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ABSTRACT 
Increasingly, scientists are seeking to collaborate and share data 
among themselves.  Such sharing is can be readily done by 
publishing data on the World-Wide Web.  Meaningful querying 
and searching on such data depends upon the availability of 
accurate and adequate metadata that describes the data and the 
sources of the data.  In this paper, we outline the architecture of an 
implemented cyber-infrastructure for chemistry that provides tools 
for users to upload datasets and their metadata to a database. Our 
proposal combines a two level metadata system with a centralized 
database repository and analysis tools to create an effective and 
capable data sharing infrastructure.  Our infrastructure is 
extensible in that it can handle data in different formats and 
allows different analytic tools to be plugged in. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Scientific Databases, H.3.5 
[Online Information Services] – Data Sharing, Web-based 
Services. 

General Terms 
Design, Management. 

Keywords 
Scientific Databases, Architecture for Cyber-Infrastructures, 
Research Dataset Integration, Inter-operation. 

1. INTRODUCTION 
Scientific communities in domains such as chemical kinetics, 
computational chemistry and geo-sciences, consist of individual 
researchers and organizations who are data producers and users. 
Data is typically generated as a result of experiments, 
experimental devices and/or simulation programs. Data is then 
excerpted or summarized (in a publication whose author has 
analyzed the data to support a scientific research claim), or 
published to external end-users (i.e., is utilized by researchers 
other than the producer). 

Researchers often build on prior inventions and discoveries using 

work done by their peers.  For future research, the availability of 
the data produced from prior experiments is of great value.  Such 
data sharing can bring around a significant increase in 
productivity; facilitate discovery, understanding, assessment, and 
validation. However, the true potential of effective utilization and 
analysis of any scientific data is limited because the data obtained 
as a result of experiments is not readily available to the research 
community and thus not easily reused. 

Large aggregated data collections exist for research communities 
in domains as varied as global atmospheric and climatic research, 
computational chemistry, genomics and analytical physics 
allowing for effective utilization of such data for scientific 
research. Typically, such data collections are a result of data 
aggregation across large organizations such as NASA1, NISTT

                                                                

2 
and NOAA3. Researchers that intend to access, store and analyze 
this data form a large community of distributed members.  Most 
often this data is locally downloaded and analyzed by researchers 
who utilize a variety of analysis tools for varying research 
requirements.  However, such data collections do not allow 
datasets from similar domains to be integrated. Most often, the 
experimental data generated by an end-user (i.e., an individual 
scientist) will have a database schema that is different from the 
pre-existing ones. Typically, an organization such as NASA or 
NOAA collects data which follows their own database schema or 
else convert -other experimental data into their schema before the 
data is loaded into their databases. Sometimes, to avoid the effort 
of converting data conforming to different schemas, the collected 
data is simply stored in flat files.  The disadvantage of such a 
choice is that either this data cannot be efficiently queried using 
indexes and query optimization routines that come with databases, 
requiring that structures and routines must be custom-built over 
the flat files.  

Research experiments in a scientific domain typically have a vast 
number of variables, a subset of which a researcher might decide 
to use within his experimental framework or simulation program. 
For example, an experiment in the chemical kinetics domain 
might involve the following variables: “Chemical Name”, “pH” 
and “Temperature”. It is most likely that even two similar 
research experiments will have a different number of variables, 
though a majority of them might be common between the two 
experiments.  For example, researcher A conducting an 
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experiment might have the variables “Temperature”, “Chemical 
Name” and “pH” while researcher B conducting the same 
experiment might have the same variables (and a fourth variable 
“Common Chemical Name”.  Furthermore, individual researchers 
might name the same variable differently.  For example, 
researcher A might name a variable for temperature “Temp”, 
while researcher B might name the same variable “Temperature”.  
All members of a scientific community may not easily agree on a 
fixed vocabulary or a standardized database schema.  Reaching 
consensus can be costly and in the absence of efforts by a 
powerful organization (like a funding agency) scientists may not 
make the effort to adopt a common standard.  Even more 
problematic, deciding upon a fixed database schema for such an 
application  could prove difficult, since the number of variables 
that could exist in the database schema could be expansive. 

