
1

Support Vector Learning for Fuzzy Rule-Based
Classi�cation Systems
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Abstract|To design a fuzzy rule-based classi�cation sys-
tem (fuzzy classi�er) with good generalization ability in a
high dimensional feature space has been an active research
topic for a long time. As a powerful machine learning ap-
proach for pattern recognition problems, support vector ma-
chine (SVM) is known to have good generalization ability.
More importantly, an SVM can work very well on a high
(or even in�nite) dimensional feature space. This paper in-
vestigates the connection between fuzzy classi�ers and ker-
nel machines, establishes a link between fuzzy rules and
kernels, and proposes a learning algorithm for fuzzy clas-
si�ers. We �rst show that a fuzzy classi�er implicitly de-
�nes a translation invariant kernel under the assumption
that all membership functions associated with the same in-
put variable are generated from location transformation of
a reference function. Fuzzy inference on the IF-part of a
fuzzy rule can be viewed as evaluating the kernel function.
The kernel function is then proven to be a Mercer kernel if
the reference functions meet certain spectral requirement.
The corresponding fuzzy classi�er is named positive de�-
nite fuzzy classi�er (PDFC). A PDFC can be built from
the given training samples based on a support vector learn-
ing approach with the IF-part fuzzy rules given by the sup-
port vectors. Since the learning process minimizes an up-
per bound on the expected risk (expected prediction er-
ror) instead of the empirical risk (training error), the re-
sulting PDFC usually has good generalization. Moreover,
because of the sparsity properties of the SVMs, the num-
ber of fuzzy rules is irrelevant to the dimension of input
space. In this sense, we avoid the \curse of dimensionality."
Finally, PDFCs with di�erent reference functions are con-
structed using the support vector learning approach. The
performance of the PDFCs is illustrated by extensive exper-
imental results. Comparisons with other methods are also
provided.

Keywords|Fuzzy systems, statistical learning theory, sup-
port vector machines, fuzzy classi�er, kernel methods, pat-
tern classi�cation.

I. Introduction

Since the publication of L.A. Zadeh's seminal paper on
fuzzy sets [64], fuzzy set theory and its descendant, fuzzy
logic, have evolved into powerful tools for managing uncer-
tainties inherent in complex systems. In the recent twenty
years, fuzzy methodology has been successfully applied to
a variety of areas including control and system identi�ca-
tion [27], [30], [48], [57], [65], signal and image process-
ing [36], [39], [47], pattern classi�cation [1], [17], [20], [26],
and information retrieval [8], [34]. In general, building a
fuzzy system consists of three basic steps [61]: structure
identi�cation (variable selection, partitioning input and
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output spaces, specifying the number of fuzzy rules, and
choosing a parametric/nonparametric form of membership
functions), parameter estimation (obtaining unknown pa-
rameters in fuzzy rules via optimizing a given criterion),
and model validation (performance evaluation and model
simpli�cation). There are numerous studies on all these
subjects. Space limitation precludes the possibility of a
comprehensive survey. Instead, we only review some of
those results that are most related to ours.

A. Structure Identi�cation and Parameter Estimation

Deciding the number of input variables is referred to the
problem of variable selection, i.e., selecting input variables
that are most predictive of a given outcome. It is related to
the problems of input dimensionality reduction and param-
eter pruning. Emami et al. [14] present a simple method of
identifying non-signi�cant input variables in a fuzzy system
based on the distribution of degree of memberships over the
domain. Recently, Silipo et al. [44] propose a method that
quanti�es the discriminative power of the input features
in a fuzzy model based on information gain. Selecting in-
put variables according to their information gains may im-
prove the prediction performance of the fuzzy system and
provides a better understanding of the underlying concept
that generates the data.
Given a set of input and output variables, a fuzzy par-

tition associates fuzzy sets (or linguistic labels) with each
variable. There are roughly two ways of doing it: data
independent partition and data dependent partition. The
former approach partitions the input space in a predeter-
mined fashion. The partition of the output space then fol-
lows from supervised learning. One of the commonly used
strategies is to assign a �xed number of linguistic labels
to each input variable [56]. Although this scheme is not
diÆcult to implement, it has two serious drawbacks:
� The information in the given data (patterns) is not fully
exploited. The performance of the resulting system may be
poor if the input space partition is quite distinct from the
true distribution of data. Optimizing output space parti-
tion alone is not suÆcient.
� The scheme su�ers from the curse of dimensionality. If
each input variable is allocatedm fuzzy sets, a fuzzy system
with n inputs and one output needs on the order of mn

rules.
Various data dependent partition methods have been

proposed to alleviate these drawbacks. Dickerson et al. [11]
use an unsupervised competitive learning algorithm to �nd
the mean and covariance matrix of each data cluster in the
input/output space. Each data cluster forms an ellipsoidal
fuzzy rule patch. Thawonmas et al. [50] describe a simple
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heuristic for unsupervised iterative data partition. At each
iteration, an input dimension, which gives the maximum
intra-class di�erence between the maximum and the mini-
mum values of the data along that dimension, is selected.
The partition is performed perpendicular to the selected di-
mension. Two data group representations, hyper-box and
ellipsoidal representations, are compared. In [42], a super-
vised clustering algorithm is used to group input/output
data pairs into a predetermined number of fuzzy clusters.
Each cluster corresponds to a fuzzy IF-THEN rule. Uni-
variate membership functions can then be obtained by pro-
jecting fuzzy clusters onto corresponding coordinate axes.
Although a fuzzy partition can generate fuzzy rules, re-

sults are usually very coarse with many parameters to be
learned and tuned. Various optimization techniques are
proposed to solve this problem. Genetic algorithms [9],
[49], [59] and arti�cial neural networks [22], [24], [60] are
two of the most popular and e�ective approaches.

B. Generalization Performance

After going through the long journey of structure iden-
ti�cation and parameter estimation, can we infer that we
get a good fuzzy model? In order to draw a conclusion, the
following two questions must be answered:

� How capable can a fuzzy model be?
� How well can the model, built on �nite amount of data,
capture the concept underlying the data?

The �rst question could be answered from the perspective
of function approximation. Several types of fuzzy mod-
els are proven to be \universal approximators" [28], [38],
[58], [63], i.e., we can always �nd a model from a given
fuzzy model set so that the model can uniformly approxi-
mate any continuous function on a compact domain to any
degree of accuracy. The second question is about the gen-
eralization performance, which is closely related to several
well-known problems in the statistics and machine learn-
ing literature, such as the structural risk minimization [51],
the bias variance dilemma [15], and the over�tting phenom-
ena [2]. Loosely speaking, a model, build on �nite amount
of given data (training patterns), generalizes the best if the
right tradeo� is found between the training (learning) ac-
curacy and the \capacity" of the model set from which the
model is chosen. On one hand, a low \capacity" model set
may not contain any model that �ts the training data well.
On the other hand, too much freedom may eventually gen-
erate a model behaving like a re�ned look-up-table: perfect
for the training data but (maybe) poor on generalization.
Researchers in the fuzzy systems community attempt to

tackle this problem with roughly two approaches:(1) use
the idea of cross-validation to select a model that has the
best ability to generalize [46]; (2) focus on model reduction,
which is usually achieved by rule base reduction [43], [62],
to simplify the model. In statistical learning literature,
the Vapnik-Chervonenkis (VC) theory [52], [53] provides a
general measure of model set complexity. Based on the VC
theory, support vector machines (SVM) [52], [53] can be
designed for classi�cation problems. In many real applica-
tions, the SVMs give excellent performance [10].

