], [31], sup-
port vector machines [56], visual templates [10], latent space
models [42], and more recently through joint word-image em-
bedding [60], [62], and kernel learning [17], [38]. A majority
of techniques depend on pre-selected training images and in-
vest many hours to collect them.

In recent years, easy access to loosely labeled Web images
has greatly simplified training data selection. Search engines
retrieve potential training examples by comparing concept
names with image labels (user-assigned tags or surrounding-
text keywords). In this context, a concept is illustrated by
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Fig. 1. Challenging Flickr examples for the conceptcastle. (a) Incorrectness:
Concept cannot be inferred from the picture, (b) Polysemy: Adifferent object
has the same label, (c) Atypicality: The silhouette of a sandcastle is an
atypical example, (d) Incompleteness: A relevant example not labeled.

all images labeled with the concept name and an image
with multiple labels exemplifies co-occurring concepts. The
retrieved images could be directly used to train annotation
systems, except that they are often irrelevant from a machine
learning perspective. Fig. 1 shows noisy images associated
with the conceptcastle. As many as 85% of Web images
can be incorrectly labeled [33]. Even user-assigned tags are
highly subjective and about 50% have no relation to visual
content [28]. Tags appear in no particular order of relevance
and the most relevant tag occurs in top position in less than
10% of the images [35]. Consequently, several strategies have
been proposed to refine retrieved collections.

ImageNet is a crowd-sourcing initiative to manually validate
retrieved images [15]. This process results in few errors,
but takes years to gather sufficient data for a large concept
vocabulary. Algorithmic training data selection providesa
necessary trade-off between efficient automation and selection
accuracy wherein potentially noisy examples are filtered using
statistical learning techniques. Noise mitigation may be posed
as a classification problem where a support vector machine
(SVM) is trained to distinguish images tagged with a specific
concept from those not tagged with that concept. Alternately,
a relevance ranking problem can be formulated where images
are ranked in the order of SVM classification margin or other
statistical measures. For example, unsupervised clustering is
useful to learn a concept-specific static distribution of data
and rank images in the order of the chosen cluster measure
(mixture likelihood or distance from the nearest prototype).
Top ranked images can be used to train annotation systems
and low ranked images are discarded as noise.

A. The Problem

The problem of automatic training data selection is similar
to statistical outlier rejection which works on the general
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(a) UserTag
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(b) Manual
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(c) Support vector machine
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(d) K-Means
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(e) Counting
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(f) ARTEMIS

Fig. 2. A simplified heat-map visualization of training dataselection in 2-dimensional feature space (view in color). Each point is one of 647 user-tagged
images associated with a common target concept. The color ofeach point can be mapped to a concept-specific numeric relevance score using the associated
color scale (not normalized). The specific selection scenarios are as follows: (a) All images are equally relevant solely based on the presence of the target concept
in user tags; (b) Manual assessment distinguishes noisy images denoted in blue from relevant images marked in red. The overall quantity and distribution
of noise underscores the challenges faced by automatic training data selection; (c) and (d) The image relevance estimated by SVM and K-Means falsely
ranks noisy examples higher; (e) A density estimation approach to select examples from locally dense neighborhoods maybe inadequate to process complex
distributions; (f) ARTEMIS selects training examples fromthe high-likelihood region of distribution density that better correlates with manual assessment.

assumption that outliers are sparse and distinguishable from
the ‘normal’ data represented by a statistical reference model
[22]. The high level of noise associated with user-tagged
images grossly violates this assumption.

To illustrate this problem, we created a simplified two-
dimensional visualization of 647 Flickr images tagged with
a specific concept. Fig. 2 shows several training data selection
scenarios using heat-maps where the color of each point can be
mapped to a numeric relevance score using the associated color
scale. Fig. 2(a) depicts the selection of all user-tagged images
assuming reliability of tags, an assumption that completely
breaks down when compared with the manual relevance
assessment in Fig. 2(b). In this particular example, nearly34%
of images are noisy, highlighting the fact that noise need not
be sparse or separable1.

Support vector machines and K-Means clustering do not
specifically account for noise in statistical reference learning.
To apply classification-based SVM, an additional collection
of images not tagged with the target concept is collected as
the negative class. For SVM classifier to be effective, it is
imperative that the chosen negative examples match the noisy
positive examples or else the classifier may overfit the noise.
Fig. 2(c) shows the SVM scores based on classification margin.

Given its computational efficiency and simple implementa-
tion, K-Means is commonly used to select training examples
based on the proximity of an image from the nearest cluster
prototype. Fig. 2(d) shows the output of K-Means algorithm
seeded with 20 clusters in K-Center initialization where even
the noisy examples get a high score due to outlying clusters.
A robust ranking can not be guaranteed due to the sensitivity
to outliers and initialization conditions.

1The outlier inseparability presents an interesting perspective for manual
training data selection. Even if manual selection filters out all noisy images,
subsequent statistical image annotation algorithms may continue to mistake
similar images for relevant examples, especially in the high-density region of
feature space - a classic outcome of thesemantic gap.

B. Our Solution

Our approach is based on the observation that the
distribution of relevant images has a more regular form
compared to noise, thereby resulting in a higher signal to
noise ratio at the modes of the distribution as opposed to its
boundaries. In that case, the precision of training data selection
may be enhanced by tapping the high-likelihood region of the
distribution. This in turn evokes a causality dilemma because
the distribution parameters cannot be robustly determined
without suppressing the effect of outliers and outliers cannot
be suppressed without a good reference distribution.

We propose a new instance-weighted mixture-modeling
scheme that simultaneously estimates mixture parameters and
instance weights. It is namedARTEMIS after Automatic
Recognition of Training Examples for Modeling Image
Semantics. In this parametric scheme, the reference model
for each concept is a mixture model of visual and textual
features computed from images tagged with the target concept.
Similar to K-Means, the ARTEMIS initialization stage assigns
equal weights to all data instances. However, it then deviates
by systematically learning unequal weights to curb the
contribution of noisy images in iterative reference model
learning. Training data is selected by ranking images in the
decreasing order of mixture likelihood. Fig. 2(f) shows the
output of ARTEMIS initialized using the same conditions as
in K-Means clustering of Fig. 2(d). The algorithm converges
to identify the high-density region of relevant images, thereby
improving the precision of training data selection.

The mixture modeling approach of ARTEMIS is suitable
to model complex feature distributions and components
with different densities. As ARTEMIS uses a parametric
probabilistic data model and the ranking is based on the overall
mixture likelihood, the scores generated by ARTEMIS have
a more global interpretation of image typicality. Therefore
even though ARTEMIS emphasizes assigning higher scores
for points in highly populated regions, image ranking is
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not susceptible to very local and possibly spurious density
variations. As a further explanation, instance weighting alone
can be achieved using simple local density estimation where
the score of a data point is the count of neighborhood
points that lie within a pre-determined distance of that
point. However, such approach may be prone to selecting
noise in a spuriously dense local neighborhood before the
true signal from a possibly less dense component. Further,
the implementation of such counting approach is non-trivial
in determining a suitable distance measure and thresholds
applicable to high-dimensional, multimodal feature spaces.
Fig. 2(e) illustrates the output of the counting approach.

C. Challenges

There are two main challenges:
• Identification of a suitable distribution function:

Mixture modeling assumes data to follow one specific
distribution and performs best if the exact distribution
is captured. It is unlikely that datasets corresponding to
different concepts from a large vocabulary will conform
to one model. In fact, Quack et al. demonstrate the variety
by presenting examples of feature distance histograms
over large datasets [46]. This makes parametrization non-
trivial, particularly if one or more features are irrelevant.

• Optimization of a complex objective function:
Estimation of instance-weighted likelihood with varying
weights is a relatively new problem. Using arbitrary data
distributions can result in complex objective functions
which cannot be optimized using closed-form solutions.
Using slower gradient-descent methods may diminish
the computational advantages over simple clustering
algorithms that have an analytical solution.

We address these challenges using hypothetical local
mapping (HLM) [30] to model and combine multiple features
without directly dealing with their observed distributions.
HLM together with an entropy regularization of instance
weights, yields an efficient, analytical, and generalized
solution to the complex optimization problem. The reference
models can be stored for re-use.