We propose an implemented architecture for a cyber-
infrastructure for the dissemination, sharing, querying and 
searching of scientific data on the World-Wide Web.  In our 
system, scientists upload their data that is to be stored in databases 
accessible via the Web.  Unlike the paradigm in databases where 
the schema is known and end-users pose queries based on that 
schema, the schema of all the data tables for our online database is 
not known.  Consequently, there is a need for data search in any 
cyber-infrastructure for scientific data. 

In order to retrieve data accurately in response to queries on the 
web, the data must be augmented with metadata.   Without the 
semantics of the data, meaningfully querying of the data is 
difficult.  For example, there must be sufficient metadata to 
answer at least the following questions: 

(1) What experimental data does the table contain?  What were 
the experimental conditions?  What is the source of the data?  
When was the data uploaded? 

(2) What are the semantics of each of the columns (rows)?  What 
concept does each column (row) represent? What are their 
units? 

This metadata, available to the end-user from the online 
repository, assists in the data search.  The challenge lies in 
building tools that requires the scientist to know as little of the 
technology as necessary in order to populate the metadata.  
Ideally, the tools should generate the metadata automatically; with 
the scientist should verifying the metadata before uploading the 
data.  However, totally automated metadata generation can be 
difficult.  Therefore, we propose a semi-automatic metadata 
generation toolkit. 

We have constructed an annotation tool that can be coupled with a 
standard data editor to elicit annotations that are stored as 
metadata in the database.  This tool greatly reduces the manual 
effort required in constructing online scientific databases. 

1.1 

1.2 

Related Work 
There exists a variety of techniques to build scientific dataset 
infrastructures. Shosani et al. [12] proposed a storage architecture 
to optimize access to the large datasets on disk, that result from 
high energy physics experiments. Swiss-Prot [1], a protein 
sequence database and Online Mendelian Inheritance in Man 
(OMIM) [10], is a database of descriptions of human genes and 
genetic disorders widely used in genetics research. Both databases 
are similar in hierarchical structure and are heavily curated, i.e., 
they are maintained by extensive manual input from domain 

experts in the field. Both databases strive to reduce redundancy in 
genetics data. Pfam [2] is a large dataset of protein families and 
domains and is built on top of Ecobase [3] and OMIM. Buneman 
et al. [4] propose an architecture for archiving Scientific Datasets 
using XML. 
The Ecobase project [3] proposes a distributed architecture to 
extract information from a number of autonomous and 
heterogeneous data sources (or providers) over the internet by use 
of mediators. Cavalcanti et al. [5] proposed an architecture which 
allows management of distributed scientific models and data. The 
Data grid [6] architecture uses an LDAP-based metadata 
implementation to manage datasets stored within the storage 
system. These systems extensively use metadata to query and 
locate datasets. They can be used primarily to aggregate datasets 
across an organization or expect the datasets to be integrated to 
follow a uniform metadata scheme. However, none of these 
solutions can be applied to create a community-based information 
aggregation system for datasets that have been obtained using 
different variables or schemas while allowing the capability to 
locate datasets by querying on variable names.  

Overview of Our Proposed Architecture 
Our goal is to create an infrastructure that allows experimental 
datasets from a domain to be aggregated and shared via a central 
data repository. Furthermore, the capability to search within 
experimental datasets corresponding to a set of variables is a 
must, since data reuse can occur more effectively if researchers 
can find datasets that suit their research needs. Additionally, the 
infrastructure targeting a specific scientific community must 
provide necessary data analysis tools that cater to that community. 

• Metadata on variables allows for better semantic feature 
search since researchers can provide more semantic 
information on variables. Metadata on variables (or 
dataset attributes), can also remove the inconsistencies 
that are created by different users such as similar 
variables (or attributes) named differently and resolution 
of semantic differences between variables (or attributes) 
which have similar names but different meanings.  Such 
metadata can then be utilized to generate dynamic 
collaborative ontologies on variables within the system, 
allowing for, inter-operability, ease of use and semantic 
correctness of variable names associated with a dataset.  