C. Our Approach

However, no e�ort has been made to analyze the re-
lationship between fuzzy rule-based classi�cation systems
and kernel machines. The work presented here attempts
to bridge this gap. We relate additive fuzzy systems to
kernel machines, and demonstrate that, under a general
assumption on membership functions, an additive fuzzy
rule-based classi�cation system can be constructed directly
from the given training samples using the support vector
learning approach. Such additive fuzzy rule-based classi�-
cation systems are named the positive de�nite fuzzy clas-
si�ers (PDFC). Using the SVM approach to build PDFCs
has following advantages:
� Fuzzy rules are extracted directly from the given training
data. The number of fuzzy rules is irrelevant to the dimen-
sion of the input space. It is no greater (usually much less)
than the number of training samples. In this sense, we
avoid the \curse of dimensionality".
� The VC theory establishes the theoretical foundation for
good generalization of the resulting PDFC.
� The global solution of an SVM optimization problem can
be found eÆciently using speci�cally designed quadratic
programming algorithms.
The remainder of the paper is organized as follows. In

Section II, a brief overview of the VC theory and SVMs is
presented. Section III describes the PDFCs, a class of ad-
ditive fuzzy rule-based classi�cation systems with positive
de�nite membership functions, product fuzzy conjunction
operator, and center of area (COA) defuzzi�cation with
thresholding unit. We show that the decision boundary
of a PDFC can be viewed as a hyperplane in the feature
space induced by the kernel. In Section IV, an algorithm
is provided to construct PDFC: �rst, an optimal separat-
ing hyperplane is found using the support vector learning
approach, fuzzy rules are then extracted from the hyper-
plane. Section V demonstrates the experiments we have
performed, and provides the results. A description of the
relationship between PDFCs and SVMs with radial basis
function (RBF) kernels and a discussion on the advantages
of relating fuzzy systems to kernel machines are presented
in Section VI. And �nally, we conclude in Section VII to-
gether with a discussion of future work.

II. VC Theory and Support Vector Machines

This section presents the basic concepts of the VC theory
and SVMs. For gentle tutorials of VC theory and SVMs, we
refer interested readers to Burges [5] and M�uller et al. [35].
More exhaustive treatments can be found in the books by
Vapnik [52], [53].

A. VC Theory

Let's consider a two-class classi�cation problem of as-
signing class label y 2 f+1;�1g to input feature vec-
tor ~x 2 R

n . We are given a set of training samples
f(~x1; y1); � � � ; (~xl; yl)g � R

n � f+1;�1g that are drawn in-
dependently from some unknown cumulative probability
distribution P (~x; y). The learning task is formulated as
�nding a machine (a function f : Rn ! f+1;�1g) that
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\best" approximates the mapping generating the training
set. In order to make learning feasible, we need to specify
a function space, H , from which a machine is chosen.
An ideal measure of generalization performance for

a selected machine f is expected risk (or the prob-
ability of misclassi�cation) de�ned as RP (~x;y)(f) =R
Rn�f+1;�1g

Iff(~x)6=yg(~x; y)dP (~x; y) where IA(z) is an in-

dicator function such that IA(z) = 1 for all z 2 A, and
IA(z) = 0 for all z =2 A. Unfortunately, this is more an
elegant way of writing the error probability than practical
usefulness because P (~x; y) is usually unknown. However,
there is a family of bounds on the expected risk, which
demonstrates fundamental principles of building machines
with good generalization. Here we present one result from
the VC theory due to Vapnik and Chervonenkis [54]: given
a set of l training samples and function space H , with prob-
ability 1 � �, for any f 2 H the expected risk is bounded
above by

RP (~x;y)(f) � Remp(f) +

s
h(1 + ln 2l

h
)� ln �

4

l
(1)

for any distribution P (~x; y) on R
n � f+1;�1g. Here

Remp(f) is called the empirical risk (or training error), h
is a non-negative integer called the Vapnik Chervonenkis
(VC) dimension. The VC dimension is a measure of the ca-
pacity of a f+1;�1g-valued function space. Given a train-
ing set of size l, (1) demonstrates a strategy to control ex-
pected risk by controlling two quantities: the empirical risk
and the VC dimension. Next we will discuss an application
of this idea: the SVM learning strategy.

B. Support Vector Machines

Let f(~x1; y1); � � � ; (~xl; yl)g � R
n �f+1;�1g be a training

set. The SVM learning approach attempts to �nd a canoni-
cal hyperplane 1 f~x 2 Rn : h~w; ~xi+ b = 0; ~w 2 Rn ; b 2 Rg
that maximally separates two classes of training samples.
Here h�; �i is an inner product in R

n . The corresponding
decision function (or classi�er) f : Rn ! f+1;�1g is then
given by f(~x) = sgn (h~w; ~xi+ b).
Considering that the training set may not be linearly

separable, the optimal decision function is found by solving
the following quadratic program:

minimize J(~w; ~�) =
1

2
h~w; ~wi+ C

lX
i=1

�i (2)

subject to yi (h~w; ~xii+ b) � 1� �i; �i � 0; i = 1; � � � ; l

where ~� = [�1; � � � ; �l]T are slack variables introduced to al-
low for the possibility of misclassi�cation of training sam-
ples, C > 0 is some constant.
How does minimizing (2) relate to our ultimate goal

of optimizing the generalization? To answer this ques-
tion, we need to introduce a theorem about the VC di-
mension of canonical hyperplanes [52], which is stated

1A hyperplane f~x 2 Rn : h~w; ~xi+ b = 0; ~w 2 Rn; b 2 Rg is called
canonical for a given training set if and only if ~w and b satisfy
mini=1;���;l jh~w; ~xii + bj = 1.

as follows. For a given set of l training samples, let R
be the radius of the smallest ball containing all l train-
ing samples, and � � R

n � R be the set of coeÆ-
cients of canonical hyperplanes de�ned on the training
set. The VC dimension h of the function space H =
ff(~x) = sgn (h~w; ~xi+ b) : (~w; b) 2 �; k~wk � A; ~x 2 Rng is
bounded above by h � min

�
R2A2; n

�
+ 1. Thus minimiz-

ing the 1
2 h~w; ~wi term in (2) amounts to minimizing the VC

dimension of H , therefore the second term of the bound (1).