D. Contributions

The contributions of our approach are listed below:
• ARTEMIS is a unified training data selection framework

to handle noisy user-tagged images. It outperforms
alternative techniques by using efficient instance weight
learning and feature combination. On a benchmark
dataset, ARTEMIS achieves a mean average precision of
0.47 which compares favorably with 0.41 for K-means
and 0.39 for ranking SVM. Relevant images can be
identified from incompletely tagged images.

• ARTEMIS contracts the gap between the quality of
training data collected using manual and automatic
training data selection. Our experiments indicate that
an annotation system trained using ARTEMIS performs
similar to using manually curated datasets such as
ImageNet and COREL. For the ARTEMIS-trained
system, the accuracy in top ten annotations is 22%.

• The proposed techniques are generalizable to other
domains dealing with noisy data.

E. Organization of the Paper

Section II discusses related work. Section III and Section
IV present the instance-weighted mixture modeling algorithm
and its properties, respectively. An overall framework to use
ARTEMIS for training image annotation systems is presented
in Section V with experimental results in Section VI. We
conclude in Section VII with a note on future work.

II. RELATED WORK

This section presents the specific research on training
data selection from noisy user-tagged images as well as a
brief review of robust statistical learning. The discussion
on instance-weighted clustering and entropy regularization is
deferred until Section III-C to contextualize our approach.

Manual selection: Image annotation research has histori-
cally leveraged smaller but high-quality datasets createdby
rigorous manual inspection of images [16]. Some newer ap-
proaches channel human efforts by engaging game-like inter-
faces and click-through data analysis [50]. Manually veri-
fied images can also be used to bootstrap data selection in
active or incremental learning framework [13], [33], [58].Im-
ageNet is a crowd-sourced dataset that provides organized ac-
cess to hundreds of images for a large number of WordNet
categories [15]. Research using this dataset highlights prob-
lems in large-scale training data selection [14], [25].

Clustering: Berg et al. clustered composition features to
select images with large objects before applying nearest
neighbor and K-medoids to filter noisy examples [4]. Manual
verification was intermediately employed to enhance precision
[5]. Lazebnik et al. applied geometric constraints verification
to refine clustering [47]. Tang et al. developed a semi-
automatic technique to assess segment-level tag relevance
by clustering corresponding features using locality sensitive
hashing and manually verifying the largest feature cluster
before selecting it for training [53]. Fergus et al. used the
random consensus (RANSAC) technique to robustly estimate
the probabilistic model of web images. Outliers were rejected
by comparing image rankings generated by different trials and
identifying images that resulted in inconsistent groupings [18].

Support vector machines: SVM classifiers can be trained
using tagged images (with or without manual verification)
to select more training data [28], [51]. One-class SVM
(OCSVM) techniques may be used for unbalanced datasets
when it is difficult to obtain negative class examples or when
only very few positive examples are available. Given an input
noise-level, OCSVM finds a hypersphere with the minimum
volume surrounding the corresponding fraction of positive
class samples. The hypersphere does not necessarily account
for the multimodal nature of the data and previous studies have
evaluated it over very few concepts [9], [39].

Tag refinement: While the aforementioned techniques are
specific to training data selection, tag refinement is a related
approach to semi-supervised annotation of images without an
intermediate training data selection step. It is a two-stage
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technique that first retrieves labeled images visually similar
to the query image followed by a tag refinement scheme
to select labels of the visual neighbors for query image
annotation [57], [62], [65]. The retrieval algorithm may use
some form of K-nearest neighbor search (KNN) or graph
mining, possibly made efficient using passive-aggressive low-
dimensional embedding models, kernel methods [17], [38], or
feature compression [60], [49].

Data selection may also be linked to Web search result
ranking that focuses on a limited set of top query results.
Popular Web ranking techniques such as ranking SVM [27],
passive-aggressive models [21], and boosting [55] aim to
directly optimize precision in top results using pair-wise
constraints that rank relevant documents higher than irrelevant
documents. This evokes a quadratic complexity not amenable
to large-scale training data selection.

Different techniques offer different trade-offs for training
data selection. A generative model-based approach such as
ARTEMIS makes more assumptions about the data but
provides computational efficiency in processing unseen images
through stored concept reference models. The scores generated
by ARTEMIS represent the overall likelihood of an image
which is useful not only for the segregation of noise but alsoto
identify which images are more representative than the others.
Tag refinement techniques based on nearest neighbor analysis
are model-free when they do not create a unique abstraction
or an intermediate reference model of the target concept. Such
techniques must access a large pool of labeled images to
determine visual neighbors of the query and to build a tag
ranking model over the corresponding labels. The advantage
of this approach is that multiple tags can be processed at once.
However, the speed and accuracy of analysis is closely tied to
the size of the labeled dataset that can be efficiently processed
at run time. As the scores of two images are based on their
local neighborhoods, it is non-trivial to identify which image
is more representative of the target concept.

Ensemble-based learning: The classification or clustering-
based paradigm to outlier rejection is the fundamental aspect
of statistical learning from data. However, the stand-alone
algorithm analysis might be insufficient when the effect of
noise is deleterious. Random sample consensus (RANSAC) is
a popular technique to improve parameter estimation where
multiple trials are conducted, each on a small subset of
data with the expectation that at least one clean subset
will be generated to yield stable parameters. This process
can be highly computation-intensive, especially in case of
complex models. Alternately, bagging type of approaches can
be developed where an ensemble of models is used instead of
a stand-alone algorithm to generate a more robust prediction
[7], [52]. Angelova et al. used discriminative models such
as SVM as base classifiers and filtered examples on which
the classifiers disagreed the most [1]. Angluin et. al used the
bagging approach to learn a classifier over multiple random
subsets and selected the most consistent rule as prediction[2].
Hong et al. used an ensemble of multiple clustering results to
filter examples yielding inconsistent results [23].

III. I NSTANCE-WEIGHTED M IXTURE MODELING

We now present the mixture-modeling algorithm that forms
the core of ARTEMIS. Each concept is represented as a
joint mixture model of the visual and textual features of
images tagged with the concept and learned from noisy Web
images. Let an image be represented asvi, i = 1, . . . , N
drawn independently from aJ-component mixture model of
the concept whose centroids are denoted ascj , j = 1, . . . , J .
The f th feature type of an instancevi is denoted asvi,f and
of a centroidcj as cj,f , where f = 1, . . . , F denotes the
different feature types such as color, texture, shape, and words.
A data pointvi is associated with weightwi that reflects its
concept-specific relevance. Without loss of generalization, we
can assume weights to be non-negative and normalized i.e.,
wi ≥ 0, ∀i and

∑

i wi = 1. The mixture parametersθ and
instance weight vectorW are estimated by jointly optimizing
weighted data likelihood in spaceΦ = θ × W .

log L(Φ) =

N
∑

i=1

wi log

J
∑

j=1

p(vi, cj ; θ) , (1)

For brevity, we denotelog
J
∑

j=1

p(vi, cj ; θ) as li. Eq. 1 can

be trivially optimized for fixed uniform or fixed non-uniform
weights if the weights are known a priori. However, if weights
are allowed to vary freely, the solution quickly converges to a
degenerate case where the point with the highest likelihoodis
assigned a unit weight and all other points are assigned zero
weights. In other words, if the likelihood ofvi is denoted asli
and the likelihood of the maximum likelihood point islmax, it
can be easily shown that

∑

i wili < lmax. Therefore, to allow
all data points to fairly influence the estimation, we introduce
a penalty term corresponding to the entropy regularizationof
weight distribution in the objective:

F =

N
∑

i=1

wili − κ

N
∑

i=1

wi log wi . (2)

The regularization factorκ controls the degree to which
outliers are penalized. Ifκ = ∞, all data points are forced
to have equal weights,κ = 0 corresponds to the degenerate
condition. Eq. 2 can be optimized using an EM-type algorithm.
The expectation step is similar to regular EM and involves
computing posterior distribution ofcj given vi.