• We propose a system architecture in Figure 1 which 
combines a metadata annotator with a central repository 
and portal. Our aim is to design an infrastructure that 
not only allows for experimental datasets to be 
aggregated, stored and shared but searchable not only at 
the dataset level but within the dataset itself. 
Specifically, we propose an architecture that allows 
researchers to annotate their datasets and provide 
metadata for the document (i.e., datasets) as well as for 
variables (i.e., dataset attributes). This will allow 
semantic search functionality at the dataset attribute 
level. To archive data, researchers then submit the URL 
(address) of the web available datasets. The 
infrastructure pulls datasets from the given addresses 
and metadata is automatically generated. Users can 
search for datasets and query them using a web portal-
based front-end.  Additionally, end-uses can also use the 
tools available via the portal to analyze the queried data 
within datasets (e.g., plot two variables on a graph, 



compute the correlation of the dependent variable pair-
wise with each independent variable to determine which 
independent variable influences the dependent variable, 
etc.). 

 
Figure 1:  The architecture of our collaborative semantically 
capable infrastructure for data aggregation and sharing. 

1.3 

1.4 

2.1 

Contributions 
In this paper  

1. We propose an architecture for a semantically capable 
collaborative infrastructure for data collection and 
sharing. 

2. Our system architecture utilizes a two level metadata 
scheme that provides metadata description for 
documents (experimental datasets) and semantic 
description of dataset attributes. 

3. We then describe our current system implementation 
and show that such an architecture enables greater 
semantic search capabilities as well as the automatic 
generation of dynamic collaborative ontologies which 
will allow for greater inter-operation. 

Outline of the Paper 
The rest of this paper is organized as follows: Section 2 discusses 
our design issues, goals and solutions. Section 3 describes our 
current infrastructure implementation. We then conclude and 
suggest future research directions in Section 4. 

2. DESIGN ISSUES AND GOALS 
Metadata 

The metadata description of datasets is crucial for effective 
utilization of the data repository and for better inter-operability. 
However, providing metadata is the responsibility of each data 
publisher (researcher), since each dataset is known correctly only 
to the data generator. To allow interoperability and effective 
sharing of datasets within the infrastructure, our proposed 
architecture utilizes a metadata annotation module that allows 
individual data publishers to annotate their data with metadata. 
Furthermore, our system utilizes a two level metadata scheme: 1) 
Dataset Level: metadata that describes the experimental dataset 2) 
Dataset Attribute Level: metadata that describes the variables 
(attributes) within each dataset. The following sections discuss the 
two level metadata scheme utilized within our infrastructure. 
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2.1.1 Dataset/ Document Metadata 
The Dublin Core [9] is a widely used metadata standard for digital 
libraries and defines 15 elements for resource description: Title, 
creator, subject, description, contributor, publisher, date, type, 
format, identifier, source, relation, references, is referenced by, 
language, rights and coverage. This basic set of metadata 
elements is used by the Open Archives Initiative Protocol for 
Metadata Harvesting [10] (OAI-PMH) for minimal 
interoperability.  The metadata annotation module utilizes the 
Dublin core metadata standard to provide dataset metadata. Our 
infrastructure allows users to locate datasets by querying the 
document metadata. For example researcher “John Doe” believes 
datasets from researcher “Jane Doe” satisfies his research 
requirements since she either works on similar research topics or 
is believed to provide good quality datasets. The dataset-level 
metadata allows researcher “John Doe” to locate datasets from a 
specific researcher, conference, description, date etc.  