On the other hand,
Pl

i=1 �i is an upper bound on the num-
ber of misclassi�cations on the training set 2, thus controls
the empirical risk term in (1). For an adequate positive
constant C, minimizing (2) can indeed decrease the upper
bound on the expected risk.
Applying the Karush-Kuhn-Tucker complementarity

conditions, one can show that a ~w, which minimizes (2),

can be written as ~w =
Pl

i=1 yi�i~xi. This is called the dual
representation of ~w. An ~xj with nonzero �j is called a
support vector. Let S be the index set of support vectors,
then the optimal decision function becomes

f(~x) = sgn

 X
i2S

yi�i h~x; ~xii+ b

!
(3)

where the coeÆcients �i can be found by solving the dual
problem of (2):

maximize W (~�) =

lX
i=1

�i � 1

2

lX
i;j=1

�i�jyiyj h~xi; ~xji(4)

subject to C � �i � 0; i = 1; � � � ; l; and
lX

i=1

�iyi = 0:

The decision boundary given by (3) is a hyperplane in
R
n . More complex decision surfaces can be generated by

employing a nonlinear mapping � : Rn ! F to map the
data into a new feature space F (usually has dimension
higher than n), and �nding the maximal separating hyper-
plane in F. Note that in (4) ~xi never appears isolated but
always in the form of inner product h~xi; ~xji. This implies
that there is no need to evaluate the nonlinear mapping �
as long as we know the inner product in F for any given
~x; ~z 2 Rn . So for computational purposes, instead of de�n-
ing � : Rn ! F explicitly, a function K : Rn � Rn ! R is
introduced to directly de�ne an inner product in F. Such a
function K is also called the Mercer kernel [10], [52], [53].
Substituting K(~xi; ~xj) for h~xi; ~xji in (4) produces a new
optimization problem

maximize W (~�) =

lX
i=1

�i � 1

2

lX
i;j=1

�i�jyiyjK(~xi; ~xj)(5)

subject to C � �i � 0; i = 1; � � � ; l; and
lX

i=1

�iyi = 0:

2A training feature vector ~xi is misclassi�ed if and only if 1��i < 0
or equivalently �i > 1. Let t be the number of misclassi�cations on

the training set. We have t �
Pl

i=1 �i since �i � 0 for all i and �i > 1
for misclassi�cations.
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Solving (5) for ~� gives a decision function of the form

f(~x) = sgn

 X
i2S

yi�iK(~x; ~xi) + b

!
; (6)

whose decision boundary is a hyperplane in F, and trans-
lates to nonlinear boundaries in the original space. Sev-
eral techniques of solving quadratic programming problems
arising in SVM algorithms are described in [23], [25], [37].
Details of calculating b can be found in [7].

III. Additive Fuzzy Rule-Based Classification

Systems and Positive Definite Fuzzy

Classifiers

This section starts with a short description of an addi-
tive fuzzy model, based on which binary fuzzy classi�ers
and standard binary fuzzy classi�ers are de�ned. We then
introduce the concept of positive de�nite functions, and de-
�ne positive de�nite fuzzy classi�ers (PDFC) accordingly.
Finally, some nice properties of the PDFCs are discussed.

A. Additive Fuzzy Rule-Based Classi�cation Systems

Depending on the THEN-part of fuzzy rules and the way
to combine fuzzy rules, a fuzzy rule-based classi�cation sys-
tem can take many di�erent forms [29]. In this paper, we
consider the additive fuzzy rule-based classi�cation systems
(or in short fuzzy classi�er) with constant THEN-parts. Al-
though the discussions in this section and Section IV focus
on binary classi�ers. The results can be extended to multi-
class problems by combining several binary classi�ers.
Consider a fuzzy model with m fuzzy rules of the form

Rule j : IF A1
j AND A2

j AND � � � AND An
j THEN bj

(7)
where Ak

j is a fuzzy set with membership function akj :
R ! [0; 1], j = 1; � � � ;m, k = 1; � � � ; n, bj 2 R. If we
choose product as the fuzzy conjunction operator, addition
for fuzzy rule aggregation (that is what \additive" means),
and COA defuzzi�cation, then the model becomes a special
form of the Takagi-Sugeno (TS) fuzzy model [48], and the
input output mapping, F : Rn ! R, of the model is de�ned
as

F (~x) =

Pm
j=1 bj

Qn
k=1 a

k
j (xk)Pm

j=1

Qn
k=1 a

k
j (xk)

(8)

where ~x = [x1; � � � ; xn]T 2 R
n is the input. Note that

(8) is not well-de�ned on R
n if

Pm
j=1

Qn
k=1 a

k
j (xk) = 0

for some ~x 2 R
n , which could happen if the input space

is not wholly covered by fuzzy rule \patches". However,
there are several easy �xes for this problem. For ex-
ample, we can force the output to some constant whenPm

j=1

Qn
k=1 a

k
j (xk) = 0, or add a fuzzy rule so that the

denominator
Pm

j=1

Qn
k=1 a

k
j (xk) > 0 for all ~x 2 Rn . Here

we take the second approach for analytical simplicity. The
following rule is added:

Rule 0 : IF A1
0 AND A2

0 AND � � � AND An
0 THEN b0

(9)

where b0 2 R, the membership functions ak0(xk) � 1 for
k = 1; � � � ; n and any xk 2 R. Consequently, the input
output mapping becomes

F (~x) =
b0 +

Pm
j=1 bj

Qn
k=1 a

k
j (xk)

1 +
Pm

j=1

Qn
k=1 a

k
j (xk)

: (10)

A classi�er associates class labels with input features,
i.e., it is essentially a mapping from the input space to the
set of class labels. In binary case, thresholding is one of the
simplest ways to transform F (~x) to class labels +1 or �1.
In this article, we are interested in binary fuzzy classi�ers
de�ned as follows.
De�nition III.1: (Binary Fuzzy Classi�er) Consider a

fuzzy system with m+1 fuzzy rules where Rule 0 is given by
(9), Rule j; j = 1; � � � ;m, has the form of (7). If the system
uses product for fuzzy conjunction, addition for rule aggre-
gation, and COA defuzzi�cation, then the system induces
a binary fuzzy classi�er, f , with decision rule,

f(~x) = sign (F (~x) + t) (11)

where F (~x) is de�ned in (10), t 2 R is a threshold.
The following corollary states that we can assume t = 0

without loss of generality.
Corollary III.2: For any binary fuzzy classi�er given

by De�nition III.1 with nonzero threshold t, there exists a
binary fuzzy classi�er that has the same decision rule but
zero threshold.
Proof: Given a binary fuzzy classi�er, f , with t 6= 0. From
(10) and (11), we have

f(~x) = sign

 
(b0 + t) +

Pm
j=1(bj + t)

Qn
k=1 a

k
j (xk)

1 +
Pm

j=1

Qn
k=1 a

k
j (xk)