Qi(cj) = p(cj |vi; θ) . (3)

The maximization step updates parameters to optimize the
constrained weighted likelihood

N
∑

i=1

wi

J
∑

j=1

Qi(cj) log p(vi, cj ; θ) − κ
N
∑

i=1

wi log wi , (4)

where the weight estimation is incorporated as a nested
optimization sub-problem in the M-step of each EM iteration.
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A. Selection of a Probability Distribution Function

As the optimization involves an arbitrarily large number of
parameters, using deterministic annealing [48] or gradient-
based approaches [37] may cause large computational
overhead. Therefore, a critical decision lies in the choiceof the
distribution functionp(.). While estimation may be simplified
assuming Gaussian distributed data [64], such assumption
is often inconsistent with the real statistical distributions
exhibited by different features [46]. Further, different features
follow different distributions and it is necessary to suitably
combine features for concept modeling. To overcome these
issues, we evoke the hypothetical local mapping (HLM)
technique from our earlier work [30].

The key to hypothetical local mapping lies in the
relationship between the parameters of a homoscedastic
multivariate normal distribution and a gamma distribution.
If X = (X1, X2, . . . , Xk)T ∈ R

k is a multivariate normal
random variable with meanµ = (µ1, µ2, . . . , µk)T and
covariance matrixΣ = σ2I (I is the identity matrix), then
the squared Euclidean distance||X − µ||2 follows a gamma
distribution(Γ : b, s) with scale parameterb = k/2 and shape
parameters = 2σ2. Consequently, the neighborhood around
each centroid can be fitted a scaled gamma distribution and
used to infer the parameters of a hypothetical multivariate
normal distribution whose instances would generate a similar
distance profile. Formally the component distribution around
a centroidα can be computed as:

g(β) =

(

1√
πb

)2s

e
−||β−α||2

b , (5)

whereβ is an image for whichα is the nearest centroid. Such
approximation corresponds to a one-to-one mapping between
the hypothetical space andRk that maximally preserves the
distances between images and their closest centroids.

In [30], HLM was proposed for D2-clustering of a
non-vector ‘bags of weighted vectors’ feature space. After
prototypes were generated, a single run of HLM was applied
to learn the probability distribution based on the bag distances
from the nearest prototypical bags. In our work, HLM is
evoked for the purpose of efficiency and not so much from the
limitation of non-vector feature spaces. HLM embedded within
each EM iteration ensures tractable convergence properties in
optimization. As different features are highly likely to bein
different distributions, we apply HLM to separately estimate
distribution functions of individual feature types. The use of
HLM as a means of feature combination was not touched upon
at all in [30]. The concept of instance-weighted learning and
the underlying problem of choosing good training images were
also irrelevant in that work.

The distribution of featuref is defined as:

p(vi,f |cj,f ) =

(

1
√

πbf

)2sf

e
−

||vi,f −cj,f ||2

bf , (6)

where bf and sf are the gamma parameters for thef th
feature type. Given a feature type, we assume common
shape and scale parameters for all components. Finally,

features are probabilistically combined under the assumption
of independence as follows,

p(vi|cj) =
∏

f

p(vi,f |cj,f ) . (7)

For each mixture component, the feature types are inde-
pendent and the corresponding parameters are independently
optimized using the distance distribution within that feature
type. Even though each mixture component estimates a sin-
gle set of parameters for each feature type and the number of
overall mixture components is the same, the variables are not
independent in general given the complete mixture model. In
other words, the complete mixture model can represent com-
plex distributions as long as sufficient number of components
are used, even if the same number of components are used for
the joint representation of different features. When different
feature types have different complexity in their distributions,
this will be reflected in the parameters for different feature
types in the mixture model. For instance, a feature type with
a relatively simple marginal distribution may have similarpa-
rameters across the mixture components, while a feature type
with a more complicated marginal distribution may have high
disparity in the parameters across components.

B. Analytical Solution to Instance Weighting

The proposed distribution function provides an efficient
solution to the constrained optimization problem in Eq. 4. We
first update centroidsch, keeping weights fixed. That is,

∂

∂ch







N
∑

i=1

wi

J
∑

j=1

Qi(cj) log
∏

f

e
−

||vi,f −cj,f ||2

bf

(πbf )sf






= 0 . (8)

Maximizing with respect to each feature type,

ch,f =

∑

i

wiQi(ch)vi,f

∑

i

wiQi(ch)
. (9)

The distribution parameters are updated by computing the new
distances of data points from their closest centroids and using
maximum likelihood estimation for gamma parameters [11].
To updatewi, the following constrained optimization is used:

maximize
wi

∑

i

wili − κ
∑

i

wi log wi ,

subject to
∑

i

wi = 1, wi ≥ 0, i = 1, . . . , N .
(10)

The Lagrangian is:

M =
∑

i

wili − κ
∑

i

wi log wi + λ(1 −
∑

i

wi) . (11)

Differentiating Eq. 11 with respect towi and simplifying,

wi = e
li−λ−κ

κ . (12)

Next, Eq. 11 is differentiated with respect toλ and simplified,

λ = κ(log
∑

i

e
li
κ − 1) . (13)



6 IEEE TRANSACTIONS ON IMAGE PROCESSING

Substituting Eq. 13 forλ in Eq. 12.

wi = eli/κ/
∑

m

elm/κ , (14)

where recall thatli is the log-likelihood of a pointvi. The
formula for weights indicates that each data point exercises
an influence on density estimation that is proportional to its
likelihood from the current mixture density. If noise is present
in one or more feature spaces, the weight of a data point
will be lowered even though the probabilities are bound in
the range[0, 1]. Consequently, typical examples with higher
weights exercise greater influence and the effect of outliers
iteratively decreases. Algorithm 1 summarizes the main steps
of the mixture modeling approach.

Algorithm 1 Instance-Weighted Mixture Modeling Technique
Initialize cluster centroids.
Assign equal weights to all data points.
Compute initial maximum likelihood estimates of gamma
parameters [11].
Chooseκ.
Initialize objective function using Eq. 2.
while objective function increasesdo
{E-Step:}
Update posteriorQ using Eq. 3.
{M-Step:}
Update cluster centroids using Eq. 9.
Compute data distances from the nearest centroids.
Update gamma parameters.
Update weights of data points using Eq. 14.

end while

C. Relation to Other Instance-Weighted Models

In the seminal formalization of instance-weighted algo-
rithms, Nock and Nielson used constrained minimization
of Bregman divergence to compute weights in a boosting
framework [43]. Their weight estimation module computes
local variations of the expected complete log-likelihoodsand
increases the weights of those points on which the current
parametrization does not do well. Our goal conflicts with this
scheme as we do not want to increase the weights of outliers.
On the contrary, our formulation resembles pseudo-relevance
feedback technique used for document retrieval. Such ap-
proaches typically measure the Kullback-Leibler divergence
between the document representations and the input query
model and select a fixed number of most similar documents
to update the query representation [41], [54]. In our case,
all instances will variably influence the parameter estimation
controlled byκ. It also provides a principled alternative to
empirical weight estimation based on counting the number of
neighboring points [24], [32].

D. Relation to Other Entropy Regularized EM Methods

Techniques such as entropy regularization are very funda-
mental and applied to many critical problems. A seminal use of
such regularization is in deterministic annealing where entropy
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Fig. 3. The robustness of the proposed algorithm is illustrated using two
different initializations with similar convergence.

of conditional probabilitiesp(y|x) relating inputx to cluster
y is used to avoid hard clustering [48]. Similar regularization
is used in [29], [20]. Some approaches extend the regularized
conditional probabilities to automatically determine thenum-
ber of mixture components [44], [59]. Entropy regularization
is also popularly used for feature-weighting [26], [19]. Inthese
examples, data instances are uniformly weighted.

Entropy regularization fits naturally with instance-weighting
and while the regularization looks superficially similar tothe
previously discussed techniques, it is fundamentally different.
A typical data likelihood does not concern with variable
weights and atypical objective function only optimizes
mixture parameters. ARTEMIS’s objective function is non-
traditional as we aim to not only find optimal distribution
parameters but also the weight distribution over sample
points. Consequently, it deals with much larger number
of variables. Instead of model parameters, instance-weights
which represent properties of sample data, are constrained.
Such regularization is more robust to noise and indirectly
controls model parameters leading to a stable estimation.
To the best of our knowledge, entropy regularized instance-
weighting has not been theorized until very recently (except
in [64] for the special case of Gaussian distribution). Also, no
real applications have been presented.