2.1.2 Attribute Metadata 
Research datasets consist of data collected over a number of 
variables (attributes, experimental condition) that define the 
experiment and/or simulation program. Typically, similar datasets 
contain a subset of variables that are equivalent (i.e. they refer to 
the same variable or experimental condition). Quite often, 
researchers name their variables differently which results in 
semantic heterogeneity on similar lexical objects. As an example 
consider the three tables shown in Figure 2 which correspond to 
three different experimental datasets which are obtained by three 
different researchers performing similar experiments. Consider 
the variables “Temperature”, “Temp” and “C” in the three tables 
respectively. In the above example, the three variables refer to the 
same attribute “Temperature”. This results in semantic 
heterogeneity when defining the variable “Temperature”. Though 
an intelligent lexical matching algorithm might be able to deduce 
correspondences between “Temp” and “Temperature” since 
“Temp” is a commonly used shortened version of “Temperature” 
in research datasets. However, no correspondence between 
“Temp” and “C” can be made. Further similar semantics might be 
used to refer to different objects. Consider the attribute “Rate” 
which is common in the three dataset fragments in Figure 2. It is 
quite likely that each table might refer to a different variable name 
for example “Chemical Rate”, “Reaction Rate”, “Dissolution 
Rate” or “Evaporation Rate”. Assuming these three different 
variables “Rate” to be equivalent will cause incorrect attributes to 
be treated as semantically equivalent, which will result in 
incorrect interpretations and decisions.  



Chemical 
Name 

Rate Temperature 
(K) 

NaOH 0.1 278 

H2SO4 0.2 279 

Table 1: Researcher A Dataset 
 

Chemical 
Name 

Rate Temp 
(F) 

Sodium 
Hydroxide 

0.1 300 

Sulfuric 
Acid 

0.2 301 

Table 2: Researcher B Dataset 

A Rate C ( C) 
Sodium 
Hydroxide 

0.3 297 

Sulfuric 
Acid 

0.4 298 

Table 3: Researcher C Dataset

Figure 2: Fragments of Three Datasets from different researchers performing the same experiment. 
Furthermore, most variables associated with datasets produced 
by scientific research communities contain additional 
information, which if not captured will cause a significant loss 
in information. Consider the variable “Temperature” in a 
chemical-kinetics dataset. The variable might have additional 
information such as “Units”, “Measurement Type”, etc., which 
must be captured since they reflects the true nature (or  scientific 
semantics) of data elements (values).  For example, the variable 
“Temperature”, “Temp” and “C” in the three tables in Figure 2 
respectively, represent the variable “Temperature”. However, 
the variable in Table 1 has units “Kelvin”, in Table 2 has units 
“Fahrenheit” and in Table 3 has units “Celsius”.  If the 
information regarding units is not captured, and the data values 
in the three tables are treated equivalently, the data will get 
misrepresented.  
To make progress in such difficult scenarios, our architecture 
utilizes attribute metadata that is annotated on to the data 
attributes by use of the metadata annotation module. Attribute 
level metadata describes each attribute within a research dataset 
more descriptively.  Current attribute metadata tags that we 
utilize consist of the following: “Fully Qualified Name”, “Data 
Type”, “Units”, “Examples”, “Other Information”, “Equivalent 
To”, “Different From”, “Superset Of”, “Subset Of” and “Type 
of” tags. The explanation on each of these tags is shown in 
Table 1.  
In addition, to resolving semantic heterogeneity resulting due to 
various syntaxes followed by different researchers, these 
attribute metadata tags allow for the generation of a dynamic 
collaboration ontology that defines the dataset attributes that are 
contained within the infrastructure. Such ontologies can be 
derived by utilizing a collaborative probabilistic score based on 
community-wide descriptions of attributes. For example, if 90% 
of the users within the infrastructure define that attribute “A” is 
different from attribute “B” and equivalent to attribute “C”, then 
we could derive an ontology which contains the reference to this 
community wide description of attribute “A” and its semantic 
mapping to other attributes.  Such ontologies will further allow 
for better dataset inter-operation, search-ability and query 
rewrite capabilities. 

2.2 Dataset Submission 
Datasets can be entered into the infrastructure using either a 
“push” or “pull” based method. In the “push” or “put” 
technique, the datasets are directly submitted to the 
infrastructure while in the “pull” or “get” technique, the 
infrastructure gathers the datasets from a web accessible 
location.  Our infrastructure architecture is designed using the 
“pull” based method because we believe that this is more suited 
to our infrastructure needs.  The rationale is as follows: 

• A pull based method provides greater security and 
because the malicious user cannot upload large sets of 
junk data onto the repository.  They will submit the 

URL or the ftp site of where the data resides.  Our tool 
fetches the data from the submitted location.  For non-
authorized users, the submitted data is checked by a 
moderator to ascertain the appropriateness of hosting 
it in our cyber-infrastructure.  