!
;

which is identical to the decision rule of a binary fuzzy
classi�er with bj + t as the THEN-part of jth fuzzy rule
(j = 0; � � � ;m) and zero threshold. 2
The membership functions for a binary fuzzy classi�er

de�ned above could be any function from R to [0; 1]. How-
ever, too much 
exibility on the model could make e�ec-
tive learning (or training) unfeasible. So we narrow our
interests to a class of membership functions, which are
generated from location transformation of reference func-
tions [12], and the classi�ers de�ned on them.
De�nition III.3: (Reference Function, [12]) A function

� : R ! [0; 1] is a reference function if and only if
� �(x) = �(�x);
� �(0) = 1; and
� � is nonincreasing on [0;1).
De�nition III.4: (Standard Binary Fuzzy Classi�er)

A binary fuzzy classi�er given by De�nition III.1 is a
standard binary fuzzy classi�er if for the kth input, k 2
f1; � � � ; ng, the membership functions, akj : R ! [0; 1],

j = 1; � � � ;m, are generated from a reference function ak

through location transformation, i.e., akj (xk) = ak(xk� zkj )
for some location parameter zkj 2 R.
A simple example will be helpful for illustrating and un-

derstanding the basic idea of the above de�nition. Let's
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Fig. 1. IF-part membership functions for a standard binary fuzzy
classi�er. Two thick curves denote the reference functions a1(x1)
and a2(x2) for inputs x1 and x2, respectively. a11(x1) = a1(x1 + 6),
a12(x1) = a1(x1 + 3), and a13(x1) = a1(x1 � 5) are membership func-
tions associated with x1. a21(x1) = a2(x2 + 5), a22(x2) = a2(x2 � 3),
and a23(x2) = a2(x2�7) are membership functions associated with x2.
Clearly, a11(x1), a

1
2(x1), and a

1
3(x1) are location transformed versions

of a1(x1), and a21(x2), a
2
2(x2), and a23(x2) are location transformed

versions of a2(x2).

consider a standard binary fuzzy classi�er with two inputs
(x1 and x2) and three fuzzy rules (excluding Rule 0)

Rule 1 : IF A1
1 AND A2

1 THEN b1

Rule 2 : IF A1
2 AND A2

2 THEN b2

Rule 3 : IF A1
3 AND A2

3 THEN b3

where a1(x1) = e�
x
2
1

4 and a2(x2) = max(1 � jx23 j; 0) are
reference functions for inputs x1 and x2, respectively, a

k
j is

the membership function of Ak
j , j = 1; 2; 3, k = 1; 2. As

shown in Figure 1, the membership functions a11, a
1
2, and

a13 belong to one location family generated by a
1, the mem-

bership functions a21, a
2
2, and a23 belong the other location

family generated by a2.
Corollary III.5: The decision rule of a standard binary

fuzzy classi�er given by De�nition III.4 can be written as

f(~x) = sign

0
@ mX
j=1

bjK(~x; ~zj) + b0

1
A (12)

where ~x = [x1; x2; � � � ; xn]T 2 Rn , ~zj = [z1j ; z
2
j ; � � � ; znj ]T 2

R
n contains the location parameters of akj ; k = 1; � � � ; n,

K : Rn � R
n ! [0; 1] is a translation invariant kernel 3

3A kernel K(~x; ~z) is translation invariant if K(~x; ~z) = K(~x � ~z),
i.e., it depends only on ~x� ~z, but not on ~x and ~z themselves.

de�ned as

K(~x; ~zj) =

nY
k=1

ak(xk � zkj ) : (13)

Proof: From (10), (11), and Corollary III.2, the decision
rule of a binary fuzzy classi�er is

f(~x) = sign

 
b0 +

Pm
j=1 bj

Qn
k=1 a

k
j (xk)

1 +
Pm

j=1

Qn
k=1 a

k
j (xk)

!
:

Since 1 +
Pm

j=1

Qn
k=1 a

k
j (xk) > 0, we have

f(~x) = sign

0
@b0 + mX

j=1

bj

nY
k=1

akj (xk)

1
A : (14)

From the de�nition of standard binary fuzzy classi�er,
akj (xk) = ak(xk � zkj ), k = 1; � � � ; n, j = 1; � � � ;m. Sub-
stituting them into (14) completes the proof. 2
The decision rule (13) is not merely a di�erent represen-

tation form of (11), it provides us with a novel perspective
on binary fuzzy classi�ers (Section III-B, III-C), and ac-
cordingly leads to a new design algorithm for binary fuzzy
classi�ers (Section IV).

B. Positive De�nite Fuzzy Classi�ers

One particular kind of kernel, Mercer kernel, has re-
ceived considerable attention in the machine learning lit-
erature [10], [16], [52], [53] because it is an eÆcient way of
extending linear learning machines to nonlinear ones. Is
the kernel de�ned by (13) a Mercer kernel? Before answer-
ing this question, we �rst quote a theorem.
Theorem III.6: (Mercer Theorem [10], [32]) Let X be a

compact subset of Rn . Suppose K is a continuous symmet-
ric function such that the integral operator TK : L2(X) !
L2(X),

(TKf)(�) =
Z
X

K(�; ~x)f(~x)d~x

is positive, that isZ
X�X

K(~x; ~z)f(~x)f(~z)d~xd~z � 0 (15)

for all f 2 L2(X). Then we can expand K(~x; ~z) in a
uniformly convergent series (on X � X) in terms of TK 's
eigen-functions �i 2 L2(X), normalized in such a way that
k�ikL2

= 1, and positive associated eigenvalues �j > 0,

K(~x; ~z) =
1X
i=1

�k�i(~x)�i(~z) : (16)

The positivity condition (15) is also called the Mercer
condition. A kernel satisfying the Mercer condition is
named a Mercer kernel. An equivalent form of the Mercer
condition, which proves most useful in constructing Mercer
kernels, is given by the following lemma [10].
Lemma III.7: (Positivity Condition for Mercer Ker-

nels [10]) For a kernel K : Rn � R
n ! R, the Mercer

condition (15) holds if and only if the matrix [K(~xi; ~xj)] 2
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R
n�n is positive semi-de�nite for all choices of points
f~x1; � � � ; ~xng � X and all n = 1; 2; � � � � � �.
For most nontrivial kernels, directly checking the Mer-

cer conditions in (15) or Lemma III.7 is not an easy task.
Nevertheless, for the class of translation invariant kernels,
to which the kernels de�ned by (13) belong, there is an
equivalent yet practically more powerful criterion based the
spectral property of the kernel [45].

Lemma III.8: (Mercer Conditions for Translation In-
variant Kernels, Smola et al. [45]) A translation invariant
kernel K(~x; ~z) = K(~x � ~z) is a Mercer kernel if and only
if the Fourier transform

F [K](~!) =
1

(2�)
n

2

Z
Rn

K(~x)e�ih~!;~xid~x

is nonnegative.

Kernels de�ned by (13) do not, in general, have nonneg-
ative Fourier transforms. However, if we assume that the
reference functions are positive de�nite functions, which
are de�ned by the following de�nition, then we do get a
Mercer kernel (given in Theorem III.11).