IV. A NALYSIS OF ALGORITHM BEHAVIOR

We present the convergence analysis of instance-weighted
mixture modeling in the appendix and find that each iteration
concludes with the M-step identifying globally optimal
mixture parameters and instance weights for that iteration.
Indeed, same as any EM-type algorithm, the overall EM-
algorithm here cannot guarantee global optimality. It is
necessary to analyze clustering model selection i.e., selecting
the correct number of clustersK and their initialization.

A common model selection technique is to run the algorithm
several times with different number of clusters and different
initializations before information criteria such as Akaike
information criterion, Bayesian information criterion, or their
variants can be used to select the simplest model that
reasonably explains the data. These criteria are particularly
useful to ensure a non-parametric algorithm such as K-Means
does not get stuck in local optima, however they are not



SAWANT ET AL.: ENHANCING TRAINING COLLECTIONS... 7

designed for instance-weighted scenarios and their validity for
the proposed algorithm is unknown. Nonetheless if ARTEMIS
is run using different initializations, the resulting parameter
estimates lead to similar information criteria values.

Fig. 3 relates to the simplified visualization in Section I and
illustrates two separate random initializations with 20 clusters
each, that lead to similar output. The converged solutions
generate fairly consistent weight distributions. The robustness
of the algorithm can be attributed to the indirect regularization
of cluster parameters through varying instance weights. Each
iteration computes a variable weight for each data point which
in turn affects the prior of associated centroids. Therefore,
outliers belonging to isolated data clusters will continueto
lower in weights, subsequently weakening the contributionof
the isolated cluster to overall likelihood.

In practice, curse of dimensionality may adversely affect
the algorithm performance. However, it still maintains a
reasonable level of robustness compared to unweighted
clustering algorithms such as K-Means. We conducted
a ranking experiment using the full feature set of 476
dimensions (described in Section VI), 977 training images,
and 647 test images. We applied K-means clustering and
the proposed instance-weighted mixture modeling algorithm
to fifty different random initializations to learn respective
statistical models. The evaluation was conducted by measuring
average precision of ranking the 647 test images. We found
that the mean average precision of K-Means was0.553±0.018
and that of instance-weighted mixture modeling was0.738 ±
0.005. We also varied the number of components in mixture
model estimation from 4 to 40, to find the mean average
precision to be0.735 ± 0.007. In other words, as long as the
initialization is seeded with sufficient number of clusters, the
mixture model-based algorithm is likely to be robust.

It is trivial to extend ARTEMIS to ‘out-of-sample’ data.
The out-of-sample problem affects all algorithms based on
the concept of manifold learning such as locality preserving
projections and Eigen analysis. As the learned manifold is
tuned to the training data, it is imperative to compute an
extension operator that will extend the mapping to new and
possibly out-of-sample points. The difference of HLM from
such manifold learning methods is that the mapping is only
hypothetical. The mixture likelihood of any instance can be
computed using only its distance from the nearest centroid (in
the original feature space). As the actual point-wise mapping
to the hypothetical multivariate normal space can be bypassed,
the extension operator is trivially available. Secondly, we
expect the mixture models learned from different samples to
generate consistent rankings under large sample conditions,
leading to statistical generalization.

V. ARTEMIS FRAMEWORK

To setup an image annotation system using ARTEMIS
framework requires three modules: (a) image collection and
feature extraction, (b) ARTEMIS training data selection, and
(c) annotation system training.
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Fig. 4. Determining the number of LDA topics for tag representation.

A. Image Collection and Feature Extraction

A standard text search engine is used to retrieve
Flickr images labeled with each concept in the annotation
vocabulary. We used three visual features: 73-dimensional
edge direction histogram, 128-dimensional wavelet texture and
225-dimensional block-wise color moment features. Textual
features were computed using Latent Dirichlet Allocation [6].
The number of topics was set by analyzing 54,000 Flickr
images from a benchmark dataset [12] as follows. The
benchmark images have ground-truth for 81 concepts that
denotes the relevance of a concept to the image. We designed
a classification task where the class of each image was
denoted using the hexadecimal number equivalent of the
81-dimensional binary ground-truth vector. To overcome the
sample insufficiency problem, classes associated with at least
5% of the samples were used. We then trained naı̈ve Bayes
classifiers using topic model distribution as features. The
performance was measured by varying the number of topics.
Fig. 4 shows the cross-validation performance which peaks
at 50 topics. Consequently, we computed textual features as
a distribution of dimension 50. A fast LDA implementation
based on Gibbs sampling was used for inference [45]. Tags
were pre-processed using stemming and stop-word filtering.

B. ARTEMIS Training Data Selection

Fig. 5 shows the flow of ARTEMIS framework which
processes one concept at a time. The reference model for each
concept is learned by applying the formulation in Section III to
the visual and textual features of images retrieved by the search
engine. Next, images (that may or may not be a part of the
reference model training) are ranked in the decreasing order
of likelihood. Training data for the target concept is selected
as a pre-determined number of top-ranked images or using
a likelihood-based threshold value. We explain our choice of
using a fixed number of images in Section VI. Note that an
image labeled with multiple tags is used in learning reference
models of all those concepts. However, it will be weighted
differently for different concepts. All concept referencemodels
are stored in a database for future use.

C. Training An Annotation System

As ARTEMIS processes one concept at a time, it is most
suitable for methods that work with a fixed vocabulary and
model each concept individually. For instance, it would make
sense to use ARTEMIS to select training data for annotation
systems based on SVM classification or generative modeling
as in ALIPR [30].
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Fig. 5. Computing a concept reference model from tagged images: Visual and textual features are extracted. Instance-weighted mixture modeling is used to
learn a reference model by variably weighting the images. Candidate images with high likelihood are retained to train annotation systems.

VI. EVALUATION

ImageNet and COREL are two popular sources of manually
verified and organized images, but do not provide original
user tags. As automatic training data selection techniquesare
designed to directly operate on tagged images, ImageNet and
COREL are inadequate for our scenario. Our experiments
predominantly leverage the popular NUS-WIDE benchmark
dataset having 269,648 Flickr photos split into 161,789
training images and 107,859 testing images with original tags
[12]. One thousand popular words that refer to generic objects,
scenes, events, locations, actions, and their attribute are chosen
as the annotation vocabulary of the desired large-scale image
annotation system. NUS-WIDE dataset provides ground-truth
labels for a total of 81 tags and only 75 of them are common
with the designed vocabulary (listed in the appendix). Given
the rarity of the six excluded tags, there is no statistically
significant difference in the mean precision if all 81 benchmark
tags were to be used in reporting experimental results2.

As a comprehensive evaluation of ARTEMIS for large-scale
applications is resource-intensive, we divide the experiments
into two groups that provide a trade-off between the
benchmark ground-truth and manual assessment.

• The first group of experiments is designed to compare
several automatic training data selection approaches.
Performance is measured in a fully automatic fashion
using the ground-truth of 75 benchmark concepts. The
performance of each concept is measured independently
and is not affected by the performance over other words
in the vocabulary or the vocabulary size (whether 75 or
1000). Three facets are considered.

1) Accuracy: We expect ARTEMIS to rank typical
images higher. We explore this in Section VI-A.

2) Coverage: The performance on unseen and incom-
pletely tagged images is explored in Section VI-B.

3) Modeling considerations: In Section VI-C, we
analyze the feature combination, the choice ofκ,
and scalability of the proposed algorithm.

2The excluded concepts are (number of training images in bracket):
computer (305), map (211), swimmers (282), tattoo (284), whales (304) and
elk (335). Thus the excluded six tags are used 1721 times collectively or 287
times on an average. On the other hand, the remaining 75 tags appear 138,789
times collectively or 1851 times on an average.
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(a) Inaccurately tagged images
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(b) Incompletely tagged images

Fig. 6. Tagging characteristics of benchmark concepts showthe challenging
nature of the NUS-WIDE dataset.

Section VI-D presents a controlled annotation experiment
considering only the 75 word vocabulary, also evaluated
automatically using the ground-truth information.
The purpose of these experiments is to establish a
preference for ARTEMIS among all automatic training
data selection approaches. The annotation experiment
shows that ARTEMIS-driven annotation system is second
only to the manual training image selection.

