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ABSTRACT to the database can be profiled without repeating computatio

In this demonstration, we present the Automatic LinguistiBvolved with learning from the existing categories. The
Indexing of Pictures (ALIP) system. The system annotaf$t€m naturally has good scalability without invoking any
images with linguistic terms, chosen among hundreds ®ftra mechanism to address the issue. The scalability enabl
such terms. The system uses a wavelet-based approdgHO train a relatively large number of concepts at once.
for feature extraction, a statistical modeling process for Since each image category in the training set is manually
training, and a statistical significance processor to aratet annotated, a mapping between profiling 2-D MHMMs and sets
images. We implemented and tested our ALIP system opfavords can be established. For a test image, feature gector
photographic image database of 600 different conceptsh ea® the pyramid grid are computed. Consider the collection
with about 40 training images. The ALIP system has be&h the feature vectors as an instance of a spatial statistica
used to annotate about 60,000 photographic images. In tHPdel. The likelihood of this instance being generated khea
demonstration, we illustrate the algorithms in the systerd aProfiling 2-D MHMM is computed. To annotate the image,
show the annotation results. With distributed computatiowords are selected from those in the text description of the
the annotation of an image can be provided in real-tim&ategories yielding highest likelihoods.

The demonstration system is available online at the site
hitp://riemann. | st.psu. edu . THE TRAINING CONCEPTS

THE ALIP SYSTEM We conducted experiments on learning-based linguistic
indexing with a large number of concepts. The system was

Automatic linguistic indexing of pictures is essentiallytrained using a subset 080,000 photographs based on
important to content-based image retrieval [5] and computgoo CD-ROMs published by’COREL Corp. Typically, each
object recognition. It can potentially be applied to man i ’

areas. Decades of research have shown that designin%ﬁO%REL CD-ROM of about 100 images represents one distinct

generic. computer algorithm that can leam concepts fromﬁll\;:e?:l;\r:E:IStaevelo ed a series of concepts to be trained for
images and automatically translate the content of images.to,” ~. . y develop P :
linguistic terms is highly difficult. Since 2000, we have beempluspn in thedictionary of conc_epts. For each.c_oncgpt n
developing our Automatic Linguistic Indexing of PicturesfhIS dictionary, we prepare a training set containing insage

(ALIP) system [[4], [2]. In our system, we trained a dictioynarCifrtgsnngnézemcgnc;ﬂu:;fr::e a(t)rthgf :jn?;a e!iv?rlheiecﬁgezt
of 600 concepts using statistical modeling techniques. A P P gory ges. 9

extension of the ALIP work has been applied to the studyinig;') not have.to be V|§ually S'”.‘""%“- We also manl_JaIIy prepare
. - short but informative description about any given concept
of ancient paintings|3].

In our work, categories of images, each corresponding in, this dictionary. Tabldll shows some examples. Therefore,

a concept, are profiled by statistical models, in par'[icula?ur approach has the potential to train a large collection

the 2-dimensional multi-resolution hidden Markov model (20f concepts because we do not need to manually create a

D MHMM) [L]. The pictorial information of each image is description about each image in the training database.
summarized by a collection of wavelet-based feature vector
extracted at multiple resolutions and spatially arrangedao
pyramid grid. The 2-D MHMM fitted to each image category Figure[[1 shows the computer indexing results of some
plays the role of extracting representative informatiolwb randomly selected images outside the training database. Th
the category. In particular, a 2-D MHMM summarizes twanethod appears to be highly promising for automatic legrnin
types of information: clusters of feature vectors at midtipand linguistic indexing of images. Some of the computer
resolutions and the spatial relation between the cluskerthy predictions seem to suggest that one can control what is to
across and within resolutions. As a 2-D MHMM is estimatelde learned and what is not by adjusting the training database
separately for each category, a new category of images addédhdividual concepts.

ANNOTATION RESULTS
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Mexico life

Fig. 1
ANNOTATIONS AUTOMATICALLY GENERATED BY OUR COMPUTERBASED LINGUISTIC INDEXING ALGORITHM. THE dictionary wiTH 600CONCEPTS WAS
CREATED AUTOMATICALLY USING STATISTICAL MODELING AND LEARNING. 36,000TEST IMAGES WERE RANDOMLY SELECTED OUTSIDE THE TRAINING
DATABASE FOR ANNOTATION.

TABLE |
EXAMPLES OF THE600CATEGORIES AND THEIR DESCRIPTIONSEVERY
CATEGORY HAS40 TRAINING IMAGES.

sub-set of the trained models. The log likelihoods are then
reported back to the master program. The master program
analyzes the list of log likelihoods and determines a shstrt |

D | Category Descriptions of keywords to annotate the image.
0 Africa, people, landscape, animal
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