• Datasets can then be tagged with the provenance 
information automatically, e.g., the source URI, the 
time, and the authenticated user.  This information can 
be useful in the future to determine the quality and the 
reliability of the data or to detect malicious users. 

• A push based infrastructure is less robust to malicious 
DOS attacks because we can implement a fair round-
robin policy of fetching datasets across different users.  
Malicious users are banned. 

Table 1: Metadata tags for defining attribute metadata for 
scientific datasets. 

Metadata tag Description 

Fully Qualified 
Name 

A descriptive name that describes 
this variable with minimal 
(scientific) semantic confusion. 

Data Type Describes the format the attribute 
data values follow. E.g., Text, 
Numeric 

Units Scientific units of this variable if 
present. 

Examples More examples and notes. 

Equivalent To Variable names that are 
equivalent. 

Different From Variable names that are different 
from this variable. E.g., Heat, 
Temperature. 

Superset Of Variables which are superset to 
this variable. E.g., “Rate” is 
superset of “Chemical Rate”.  

Subset Of Inverse of above. 

Type Of Type of definition (similar to that 
in RDF). E.g., “Temperature in 
Celsius” is a type of 
“Temperature”. 

Comments User comments. 

3. CURRENT IMPLEMENTATION 
This section describes our current implementation for creating a 
semantically capable collaborative data sharing infrastructure for 
the chemical-kinetics domain. We describe the metadata 
annotation and validation module and the basic infrastructure 
implementation. 



3.1 

3.2 

Metadata Annotation and Validation 
Module 
Most scientists in the chemical kinetics domain utilize Microsoft 
Excel to store their experimental datasets. Our current solution 
utilizes the use of an Excel Addin to provide client-side 
metadata annotation and validation. Once installed, the Addin 
provides an Excel Toolbar containing multiple buttons visible 
within Excel as shown in Figure 3. The Document Metadata 
button in Figure 3 allows researchers to provide Dublin Core 
metadata, which follows the OAI-PMH format via a user form 
(also shown) for the dataset. Similarly, each attribute (variable 
name) within the datasets can be annotated with attribute 
metadata tags as shown in Table 1 using the user form as shown 
in Figure 4. In addition, we validate the dataset by utilizing the 
attribute metadata tag “Data Type”. This attribute metadata tag 
defines the syntax (encodings) that the data values follow in a 
variable or attribute. The validator checks all data values 
contained within all variables in the dataset and ensures that they 
strictly follow the attribute metadata tags that have been set. If 
any data values are incorrectly input, the user is informed and 
requested to make the necessary changes. The validation step 
reduces the data value errors that may occur when the dataset is 
sent to the infrastructure. For example, these errors occur for 
when a user inputs a “text” data value mistakenly into a variable 
whose data type has been set to “Numeric”.  

System Implementation 
The infrastructure consists of the following subsystems: 1) Web 
Portal and Front end 2) Data downloader and Parser and 3) Data 
Analysis Toolkit.  

3.2.1 Web Portal and Front End 
Users can access the infrastructure by use of a web portal. The 
infrastructure is currently deployed on an AMD Opteron-based 
server running Red Hat Enterprise Linux 4 Advanced Server 
with Apache Web Server, Apache Jakarta Tomcat 5 and MySQL 
database server. The web portal consists of 1) Content 
Management System 2) Dataset Viewer and 3) Data Submission 
System. 
The content-management system is used manage user 
registration, moderation, set up security manager and to display 
dynamic web content to users. Registered users have access to 
complete functionality of the system including the data 
submission system. We have currently deployed a Mambo 
Server, an open-source PHP-based, content-management system 
with modifications, to implement the Web Portal. The Data 
submission system is deployed using Java Server Pages (JSP) 
and Servlet deployed on the Apache Jakarta Tomcat 5 Servlet 
container. Registered users can submit the URL/address of web 
accessible annotated datasets.  Errors that are be generated while 
downloading and parsing the data are then reflected to the user, 
or else the dataset is uploaded and made available via the online 
database within the infrastructure. A data viewer allows users to 
query, download and view all available datasets. Our datasets in 
chemical kinetics do not require any read-access control.  
However, using standard database technology it is easy to 
provide access control to the data on a per-user basis if required. 