• The second group of experiments is driven by the general
expectation that the utility of automatic training data
selection can be sufficiently proved if its performance
is comparable to manual selection. In Section VI-E, we
compare the 1000-word image annotation systems trained
using ARTEMIS with those trained using ImageNet and
COREL by manually checking the validity of proposed
annotations. We do not repeat the other automatic training
data selection baselines due to the labor-intensive nature
of manual assessment and because the earlier experiments
already established a preference for ARTEMIS. The
strategy to increase the scope in terms of the number of
concepts and to narrow the focus in terms of the number
of baselines allowed us to complete the evaluation in 320
man-hours per reviewer.
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To study the noisy nature of tagged images using the NUS-
WIDE dataset, we recorded three numbers for each of the
75 tags: (a) the numberU of images labeled by users using
the tag, (b) the numberG of images where the ground-truth
assessment indicates that the tag should be relevant, and (c)
The numberC of images that are correctly tagged i.e., an
intersection of collections in (a) and (b). Then for a concept,
the fraction of inaccurately tagged images is computed as
(U − C)/U . The fraction of incompletely tagged images is
computed as(G−C)/G. Fig. 6 shows the concept-wise plots
of incorrectly or incompletely tagged image fractions. The
overall percentage of incorrectly tagged images is 43.9% and
that of incompletely tagged images is 46.8%.

The number of images for each benchmark tag in the dataset
ranges from a few hundred to many thousands. Also, the
percentage of noisy images in different concepts varies. Inthe
context of ARTEMIS, it is trivial to incorporate a training data
selection strategy that filters out all images with likelihood
values lower than a prescribed threshold. However different
baselines generate arbitrary ranges of scores and a fixed
number of images need to be selected for fair comparison.
To account for the limited number of images in the NUS-
WIDE dataset, we used a liberal 50% of top-scoring images to
ensure sufficient training data for even low frequency concepts.
The performance is quantified using mean average precision
(MAP), precision (P) and recall (R) of the ranked subset.

Baselines:Our experiments focus on a set of representative
public-domain baselines. We also implemented an instance-
weighted version of the K-Means algorithm.

• ‘UserTag’: Non-algorithmic baseline using original tags
to select training images without any human verification.

• ‘KMKC’: K-means clustering initialized with the K-
center strategy. Images are selected in the order of
increasing distance from the nearest prototype.

• ‘IW-KMKC’: An instance-weighted version of the K-
means clustering initialized with the K-center strategy
[64]. Within each iteration, the weight of a data point
is updated in proportion to a regularized function of its
distance from the nearest centroid. When the algorithm
converges, training images are selected in the decreasing
order of weighted proximity from the nearest centroid.

• ‘SVM’: A LIBSVM classifier for each concept that
scores images using the classification margin [8]. The
regularization cost parameter was empirically set.

• ‘SVMRank’: Joachims’ implementation of ranking SVMs
with pair-wise constraints that force positive class
examples to have a high score compared to each
negative class example [27]. Training examples are
determined using the ranking score. The cost parameter
was empirically set.

• ‘OCSVM’: A LIBSVM implementation of one-class
SVM with the noise parameter set to 0.5. The learned
hypersphere contains about 50% of the training instances
as signal and classifies the remaining as noise.

• ‘TagProp’: A large body of recent tag refinement ap-
proaches are not public-domain or easy to implement with
the same mathematical precision and experimental rigor
as their developers. Consequently, we used TagProp, a

TABLE I
PERFORMANCE OF TRAINING DATA SELECTION ON THE TRAINING AND

TESTING PARTITION OFNUS-WIDEDATASET

Algorithm Training Testing
P R MAP P R MAP

ARTEMIS 0.628 0.309 0.474 0.623 0.306 0.468
IW-KMKC 0.603 0.293 0.427 0.594 0.291 0.421

KMKC 0.587 0.278 0.409 0.579 0.283 0.412
SVMRank 0.580 0.276 0.392 0.572 0.271 0.382

SVM 0.574 0.274 0.376 0.571 0.272 0.374
OCSVM 0.595 0.302 0.409 0.607 0.297 0.396
TagProp 0.561 0.265 0.369 0.563 0.271 0.388
UserTag 0.467 0.224 0.278 0.464 0.225 0.275

K-nearest neighbor-based technique that is representative,
public-domain, and ensures fair application to all experi-
mental settings [57]. Training examples are selected to be
those images whose refined tag descriptions contain the
target concept. We also experimented with another, more
recent technique based on sophisticated graph embedding
and label correlation [63]. However, this resource-heavy
approach could process only about 5% of the training
data at a time (the original paper uses 345 dimensional
features and processes 10,000 images at a time). Further,
the label correlation is computed specific to the selected
vocabulary and any incorporation of novel concepts re-
quires re-learning of the visual embedding from scratch.
Therefore, we did not select this approach over TagProp.
Section VI-A also presents a limited comparison with the
approaches by Zhu et al. [65].

In the context of training data selection, SVM and KMKC
clustering are the most widely used alternatives. To the best
of our knowledge, no instance-weighted algorithms, including
IW-KMKC, have been applied to the training data selection
problem, yet it is included as a link between K-Means
and ARTEMIS. For SVM and SVMRank, negative examples
are selected from images not labeled with the target tags.
The SVMRank algorithm presents a proxy to the PAMIR
system as their performance on single-word queries is similar
[21]. However, due to its quadratic complexity, SVMRank is
expected to be slower. ARTEMIS is compared with manual
selection alternatives in Section VI-D and in VI-E.

A. Accuracy of Training Data Selection

Table I shows the data selection performance on the training
and the testing partition of the NUS-WIDE dataset. Results
on the training partition are important in practice, because
the set of images used in reference model learning will also
be ranked to complete training data selection. A consistent
performance on the testing partition shows generalizationto
novel images. ARTEMIS reference models generate the best
ranking with a MAP value of 0.47 and precision of 0.62. The
next best baselines IW-KMKC, KMKC, and OCSVM achieve
considerably lower MAP values.

Ranking is further analyzed by segmenting the ranked lists
of each benchmark concept into ten parts and measuring
the fraction of inaccurate images in each segment (10% of
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(a) Abandoned (b) Deutschland (c) Kids (d) Bear

(e) Interior (f) Eye (g) Butterfly (h) Jump

(i) Racing (j) Window (k) Food (l) Rust

Fig. 8. Top four examples selected by ARTEMIS to train image annotation models of specific concepts.
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(a) SNR>1
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(b) SNR≤1

Fig. 7. The ratio of inaccurate images (noise fraction) in ten consecutive
segments of ranked lists shows an increasing trend. This indicates the desired
aggregation of relevant images at the top of ranked lists. The trend is more
prominent for concepts with SNR>1.

images). The original noise level for each concept is measured
as a ratio of the number of correct images to that of incorrect
images using the ground-truth. This is essentially the signal
to noise ratio or SNR. SNR of 1.64 for the concepttiger
means that out of 264 images, 100 images are irrelevant
and 164 images are relevant. In this case, the overall noise
fraction is 0.38 and each of the ten segments is expected to
contain 0.038 of the noise fraction if distributed uniformly.
When ARTEMIS is used to rank the images, the first segment
contains 0 noisy examples and the last segment contains about
0.22 noise fraction. This supports the idea that top-ranked
images represent good training examples. We note that the
ranking performance degrades for concepts with very low SNR
values e.g., the conceptearthquakewhere the number of noisy
images is about nine times the number of relevant images.
Overall 63% of benchmark concepts have SNR greater than
or equal to one. Fig. 7 shows the mean and standard deviation
of the noise fractions across all segments, computed separately
for concepts with SNR> 1 and SNR≤1. The increasing trend
reflects accumulation of good images in the first few segments.
The UserTag baseline is expected to produce a near-uniform

noise distribution in all segments and not plotted for brevity.
For concepts with SNR>1, ARTEMIS has a steeper noise
fraction curve that starts as low as 0.15 for the first segment
and ends in 0.51 for the last segment. For concepts with
SNR≤1, the improvement is not as marked. Fig. 8 shows the
examples of most relevant images for a few concepts.