De�nition III.9: (Positive De�nite Function [18]) A
function f : R ! R is said to be a positive de�nite func-
tion if the matrix [f(xi � xj)] 2 R

n�n is positive semi-
de�nite for all choices of points fx1; � � � ; xng � R and all
n = 1; 2; � � � � � �.
Corollary III.10: A function f : R ! R is positive

de�nite if and only if the Fourier transform

F [f ](!) = 1p
2�

Z 1

�1

f(x)e�i!xdx

is nonnegative.

Proof: Given any function f : R ! R, we can de�ne a
translation invariant kernel K : R � R ! R as

K(x; z) = f(x� z) :

From Lemma III.8, K is a Mercer kernel if and only if
the Fourier transform of f is nonnegative. Thus from
Lemma III.7 and De�nition III.9, we conclude that f is
a positive de�nite function if and only if its Fourier trans-
form is nonnegative. 2

Theorem III.11: (Positive De�nite Fuzzy Classi�er,
PDFC) A standard binary classi�er given by De�ni-
tion III.4 is called a positive de�nite fuzzy classi�er
(PDFC) if the reference functions, ak : R ! [0; 1]; k =
1; � � � ; n, are positive de�nite functions (they do not need
to be the same function). The translation invariant kernel
(13) is then a Mercer kernel.

Proof: From Lemma III.8, it suÆces to show that the
translation invariant kernel de�ned by (13) has nonnegative
Fourier transform. Rewrite (13) as

K(~x; ~z) = K(~u) =
nY

k=1

ak(uk)

where ~x = [x1; � � � ; xn]T , ~z = [z1; � � � ; zn]T 2 R
n , ~u =

[u1; � � � ; un]T = ~x� ~z. Then

F [K](~!) =
1

(2�)
n

2

Z
Rn

e�ih~!;~ui
nY

k=1

ak(uk)d~u

=
1

(2�)
n

2

Z
Rn

nY
k=1

ak(uk)e
�i!kukd~u

=

nY
k=1

1p
2�

Z
R

ak(uk)e
�i!kukduk

which is nonnegative since ak; k = 1; � � � ; n, are positive
de�nite functions (Corollary III.10). 2
It might seem that the positive de�nite assumption on

reference functions is quite restrictive. In fact, many com-
monly used reference functions are indeed positive de�nite.
An incomplete list is given in Table I.
More generally, the weighted summation (with positive

weights) and the product of positive de�nite functions are
still positive de�nite (a direct conclusion from the linearity
and product/convolution properties of the Fourier trans-
form). So we can get a class of positive de�nite membership
functions from those listed above. It is worthwhile noting
that the asymmetric triangle and the trapezoid member-
ship functions are not positive de�nite.

C. The PDFC and Mercer Features

Recall the expansion (16) given by the Mercer Theorem.
Let F be an l2 space. If we de�ne a nonlinear mapping
� : X! F as

�(~x) = [
p
�1�1(~x); � � � ;

p
�k�i(~x); � � �]T ; (17)

and de�ne an inner product in F as



[u1; � � � ; ui; � � �]T ; [v1; � � � ; vi; � � �]T

�
F
=

1X
i=1

uivi ; (18)

then (16) becomes

K(~x; ~z) = h�(~x);�(~z)i
F

: (19)

�(~x) 2 F is sometimes referred to as the Mercer features.
Equation (19) displays a nice property of Mercer kernels:
a Mercer kernel implicitly de�nes a nonlinear mapping �
such that the kernel computes the inner product in the
space � maps to. Therefore a Mercer kernel enables a clas-
si�er, in the form of (12), to work on Mercer features (which
usually reside in a space with dimension much higher than
that of the input space) without explicitly evaluating the
Mercer features (which is computationally very expensive).
The following theorem illustrates the relationship between
the PDFCs and Mercer features.
Theorem III.12: Given n positive de�nite reference

functions, ak : R ! [0; 1], k = 1; � � � ; n, and a compact set
X � R

n , we de�ne a Mercer kernel K(~x; ~z) =
Qn

k=1 a
k(xk�

zk) where ~x = [x1; � � � ; xn]T ; ~z = [z1; � � � ; zn]T 2 X. Let
F be an l2 space, � : X ! F be the nonlinear mapping
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TABLE I

A list of positive definite reference functions and their Fourier transform.

Reference Function Fourier Transform

Symmetric Triangle �(x) = max(1 � d jxj ; 0); d > 0 F [�](!) = 1p
2�

sin2( !
2d

)

( !
2d

)2

Gaussian �(x) = e�dx2 ; d > 0 F [�](!) = 1p
2d
e�

!
2

4d

Cauchy �(x) = 1
1+dx2

; d > 0 F [�](!) =
q

�
2d
e
� j!jp

d

Laplace �(x) = e�djxj; d > 0 F [�](!) =
q

2
�

d
d2+!2

Hyperbolic Secant �(x) = 2
edx+e�dx ; d > 0 F [�](!) = 1

d

q
�
2

2

e
�!

2d +e
��!

2d

Squared sinc �(x) =
sin2(dx)

d2x2
; d > 0 F [�](!) = max(

q
�
2
( 1
d
�

j!j
2d2

); 0)

given by (17), and h�; �i
F
be an inner product in F de�ned

by (18). Given a set of points f~z1; � � � ; ~zmg � X, we de-
�ne a subspace W � F as W = Spanf�(~z1); � � � ;�(~zm)g,
and a function space H on F as H = fh : h(~u) =
sign(h~w; ~ui

F
+ b0); ~w 2 W ; ~u 2 F; b0 2 Rg. Then we

have the following results:
1. For any g 2 H , there exists a PDFC with ak; k =
1; � � � ; n, as reference functions such that the decision rule,
f , of the PDFC satis�es f(~x) = g(�(~x)); 8~x 2 X.
2. For any PDFC using ak; k = 1; � � � ; n, as reference
functions, if ~zj contains location parameters of the IF-part
membership functions associated with the jth fuzzy rule for
j = 1; � � � ;m (as de�ned in Corollary III.5), then there ex-
ists g 2 H such that the decision rule, f , of the PDFC
satis�es f(~x) = g(�(~x)); 8~x 2 X.
Proof:

1. Given g 2 H , we have g(~u) = sign(h~w; ~ui
F
+ b0). Since

~w 2 W , it can be written as a linear combination of �(~zj)'s,
i.e., ~w =

Pm
j=1 bj�(~zj). Thus g(~u) becomes

g(~u) = sign

0
@* mX

j=1

bj�(~zj); ~u

+
F

+ b0

1
A

= sign

0
@ mX
j=1

bj h�(~zj); ~uiF + b0

1
A :

Now we can de�ne a PDFC using ak; k = 1; � � � ; n, as ref-
erence functions. For j = 1; � � � ;m, let ~zj contain location
parameters of the IF-part membership functions associated
with the jth fuzzy rule (as de�ned in Corollary III.5), and
bj be the THEN-part of the jth fuzzy rule. The THEN-
part of Rule 0 is b0. Then from (12) and (19), the decision
rule is

f(~x) = sign

0
@ mX
j=1

bjK(~x; ~zj) + b0

1
A

= sign

0
@ mX
j=1

bj h�(~x);�(~zj)iF + b0

1
A

Clearly, f(~x) = g(�(~x)); 8~x 2 X.
2. For a PDFC described in the theorem, let bj be the
THEN-part of the jth fuzzy rule, and b0 be the THEN-

part of Rule 0. Then from (12) and (19), the decision rule
is

f(~x) = sign

0
@ mX
j=1

bj h�(~x);�(~zj)iF + b0

1
A

= sign

0
@* mX

j=1

bj�(~zj);�(~x)

+
F

+ b0

1
A : (20)

Let ~w =
Pm

j=1 bj�(~zj) and g(~u) = sign(h~w; ~ui
F
+ b0), then

g 2 H and f(~x) = g(�(~x)); 8~x 2 X.
This completes the proof. 2
Remark III.13: The compactness of the input domain

X is required for purely theoretical reason: it ensures that
the expansion (16) can be written in a form of countable
sum, thus the nonlinear mapping (17) can be de�ned. In
practice, we don't need to worry about it provided that all
input features (both training and testing) are within certain
range (which can be satis�ed via data preprocessing). Con-
sequently, it is reasonable to assume that ~zj is also in X for
j = 1; � � � ;m because this essentially requires that all fuzzy
rule \patches" center inside the input domain.
Remark III.14: Since g(~u) = sign(h~w; ~ui

F
+ b) = 0 de-

�nes a hyperplane in F, Theorem III.12 relates the decision
boundary of a PDFC in X to a hyperplane in F. The theo-
rem implies that given any hyperplane in F, if its orienta-
tion (normal direction pointed by ~w) is a linear combina-
tion of vectors that have preimage (under �) in X, then the
hyperplane transforms to a decision boundary of a PDFC.
Conversely, given a PDFC, one can �nd a hyperplane in
F that transforms to the decision boundary of the given
PDFC. Therefore, we can alternatively consider the deci-
sion boundary of a PDFC as a hyperplane in the feature
space F, which corresponds to a nonlinear decision bound-
ary in X. Constructing a PDFC is then converted to �nding
a hyperplane in F.
Remark III.15: A hyperplane in F is de�ned by its

normal direction ~w and the distance to the origin, which
is determined by b for �xed ~w. According to the proof of
Theorem III.12, ~w and b are de�ned as ~w =

Pm
j=1 bj�(~zj)

and b = b0, respectively, where f~z1; � � � ; ~zmg � X is the
set of location parameters of the IF-part fuzzy rules, and
fb0; � � � ; bmg � R is the set of constants in the THEN-part
fuzzy rules. This implies that the IF-part and THEN-part
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of fuzzy rules play di�erent roles in modeling the hyper-
plane. The IF-part parameters, f~z1; � � � ; ~zmg, de�nes a set
of feasible orientations, W = Spanf�(~z1); � � � ;�(~zm)g, of
the hyperplane. The THEN-part parameters fb1; � � � ; bmg
select an orientation,

Pm
j=1 bj�(~zj), from W . The distance

to the origin is then determined by the THEN-part of Rule
0, i.e., b = b0.

IV. An SVM Approach to Build PDFCs

A PDFC with n inputs and m, which is unknown, fuzzy
rules is parameterized by n, possibly di�erent, positive def-
inite reference functions (ak : R ! [0; 1], k = 1; :::n),
a set of location parameters (f~z1; � � � ; ~zmg � X) for the
membership functions of the IF-part fuzzy rules, and a set
of real numbers (fb0; � � � ; bmg � R) for the constants in
the THEN-part fuzzy rules. Which reference functions to
choose is an interesting research topic by itself [33]. But it
is out of the scope of this article. Here we assume that the
reference functions ai : R ! [0; 1]; i = 1; � � � ; n are prede-
termined. So the remaining question is how to �nd a set of
fuzzy rules (f~z1; � � � ; ~zmg and fb0; � � � ; bmg) from the given
training samples f(~x1; y1); � � � ; (~xl; yl)g � X � f+1;�1g so
that the PDFC has good generalization.
As given in (13), for a PDFC, a Mercer kernel can

be constructed from the positive de�nite reference func-
tions. The kernel implicitly de�nes a nonlinear mapping
� that maps X into a kernel-induced feature space F.
Theorem III.12 states that the decision rule of a PDFC
can be viewed as a hyperplane in F. Therefore, the
original question transforms to: given training samples
f(�(~x1); y1); � � � ; (�(~xl); yl)g � F�f+1;�1g, how to �nd a
separating hyperplane in F that yields good generalization,
and how to extract fuzzy rules from the obtained optimal
hyperplane. We have seen in Section II-B that the SVM
algorithm �nds a separating hyperplane (in the input space
or the kernel induced feature space) with good generaliza-
tion by reducing the empirical risk and, at the same time,
controlling the hyperplane margin. Thus we can use the
SVM algorithm to �nd an optimal hyperplane in F. Once
we get such a hyperplane, fuzzy rules can be easily ex-
tracted. The whole procedure is described by the following
algorithm.
Algorithm IV.1: SVM Learning for PDFC

Inputs: Positive de�nite reference functions ak(xk), k =
1; � � � ; n, associated with n input variables, and a set of
training samples f(~x1; y1); � � � ; (~xl; yl)g.
Outputs: A set of fuzzy rules parameterized by ~zj, bj, and
m. ~zj (j = 1; � � � ;m) contains the location parameters of
the IF-part membership functions of the jth fuzzy rule, bj
(j = 0; � � � ;m) is the THEN-part constant of the jth fuzzy
rule, and m+ 1 is the number of fuzzy rules.
Steps:

1 Construct a Mercer kernel, K, from the given positive
de�nite reference functions according to (13).

2 Construct an SVM to get a decision rule of the form (6):
1) Assign some positive number to C, and solve the

quadratic program de�ned by (5) to
get the Lagrange multipliers ~�.

2) Find b (details can be found in, for example, [7]).
3 Extracting fuzzy rules from the decision rule of the SVM:

b0  b
j  1
FOR i = 1 TO l

IF �i > 0
~zj  ~xi
bj  yi�i
j  j + 1

END IF

END FOR

m j � 1

It is straightforward to check that the decision rule of the
resulting PDFC is identical to (6).

Once reference functions are �xed, the only free param-
eter in the above algorithm is C. According to the opti-
mization criterion in (2), C weights the classi�cation error
versus the upper bound on the VC dimension. Another
way of interpreting C is that it a�ects the sparsity of ~�
(the number of nonzero entries in ~�) [4]. Unfortunately,
there is no general rule for picking C. Typically, a range
of values of C should be tried before the best one can be
selected.