3.2.2 Data Downloader and Parser 
Once users have input the annotated dataset address into the 
dataset download queue, the data downloader and parser 
subsystem attempts to download and integrate the dataset into 

the infrastructure. Our data downloader and parser sub-system is 
currently implemented using C# .NET using the Visual Studio 
Professional 2005 Development Environment. The data 
downloader is implemented on a Pentium 4 based machine 
running Microsoft Windows XP Professional. The architecture 
of our data downloader and parser is shown in Figure 5.  

 
Figure 3: The Excel Toolbar and User Form to input 
document metadata. 

 
Figure 4: The Excel User Form to input attribute semantics 
and metadata. 
The data downloader and parser subsystem consists of 1) 
Scheduler 2) Data Downloader and 3) Dataset Parser. The 
Scheduler system retrieves an address (URL) of a new dataset to 
be integrated, into the infrastructure, from the data set queue. It 
assigns a unique ID to this dataset and accumulates errors that 
maybe encountered during data downloading, verification, 
parsing, metadata creation, table creation and/or dataset index 
update and logs the error information.  The user who submitted 



the dataset can see the submission entry, its status, and its 
associated log of errors.  The dataset downloader downloads the 
dataset from the URL/ address, caches the dataset on disk, 
performs dataset verification, virus scanning and renames the 
dataset to an internally consistent dataset identifier. The Dataset 
Parser then parses this cached dataset and automatically creates 
the metadata and the semantic dataset attribute metadata as 
XML files. Note that the metadata describing the dataset was 
created by the user as discussed in Section 3.1. An example 
dataset metadata XML file that is created by the dataset 
downloader and parser is shown in Figure 6. The dataset 
metadata file contains Dublin Core metadata as well as extra 
metadata that reference the Attribute metadata files as well as 
the data tables that are created for this dataset.  An example of 
an attribute metadata (based on the data annotation input by a 
user) XML file that is created is shown in Figure 7, for the 
dataset attribute “Chemical Name”. All Data sheets within an 
excel file are converted to data tables in a MySQL database.  
The parser then creates a Dataset Index, which ties the dataset 
with dataset metadata; attribute metadata and data tables and 
transfers the corresponding files to disk on the infrastructure 
server. 

<document> 
  <metadata> 
    <fileLink> 
       <file>38913_0298006366AttrMetaDataSheet1.xml</file> 
       <file>38913_0298006366AttrMetaDataSheet2.xml</file> 
    </fileLink> 
    <tableLink> 
       <table>Sheet138913_0298006366</table> 
       <table>Sheet238913_0298006366</table> 
    </tableLink> 
    <oai_dc xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" 
xmlns:dc="http://purl.org/dc/elements/1.1/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_
dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> 
             
<dc:source>http://www.johndoe.com/dataset1.xls</dc:source> 
      <dc:title>Dataset with Annotated Data</dc:title> 
      <dc:creator>John Doe</dc:creator> 
      <dc:date>06/11/2006</dc:date> 
      <dc:subject>Temperature vs pH variation</dc:subject> 
      <dc:description>Data on the variation of pH as a function of  
temperature for different chemicals</dc:description> 
      <dc:references>None</dc:citation> 
      <dc:isReferencedby>None</dc:isReferenceby> 
      <dc:publisher>None</dc:publisher> 
      <dc:venue>None</dc:venue> 
    </oai_dc> 
  </metadata> 
</document> 

Dataset QueueWeb Available Excel 
File (Dataset) 

  
Figure 5:  Dataset Downloader and Parser Architecture. 

ic, Capturing metadata automatically from datasets is problemat
since similar column headers (attributes) describing datasets can 
be expressed differently by individual researchers. In addition, 
multiple-rows of column headers, as shown in Figure 8, are used 
quite often by researchers. Deciding that row 2 or row 3 
describes the dataset is the first problem. Capturing the 
semantics expressed in row 3 (which describes row 2) into 
metadata is another issue.  
 