A number of tag refinement studies have been evaluated on
the NUS-WIDE dataset [50]. Of these, Zhu et al. treated the
refinement problem as that of matrix rank minimization where
a matrix was constructed using the correlation between image
features and tags [65]. They used the same visual features as
ARTEMIS. Since tag refinement includes a binary decision on
relevance, we thresholded the likelihood-based image ranking
with respect to each concept to determine if the concept should
appear in the image’s refined description. The threshold was
selected to maximize the F-score of tag refinement on training
partition. Using the same set of benchmark concepts and
testing partition, the F-score of ARTEMIS 0.396 compares
favorably with the F-score of 0.353 of Zhu’s approach. The
F-score of some concepts is as follows: horses (0.74), sky
(0.65), bear (0.62), and statue (0.05).

B. Coverage of Training Data Selection

We next evaluated the performance with tag incompleteness,
i.e., when the target concept is missing from image
tags. UserTag baseline could not retrieve such images,
however other systems were applicable if textual features
generate similar topic distributions. The entire testing partition
disregarding the images labeled with the target concept was
ranked and assessed using ground-truth on missing labels.
Fig. 9 shows the performance of selecting a fixed number of
most likely images for each target tag. ARTEMIS achieved
12% precision in the top 100 images. In the top 1000 images,
the precision reduced to 7.2% however 9.7% of incompletely
tagged images were correctly recovered. The performance of
other baselines was sub-optimal in comparison.

C. Modeling Considerations

We now illustrate (a) the feature combination, (b) the effect
of regularization factorκ, and (c) scalability.
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Fig. 9. Performance on incompletely tagged images shows that ARTEMIS may identify relevant images even when they are notspecifically tagged.

TABLE II
PERFORMANCE OFINDIVIDUAL FEATURES IN WEIGHTED-EM

Feature P R MAP
Edge 0.572 0.271 0.405

Wavelet 0.571 0.283 0.406
Color moment 0.578 0.272 0.409
Words-LDA 0.592 0.296 0.442

SIFT 0.593 0.286 0.412
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Fig. 10. Effect of varying the regularization factorκ indicates the advantages
of instance-weighted learning over unweighted mixture modeling.

1) Feature combination:Table II shows the ranking ability
of individual features with the LDA-based tag representation
having the highest MAP performance. Referring to Table I, the
performance of feature combination improved on individual
features. The SIFT experiment was conducted at a later stageat
the suggestion of a reviewer by leveraging the 500-dimensional
bag of SIFT features available in the NUS-WIDE dataset.
When SIFT was combined with the remaining four features,
the performance somewhat dropped to 0.571 (P), 0.275 (R),
and 0.381 (MAP), possibly due to the curse of dimensionality
for the low-frequency concepts in the NUS-WIDE dataset.
Consequently, we did not further incorporate SIFT features.

2) Effect of weight regularization parameter:The regular-
ization factorκ is the only tunable parameter in ARTEMIS
to control the shape of instance weight distribution. Whenever
the ground-truth is available, the value ofκ may be selected
using cross-validation. However in real-world scenarios and
especially for a large concept vocabulary, we cannot expect
to know the ground-truth in advance. In that case, a purely
heuristic approach may be taken. We repeated the ranking task
with different values ofκ: 1, 5, 10, 50, 100, 1000, and 10000.
Fig. 10 plotslog10(κ) versus MAP value. The performance
initially increases, peaks atκ = 50, and then drops as weights
are forced towards a uniform distribution. Note that the abrupt
slope change of performance curve is a result of testing fewκ
values in a logarithmic scale. The performance in fact would
smoothly vary over a small continuous neighborhood. Theκ

plot can be used in the same spirit as the grid-search based
parameter estimation of SVM.

3) Scalability: Due to its analytical optimization frame-
work, the computational complexity of the proposed method
is comparable to that of the traditional K-Means algorithm.If
N denotes the number of training examples andJ the average
number of mixture components per reference model, each it-
eration of weighted-EM requiresO

(

NJ
)

computations where
J ≪ N . We limit J to at most 20, whereasN ranges in the
order of many hundreds to a few thousand images per con-
cept. The performance is measured on a single Intel processor
with 2.66 GHz speed and 24.4 GB memory. To load, cluster
and rank 10,000 images with pre-computed features takes 32.5
seconds with a C implementation. To process 100,000 images
takes 126.76 seconds - a significant speed-up over manual data
collection or SVMRank.

The time cost of clustering-based baselines (ARTEMIS,
IW-KMKC, and KMKC) is linear in the number of data
points and in the number of clusters. The overall training data
selection time for 75 benchmark concepts using clustering-
based methods ranged between 10 to 15 minutes. As TagProp
uses pair-wise distances to find visual neighbors, the time
cost scales quadratically with the number of data points. The
training data selection using TagProp took slightly over 11
hours. The SVM implementation is super-linear in the number
of data points with a time cost of 1 hour 10 minutes. The time
taken to train OCSVM was about 3 hours. Finally SVMRank
scales quadratically in the number of constraints as it attempts
to minimize the number of pairs of training examples that are
swapped with respect to their positive or negative class labels.
This was the slowest baseline and took 13 days and 9 hours
for training data selection. The above time costs exclude the
common feature extraction time.

D. Automatic versus Manual Data Selection

Broadly, there are three ways to use tagged images to train
image annotation systems. Either all tagged images may be
used without any selection criterion, or a subset of images
may be selected after automatically or manually verifying
their relevance. In this section, we present a controlled
experiment to support two claims: i) Automatic and manual
selection are better than no selection at all, and ii) Of all
the automatic selection techniques, ARTEMIS-driven image
annotation system has the best performance.

All baselines are tasked with selecting training data from the
NUS-WIDE training partition for a controlled vocabulary of
75 benchmark tags. The ‘Manual’ baseline is computed using
the ground-truth labels. A common image annotation system



12 IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE III
COMPARISON OF75-WORD IMAGE ANNOTATION SYSTEMS TRAINED WITH

DIFFERENT DATA SELECTION METHODS

Scheme Mean P Mean R
ARTEMIS 0.029 0.960
IW-KMKC 0.027 0.920

KMKC 0.025 0.900
SVMRank 0.026 0.897

SVM 0.024 0.892
OCSVM 0.028 0.904
TagProp 0.024 0.890
UserTag 0.022 0.894
Manual 0.036 0.973

ALIPR is trained using all baselines. ALIPR is a statistical
modeling technique that models a concept using mixture
models of color and texture discrete distribution features[30].
A test image is annotated by visual feature extraction and
concept likelihood computation, both in real time. Ten top
likely words are used to annotate the test image. In this
experiment, the test images were selected from the NUS-
WIDE testing partition and automatically evaluated using
the corresponding ground-truth. Table III shows that next to
‘Manual’ baseline, ARTEMIS is the best performing method.
The overall low precision and high recall of annotation is
attributed to forcing ten predictions from a small vocabulary.

E. Training Real-World Image Annotation Systems

In this section, we establish ARTEMIS as a viable training
data selection approach for large-scale applications. The
annotation system with 1000 words is trained by selecting
training data independently for each of the 1000 concepts
corresponding to the 1000 words. That is to emphasize that
even though the previous evaluation focuses on 75 benchmark
tags, the training data selection itself is not limited to 75tags.
When 1000 words are considered, the usability of ARTEMIS
can ideally be established in one of two ways.

• The NUS-WIDE dataset has ground-truth labels for 75
concepts in the chosen vocabulary. The evaluation of
training data selection can be extended by generating the
label ground-truth for the remaining concepts. However,
this is a prohibitively expensive task. For instance, the
reported effort in the generation of the ground-truth of
81 tags is 3000 man-hours [12]. To generate the ground-
truth for remaining concepts, it would take approximately
34000 man-hours.

• The second approach is to manually check the annotations
generated by a system trained with the data selected
by ARTEMIS. Comparison with other baselines can
be made by similarly training different versions of the
same annotation system, each with the training data
selected by one baseline. As our experiments involve
eight automatic training data selection algorithms and two
additional sources of manually curated data - ImageNet
and COREL, it would be a hugely laborious effort to
complete this task. For instance, to manually inspect the
top ten annotations assigned to 4000 images, it would take

about 800 man-hours per reviewer. Given the subjectivity
of manual review, we used two reviewers to evaluate the
relevancy of an annotation and a third review to break the
tie in case of a disagreement between the two reviewers.