The above learning algorithm has several nice properties:

� The shape of the reference functions and C parameter
are the only prior information needed by the algorithm.
� The algorithm automatically generates a set of fuzzy
rules. The number of fuzzy rules is irrelevant to the dimen-
sion of the input space. It equals the number of nonzero
Lagrange multipliers. In this sense, the \curse of dimen-
sionality" is avoided. In addition, due to the sparsity of
~�, the number of fuzzy rules is usually much less than the
number of training samples.
� Each fuzzy rule is parameterized by a training sample
(~xj ; yj) and the associated nonzero Lagrange multiplier �j
where ~xj speci�es the location of the IF-part membership
functions, and yj�j gives the THEN-part constant.
� The global solution for the optimization problem can al-
ways be found eÆciently because of the convexity of the ob-
jective function and of the feasible region. Algorithms de-
signed speci�cally for the quadratic programming problems
in SVMs make large-scale training (for example 200; 000
samples with 40; 000 input variables) practical [23], [25],
[37]. The computational complexity of classi�cation oper-
ation is determined by the cost of kernel evaluation and the
number of support vectors.
� Since the goal of optimization is to lower an upper bound
on the expected risk (not just the empirical risk), the re-
sulting PDFC usually has good generalization, which will
be demonstrated in the coming section.

V. Experimental Results

Using Algorithm IV.1, we design PDFCs with di�erent
choices of reference functions 4. Based on the IRIS data

4The SVMLight [23] is used to implement the SVMs. This software
is available at http://svmlight.joachims.org.
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set [3] and the USPS data set 5, we evaluate the perfor-
mance of PDFCs in terms of generalization (classi�cation
rate) and number of fuzzy rules. Comparisons with fuzzy
classi�ers described in [19] and results in [35] are also pro-
vided.

A. IRIS Data Set

The IRIS data set consists of 150 samples belonging
to 3 classes of iris plants namely Setosa, Versicolor, and
Verginica. Each class contains 50 samples, and each sam-
ple is represented by four input features (sepal length, sepal
width, petal length, and petal width) and the associated
class label. The Setosa class is linearly separable from the
Versicolor and Verginica classes, the latter are not linearly
separable from each other. Clearly, this is a multi-class
classi�cation problem. But the Algorithm IV.1 only works
for binary classi�ers. So we design three PDFCs, each of
which separates one class from the rest two classes. The
�nal predicted class label is decided by the winner of three
PDFCs, i.e., one with the maximum un-thresholded out-
put.
The generalization performance is evaluated via 2-fold

cross-validation. The IRIS data set is randomly divided
into two subsets of equal size (75 samples). A PDFC is
trained 2 times, each time with a di�erent subset held out
as a validation set. The classi�cation rate is then de�ned
as the number of correctly classi�ed validation samples di-
vided by the size of the validation set. We repeat the 2-fold
cross-validation 200 times using di�erent partitions of the
IRIS data set, and compute the mean of the classi�cation
rates. This quantity is viewed as an estimation of the gen-
eralization performance.
For all input variables, we use the Gaussian reference

function given in Table I. PDFCs are designed for di�er-
ent values of C (in Algorithm IV.1) and d (of the Gaussian
reference function). The mean classi�cation rate and the
mean number of fuzzy rules for di�erent values of C and d
are plotted in Figure 2. Separating the Setosa class from
the other two classes is relatively easy since they are lin-
early separable. Consequently, as shown in Figure 2(a),
the PDFCs generalizes perfectly for all values of C and d.
Separating the Versicolor (or Verginica) class from the rest
two classes requires slightly more e�orts. Figure 2(b) and
(c) show that the generalization performance depends on
the choices of C and d. However, for di�erent values of C,
we get very similar generalization performance by picking
a proper d value. In Figure 2(b), the maximum mean clas-
si�cation rates for C = 100, 1000, and 10000 are 96:81%
(d = 1

4 ), 96:61% (d = 1
16 ), and 96:45% (d = 1

32 ), respec-
tively. In Figure 2(c), the maximum mean classi�cation
rates for C = 100, 1000, and 10000 are 96:57% (d = 1

16 ),
96:61% (d = 1

256 ), and 96:56% (d = 1
2048 ), respectively.

Moreover, Figure 2(d), (e), and (f) demonstrate that C
a�ects the number of fuzzy rules. For a �xed value of
d, a larger C value corresponds to a smaller mean num-
ber of fuzzy rules. This complies with the observation in

5The USPS data set is available at
http://www.kernel-machines.org/data.

the SVM literature that the number of support vectors de-
creases when C is large.
To get the �nal multi-class classi�er, we need to com-

bine three PDFCs (each one is designed to separate one
class from the rest two classes). Here we use the following
strategy:

� Pick three PDFCs with the same C and d values.
� The predicted class label is given by the PDFC with the
maximum un-thresholded output.

This strategy is by no means optimal. But it is very simple,
and works very well. The results for C = 100, d = 1, 1

2 ,
1
4 ,

1
8 , and

1
16 are summarized in Table II, where we also cite the

results reported by Ishibuchi et al. [19]. In their approach,
input features are normalized to the interval [0; 1], and each
axis of the input space is assignedM uniformly distributed
fuzzy sets. The rule weights and THEN-part of fuzzy rules
are determined by a reward-and-punishment scheme [19].
Clearly, the number of fuzzy rules for such a system is M4.
From Table II we can see that the classi�cation rates

of classi�ers built on PDFCs (with a range of d values)
are higher than those of the classi�ers constructed from
Ishibuchi's approach. Moreover, the number of fuzzy rules
used by PDFCs is less than that of Ishibuchi's approach
(except forM = 2 which gives a less favorable classi�cation
rate of 91:73%). In addition, for a PDFC, the number of
fuzzy rules is bounded above by the number of training
samples since each fuzzy rule is parameterized by a training
sample with nonzero Lagrange multiplier. While, using
Ishibuchi's approach, the number of fuzzy rules increases
exponentially as M4.

B. USPS Data Set

The USPS data set contains 9298 grayscale images of
handwritten digits. The images are size normalized to �t
in a 16� 16 pixel box while preserving their aspect ratio.
The data set is divided into a training set of 7291 samples
and a testing set of 2007 samples. For each sample, the
input feature vector consists of 256 grayscale values.
In this experiment, we test the performance of PDFCs

for di�erent choices of reference functions given in Table I.
For di�erent input variables, the reference functions are
chosen to be identical. Ten PDFCs are designed, each of
which separates one digit from the rest nine digits. The
�nal predicted class label is decided by the PDFC with
the maximum un-thresholded output. Based on the train-
ing set, we use 5-fold cross-validation to determine the d
parameter of reference functions and the C parameter in
support vector learning (for each PDFC) where C takes
values from f100; 1000; 10000g, and d takes values from
f 1
2n : n = 2; � � � ; 10g. For each pair of d and C, the average

cross-validation error is computed. The optimal d and C
are the values that gives the minimal mean cross-validation
error. Based on the selected parameter, the PDFCs are
constructed and evaluated on the testing set. The whole
process is repeated 5 times. The mean classi�cation rate
(and the standard deviation) on the testing set and the
mean number of fuzzy rules (for one PDFC) are listed in
Table III. For comparison purpose, we also cite the results
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(a) Setosa versus the rest. (b) Versicolor versus the rest. (c) Verginica versus the rest.
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Fig. 2. Performance of PDFCs in terms of the mean classi�cation rate and the mean number of fuzzy rules for the IRIS data set. (a) and (d)
give the mean classi�cation rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Setosa class from the other
two classes. (b) and (e) give the mean classi�cation rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate
Versicolor class from the other two classes. (c) and (f) give the mean classi�cation rate and the mean number of fuzzy rules, respectively, of
PDFCs designed to separate Verginica class from the other two classes.