 
Dataset Downloader Scheduler Figure 6: Example Dataset Metadata created. 

 
Figure 7: Example Attribute Metadata generated shown for 
a single variable “Chemical Name” within a dataset. 
 
 
 
 
 
 

Dataset Parser 

<document> 
   <metadata>     
      <attribute> 
        <name>Chemical Name</name> 
        <fullyQualifiedName>Chemical Name or 
Formula</fullyQualifiedName> 
        <dataType>String</dataType> 
        <units>None</units> 
        <examples>Sodium Chloride</examples> 
         <equivalentTo>Chemical Formula</equivalentTo> 
        <differentFrom>Chemical Atom</differentFrom> 
        <supersetTo>Common Chemical Name</supersetTo> 
        <subsetTo>Molecules</subsetTo> 
        <typeOf>Molecule</typeOf> 
        <Comments /> 
        <colIndex>2</colIndex> 
        <rowIndex>1</rowIndex> 
        <set>YES</set> 
      </attribute> 
   </metadata> 
</document> 

Metadata 
Repository 

Data Table 
Repository 

Dataset 
Index 



  

 
Figure 8: Multiple-rows of column headers. 

3.2.3 Data Analysis Toolkit 
In addition the infrastructure provides chemical kinetic 
researchers with a data analysis toolkit. The toolkit currently 
provides an online plotting system and statistical data analysis 
system. The online plotting system allows users to query the 
datasets and plot data variables.  It is implemented using JSP, 
Servlets and JDBC. An example X-Y-Line plot generated using 
a dataset present in the infrastructure is shown in Figure 9. In 
addition, a statistical toolkit is currently available which allows 
researchers to run statistical analysis such as regression, 
correlation and mutual information on datasets. Figure 10 shows 
the correlation results obtained after using the statistical 
correlation toolkit on an example dataset. 

 
Figure 9: An example online plot and regression analysis 
generated by the infrastructure for a dataset. 

4. CONCLUSIONS AND FUTURE WORK 
We have proposed an architecture for creating a collaborative 
centralize infrastructure for sharing data with a client-side 
metadata-annotation module. Our current architecture utilizes a 
two-level metadata scheme, which provides document/dataset-
level and dataset-variable/attribute-level metadata.  Users can 
locate datasets by searching using the dataset metadata 
information or by querying datasets for specific variables names. 
In addition, online analysis tools such as plotting and statistical 
analysis allows the infrastructure to serve most needs of a 
researcher.  

A great deal of room for future work exists. Developing 
algorithms to derive dynamic collaboration ontologies by using 
the attribute level semantics (i.e., metadata) is the first direction. 
Integrating query rewriting and semantic searching using 
attribute-level semantics and/ or community collaborative 
ontologies might provide for better data location and is an 
important direction.  Another potentially important direction is 
to study the variable naming protocols that users within the 
infrastructure will follow. Using this information to 
automatically generate variable-name metadata in datasets that 
lack attribute-level metadata will be a significant direction. 
Using the user’s past dataset submissions to automatically 
generate metadata for datasets is another important direction. 
Further, saving the metadata that a user enters and providing the 
user the ability to reuse this metadata is important, as this will 
significantly reduce the time required to generate metadata for 
new datasets.  
Providing group, trust and privacy mechanisms for sharing 
datasets between users is another important direction. This will 
allow collaborating researchers to form groups and share 
datasets within the group. Currently, we have implemented a 
small subset of analysis tools that are used by chemical kinetics 
researchers. Providing complex curve fitting and graphing 
toolkits are important for better utilization of our infrastructure. 
Further, we intend to extend the infrastructure to be able to 
integrate Gaussian output and VASP datasets generated by 
chemical-kinetic experiments and simulation programs.  
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