Given the huge amount of manual participation, it is difficult
to rigorously quantify the performance on 1000 concepts.
Consequently, we use the conclusion of the earlier experiments
to select ARTEMIS as the preferred automatic training data
selection approach. In this section, we compare the 1000-word
image annotation systems trained using ARTEMIS with those
trained using manually curated datasets such as ImageNet and
COREL. We do not re-evaluate the other automatic training
data selection baselines, thereby reducing the evaluationtime
to 320 man-hours per reviewer.

One limitation of this setting is that because the preference
for ARTEMIS is not determined using all 1000 concepts, it
is possible that the selected training data is not necessarily
optimal for all 1000 words, but optimal only for 75 concepts.
Indeed the initial experiments sufficiently prove only thatthe
other automatic training data selection methods are not as
effective as ARTEMIS within the controlled setting. However,
this approximation is necessary to reasonably scope the large-
scale evaluation. This idea of using the results on a small set
of benchmark concepts as an indicator of the results in large-
scale applications is a fairly common approximation used by
several research works, many of them very recent [36], [40],
[34], [3]. Because Section VI-A, VI-B, and VI-C measure the
performance independently for each concept, the performance
over one concept is not affected by the concept vocabulary
size or the performance over other concepts.

We use the semantic modeling framework of ALIPR image
annotation to conduct the main experiment where only the
input training images are chosen from different sources.

• ALIPR: This is the original ALIPR semantic modeling
framework trained using 60,000 COREL images, orga-
nized into 599 categories and described using 332 words.
The annotations of test images are generated by directly
querying the system at http://alipr.com/.

• ALIPR-I: ALIPR-I is the ALIPR semantic modeling
framework trained using images from the ImageNet
dataset. The ‘I’ in the title is a reference to ImageNet.
The training images for each concept are collected by
querying the ImageNet API at http://www.image-net.org/.
If a query matched multiple synsets, up to five popular
synsets were incorporated in the training data. If a query
did not match any synset, it was dropped from the
ALIPR-I vocabulary.

• ALIPR-S: is the ALIPR semantic modeling framework
trained using ARTEMIS-selected training images from
the NUS-WIDE dataset. It is possible to augment the
collection by crawling more Web images in the future.
The ‘S’ in the title is a reference to social tagging.

The annotation performance was measured by manually
inspecting the top ten annotations assigned to 4000 images:(a)
2000 random images from the NUS-WIDE testing partition,
and (b) 2000 independent Flickr images. The different
measures collected were: a) the mean precision in top ten
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TABLE IV
SETUP OF LARGE-SCALE IMAGE ANNOTATION SCHEMES

Facets ALIPR ALIPR-I ALIPR-S A-ARTEMIS
Training data COREL ImageNet ARTEMIS ARTEMIS

Features D2 D2 D2 EWCm
Vocabulary 332 830 1000 1000

Time (seconds) 1.4 2.3 2.9 63
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Fig. 11. A-ARTEMIS annotation system uses the instance-weighted learning
approach for training data selection as well as semantic modeling of concepts.

annotations; b) the annotation diversity; c) the percentage of
images correctly annotated by thenth word (n = 1, . . . , 10)
and, d) the percentage of images correctly annotated by
at least one of the topn words. We also conducted a
supplementary assessment of annotation precision and recall
over 33 benchmark concepts shared by all annotation systems.
Note that the assessments are also approximate given that the
systems have annotation vocabularies of different sizes. This
limitation arises from the practical constraint of extracting
comparable training data from limited dataset resources. For
example, COREL dataset uses a total of only 332 words, some
of them missing from the ImageNet dataset.

ALIPR, ALIPR-I, and ALIPR-S are useful to separate the
effect of training data selection from the sophistication of
the annotation system itself. However, with the same training
data, different annotation systems can yield different results.
For illustration purposes only, we developed another image
annotation system based on different visual features and a
semantic modeling framework. We term this system asA-
ARTEMIS - Annotation by ARTEMISwhere the semantic
modeling framework also uses the instance-weighted mixture
modeling technique as shown in Fig. 11. The visual features
used for annotation are edge direction histogram, wavelet
texture, and block-wise color moment (EWCm). A-ARTEMIS
should strictly be compared with only ALIPR-S for an insight
into how different annotation systems could leverage the
selected training data differently. Table IV records the features
of all the image annotation systems. A-ARTEMIS appears to
be slower due to more complex feature extraction at run-time.

From Table V, we find that ALIPR-S compares favorably
with ALIPR-I and ALIPR-C for a general vocabulary. The
benchmark performance is an under-estimation because only
the ground-truth concepts can be evaluated. The higher recall
of ALIPR may be partially attributed to the frequent use of

TABLE V
LARGE-SCALE ANNOTATION PERFORMANCE USING A) BENCHMARK

ASSESSMENT, AND B) MANUALLY VERIFIED ANNOTATIONS

System Benchmark Manual
P R P (NUS-WIDE) P (Flickr)

ALIPR 0.072 0.179 0.218 0.215
ALIPR-I 0.093 0.080 0.204 0.213
ALIPR-S 0.090 0.103 0.243 0.221

A-ARTEMIS 0.107 0.094 0.265 0.242
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Fig. 12. Fraction of correct annotations by different wordsin the vocabulary
shows diversity of annotation offered by A-ARTEMIS and ALIPR-S.

generic words.
In the manual evaluation of top ten annotations, only 187

words of the 332-word ALIPR vocabulary resulted in at
least one correct prediction. For ALIPR-I, ALIPR-S, and A-
ARTEMIS the number of words with at least one correct
prediction are 548, 508, and 518, respectively. Fig. 12 shows
the fraction of correct annotations by a word in the vocabulary,
sorted in the descending order for each scheme. The area under
a curve is indicative of annotation correctness and diversity.

Fig. 13 presents the accuracy and coverage of annotation
systems. The first annotation of A-ARTEMIS was accurate
for nearly 35% of the images, and at least one correct tag
was assigned to 90% images. ALIPR-S has about 85% overall
coverage and 30% accuracy for the first annotation. Table VI
illustrates annotations for example images. More results can
be viewed at http://wang.ist.psu.edu/artemis.
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Fig. 13. Performance based on manual evaluation. (a) Accuracy - Percentage
of images correctly annotated by then

th word; (b) Coverage - Percentage of
images correctly annotated by at least one of the topn words.
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TABLE VI
ANNOTATIONS BY ALIPR, ALIPR-I, ALIPR-S,AND A-ARTEMIS ON EXAMPLE IMAGES WITH CORRECT ANNOTATIONS MARKED IN BOLD.

ALIPR
sport, success, food, indoor, cui-
sine, tree, landscape

people, indoor, man-made,cloth,
texture,face, natural

animal, wild life, grass, tree,
landscape,people, sport

landscape,building , historical,
ocean,man-made, train, beach

ALIPR-I
manhattan,lighting, light , fruit,
autumn, sepia, chile

international, woman, cafe,
walk, backpack, restaurant,
frozen

building, street, refugees, busi-
ness, nose, firefighter,army

sea, landscape, church, cross,hol-
idays, beach, mountain

ALIPR-S
red, silhouette, yellow, sun, col-
orful , auto,gold

girl , style,hands, agent, cheering,
paint, man

mall, houseboat, nature,weapons,
arch, bravo,officers

colorful , garden, vineyard, fun,
nature, motorcycle, beautiful

A-ARTEMIS
orange, yellow, vivid, glow, fruit,
vegetables,red

petals, excellence, lily, rose, tulip,
flower, macro

trunk, tomb, soldiers, woods,
cemetery, ancient, mural

skyscraper, cathedral, cactus,
gothic, facade, flags, church

ALIPR
animal, indoor, thing,man-made,
art , dinosaur,drawing

food, indoor, texture, candies,
cuisine, dessert,landscape

animal, rural, barnyard, insect,
grass, plant, butterfly

building, man-made, rock, ani-
mal, texture, natural, people

ALIPR-I
style, square, pair, flood, cold,
frame,white

toy, vegetables,red, chinese, man-
hattan, rice, rome

oregon, green, bright , ohio,
meadow, needles, pebbles

international, photojournalism, so-
cial, firefighter, april, host, runway

ALIPR-S
drawing, illustration , maps,
charts, snow, flight,design

nature, spring, red, colorful,
orange, fruit, insect

nature, park, plant, portfolio, sum-
mer, bravo,green

textile, botany, blue, business, oil,
street, subway

A-ARTEMIS
drawing, maps, charts,illustra-
tion, caribou, ceiling, oilfield

leaves, vegetables,autumn, fruit,
flowers, fall , colorful

abstract, geometry, lines,
colours, yellow, line, vivid

furniture , apple, bathroom, mac,
kitchen, office,room

(a) False negative detections (concept‘Moon’) (b) High intra-concept variability and large background (concept‘Flags’)

Fig. 14. The failures identified in image ranking experiments point to potential pitfalls in ARTEMIS.

VII. CONCLUSION AND FUTURE WORK

The need for image annotation techniques and benefits
of automatic training data selection are well known. In
this paper, we presented ARTEMIS, an approach to harvest
training data from noisy user-tagged images. To deal with
noise, we developed an instance-weighted mixture modeling
algorithm and efficiently solved the optimization problem
using hypothetical local mapping. The selected training
data was evaluated with numerous baselines on standard
benchmarking datasets and used to develop real image
annotation systems. However, some potential pitfalls need
to be addressed before further developing a comprehensive
image annotation systems using larger training data as wellas
annotation vocabulary.

• Because image selection is based on a global likelihood,
ARTEMIS may aggressively prune the long tail of
relevant image distribution along with noise. Fig. 14(a)
shows false negative detections in the concept‘moon’.
Additional processing may be required to enhance the
treatment of long tailed distributions.

• The performance of ARTEMIS is prone to extreme
noise levels. Fig. 14(b) shows examples of one such
concept‘flags’, where the object of interest appears in a
variety of color, shapes, sizes, and background. Only a
small portion of each image is actually covered by the

object which means that features introduce more noise
than signal. In this case, the best strategy to select training
examples was in fact a simple tag-based retrieval and all
statistical modeling techniques performed poorly.

• The system operates on a single heuristically tuned
parameter, which should ideally be tuned in a concept-
specific manner to improve performance. We believe that
an interactive visualization tool to analyze the effects of
κ and relevance feedback can give practitioners more
control on the selection behavior.

• While we incorporated an LDA-based tag representation
as a feature for mixture modeling, the data selection
process for each tag is independent. In our continuing
work, we are considering the integration of external
knowledge databases such as WordNet to share semantic
evidence between training data selection tasks of two
labels. For instance, the ranking of an image for a concept
‘animal’ should be boosted when it is already highly
ranked for a related concept such as ‘bear’.

APPENDIX

BENCHMARK CONCEPT LIST

The list of benchmark concepts used in our experiments:airport, animal, beach,
bear, birds, boats, book, bridge, buildings, cars, castle,cat, cityscape, clouds, coral, cow,
dancing, dog, earthquake, elk, fish, flags, flowers, food, fox, frost, garden, glacier, grass,
harbor, horses, house, lake, leaf, military, moon, mountain, nighttime, ocean, person,
plane, plants, police, protest, railroad, rainbow, reflection, road, rocks, running, sand,
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sign, sky, snow, soccer, sports, statue, street, sun, sunset, surf, temple, tiger, tower, town,
toy, train, tree, valley, vehicle, water, waterfall, wedding, window, zebra.

CONVERGENCE PROOF
The convergence of the proposed algorithm can be proved using Zangwill’s Global

Convergence Theorem (GCT) in the classical framework presented by Wu [61].
Theorem 1 (Global Convergence Theorem):Let M be a point-to-set map on

Φ that given a pointφ(0) generates a sequence{φ(t)}∞
t=1 through the iteration

φ(t+1) ∈ M(φ(t)). Let a solution setΓ ∈ Φ be given, and suppose that

1) There is a continuous functionα on Φ such that

a) if φ /∈ Γ, thenα(φ′) > α(φ), ∀φ′ ∈ M(φ) ,
b) if φ ∈ Γ, thenα(φ′) ≥ α(φ), ∀φ′ ∈ M(φ) .

2) Map M is closed over the complement ofΓ.
3) All points φ(t) are contained in a compact setS ⊆ Φ.

Then, all limit points of any convergent sub-sequence{φ(t)}∞
t=1 are in the solution set

Γ andα(φ(t)) converges monotonically toα(φ) for someφ ∈ Γ.
To apply GCT, we first propose following equivalences:

• Let Φ denote the joint domain of sample weights and distribution parameters i.e.,
Φ = W × θ.

• Let M : Φ → Φ denote the instance weighted EM algorithm whose single
iteration is a sequence of one expectation and two conditional maximization steps.

• Let α denote the objective i.e., the constrained weighted likelihood functionF .

In what follows, we prove monotonic ascendance, closure, and compactness.
Monotonic ascendance: Recall the objective function, which is evidently continuous

and differentiable.

F (V ; θ, W ) =
N

X

i=1

wi log
J

X

j=1

p(vi, cj |θ) − κ
N

X

i=1

wi log wi .

The monotonic ascendance is explained using three lemmas, individually dealing with
the single expectation and two conditional maximization steps.
Lemma 1: The expectation step maximizesF by settingQi(cj) = p(cj |vi).
Proof: This lemma is an extension of the classical EM analysis. In complete data log-
likelihood scenario, the objective can be re-written as

F =

N
X

i=1

wi log

J
X

j=1

yijp(vi, cj |θj) − κ

N
X

i=1

wi log wi . (15)

whereyij = 1 if vi is generated bycj , elseyij = 0. Consequently
P

j yij = 1
and yij ≥ 0, ∀j. Sinceyij are unobserved, the expectation step learns a continuous
distributionQ over values ofy to maximize

F̃ =

N
X

i=1

wi log

J
X

j=1

Qi(Cj)p(vi, cj |θj) − κ

N
X

i=1

wi log wi .

Clearly, the objective will be maximized ifQi(cj) is proportional toP (vi, cj |θ).
Normalizing to unit sum, we find thatF will be maximized if Qi(cj) =

P (vi,cj |θ)
P

j P (vi,cj |θ)
= p(cj |vi; θ).

Lemma 2: If ∀i, j, wi and Qi(cj) are fixed, the objective reaches a unique global

maximum if and only ifch,f =
P

i wiQi(ch)vi,f
P

i wiQi(ch)
.

Proof: In this case, the Hessian matrix of̃F with respect to ch,f is −2×
diag(

P

i wiQi(c1),
P

i wiQi(c2), . . . ,
P

i wiQi(cJ )). The matrix is evidently
negative definite which means the objective reaches a uniqueglobal maximum if and

only if ch,f =

P

i wiQi(ch)vi,f
P

i wiQi(ch)
.

Lemma 3: If ∀i, j, cj and Qi(cj) are fixed, the objective reaches a unique global
maximum if and only ifwi = eli/κ/

X

m

e
lm/κ

.

Proof: In this case, the Hessian matrix of̃F with respect towi is diag(−w1, . . . ,−wn).
It is evidently a negative definite diagonal matrix. Therefore, the objective reaches a
unique global maximum if and only ifwi = eli/κ/

P

m elm/κ .
Each lemma is unique and deals with an independent componentof Φ. Further, the

iteration mappingM(t) : φ(t) → φ(t+1) does not depend ont. Therefore, the lemmas
put together, prove that a bounded sequenceF (φ(t)) ascends monotonically.

Closure of M : An algorithmM : Φ → Φ is closed if there existφ ∈ Γ andζ ∈ Γ
such thatζ(t) → ζ asφ(t) → φ, andζ(t) ∈ M(φ(t)) implies thatζ ∈ M(φ).

In each iteration of the proposed algorithm,M is a point-to-point map given the
monotonic ascendance to global optimum. As a special case ofpoint-to-set maps,M
is trivially closed for point-to-point mapping because function continuity is a sufficient
condition to imply closure.

Compactness ofM : Each iteration of the algorithm converges to a unique global
optimizer and mapM contains a single point. Therefore, all pointsφ(t) are contained
in a compact setS ⊂ Φ.
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