TABLE II

Mean classification rate r and mean number of fuzzy rules m (for multi-class classifiers). A comparison of multi-class

classifiers constructed from three PDFCs and fuzzy classifiers built from Ishibuchi's approach using the IRIS data set.

Combining 3 PDFCs (C = 100) Ishibuchi's Approach [19]
d = 1

16
d = 1

8
d = 1

4
d = 1

2
d = 1:0 M = 2 M = 3 M = 4 M = 5 M = 6

r 95:46% 96:22% 96:38% 95:97% 95:55% 91:73% 94:80% 94:53% 94:80% 95:37%
m 62:49 47:5 35:46 28:695 26:69 16 81 256 625 1296

TABLE III

USPS data set. Mean classification rate r � standard deviation and mean number of fuzzy rules m (for one PDFC) using

different reference functions.

Gaussian Cauchy Laplace S-Triangle H-Secant Sinc2

r 95:2%� 0:3% 95:2%� 0:3% 94:7%� 0:4% 95:0%� 0:3% 95:0%� 0:3% 95:2%� 0:2%
m 573 567 685 652 468 391
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from [35]: linear SVM (classi�cation rate 91:3%), k-nearest
neighbor (classi�cation rate 94:3%), SVM with Gaussian
kernel (classi�cation rate 95:8%), and virtual SVM (classi-
�cation rate 97:0%).

Note that the Gaussian reference function corresponds to
the Gaussian RBF kernel used in the SVM literature. For
the USPS data, all six reference functions achieve similar
classi�cation rates. The number of fuzzy rules varies signif-
icantly. The number of fuzzy rules needed by the squared
sinc reference function is only 68:2% of that needed by
the Gaussian reference function. Compared with the lin-
ear SVM and k-nearest neighbor approach [35], the PDFCs
achieve a better classi�cation rate. SVMs can be im-
proved by using prior knowledge. For instance the virtual
SVM [35] performs better than current PDFCs. However,
same approach can be applied to build PDFCs, i.e., PDFCs
can also bene�t from the same prior knowledge.

VI. Discussion

A. The Relationship between PDFC kernels and RBF Ker-
nels

In the literature, it is well-known that a Gaussian RBF
network can be trained via support vector learning using
a Gaussian RBF kernel [41]. While the functional equiva-
lence between fuzzy inference systems and Gaussian RBF
networks is established in [21] where the membership func-
tions within each rule must be Gaussian functions with
identical variance. So connection between such fuzzy sys-
tems and SVMs with Gaussian RBF kernels can be estab-
lished. The following discussion compares the kernels de-
�ned by PDFCs and RBF kernels commonly used in SVMs.

The kernels of PDFCs are constructed from positive def-
inite reference functions. These kernels are translation
invariant, symmetric with respect to a set of orthogonal
axes, and tailing o� gradually. In this sense, they ap-
pear to be very similar to the general RBF kernels [16].
In fact, the Gaussian reference function de�nes the Gaus-
sian RBF kernel. However, in general, the kernels of
PDFCs are not RBF kernels. According to the de�ni-
tion, an RBF kernel, K(~x; ~z), depends only on the norm of
~x � ~z, i.e., K(~x � ~z) = KRBF (k~x � ~zk). It can be shown
that for a kernel, K(~x; ~z), de�ned by (13) using symmetric
triangle, Cauchy, Laplace, hyperbolic secant, or squared
sinc reference functions (even with identical d for all in-
put variables), there exists ~x1, ~x2, ~z1, and ~z2 such that
k~x1�~z1k = k~x2�~z2k andK(~x1; ~z1) 6= K(~x2; ~z2). Moreover,
a general RBF kernels (even if it is a Mercer kernel) may
not be a PDFC kernel, i.e., it can not be in general decom-
posed as product of positive de�nite reference functions. It
is worth noting that the kernel de�ned by symmetric tri-
angle reference functions is identical to the Bn-splines (or
order 1) kernel that is commonly used in the SVM litera-
ture [55].

B. Advantages of Connecting Fuzzy Systems to Kernel Ma-
chines

Kernel methods represent one of the most important di-
rections both in theory and application of machine learn-
ing. While fuzzy classi�er was regarded as a method that
\are cumbersome to use in high dimensions or on com-
plex problems or in problems with dozens or hundreds of
features (pp. 194, [13])." Establishing the connection be-
tween fuzzy systems and kernel machines has the following
advantages:
� A novel kernel perspective of fuzzy classi�ers is pro-
vided. Through reference functions, fuzzy rules are related
to translation invariant kernels. Fuzzy inference on the IF-
part of a fuzzy rule is equivalent to evaluating the kernel. If
the reference functions are restricted to the class of positive
de�nite functions then the kernel turns out to be a Mer-
cer kernel, and the corresponding fuzzy classi�er becomes a
PDFC. Since Mercer kernel induces a feature space, we can
consider the decision boundary of a PDFC as a hyperplane
in that space. The design of a PDFC is then equivalent to
�nding an \optimal" hyperplane.
� A new approach to build fuzzy classi�ers is proposed.
Based on the link between fuzzy systems and kernel ma-
chines, a support vector learning approach is proposed to
construct PDFCs so that a fuzzy classi�er can have good
generalization ability in a high dimensional feature space.
The resulting fuzzy rules are determined by support vec-
tors, corresponding Lagrange multipliers, and associated
class labels.
� It points out a future direction of applying techniques
in fuzzy systems literature to improve the performance of
kernel methods. The link between fuzzy systems and ker-
nel machines implies that a class of kernel machines, such
as those using Gaussian kernels, can be interpreted by a
set of fuzzy IF-THEN rules. This opens interesting con-
nections between fuzzy rule base reduction techniques [43]
and computational complexity issues in SVMs [6] and ker-
nel PCA [40]:
{ The computational complexity of an SVM scales with
the number of support vectors. One way of decreasing the
complexity is to reduce the number of support-vector-like
vectors in the decision rule (6). For the class of kernels,
which can be interpreted by a set of fuzzy IF-THEN rules,
this can be viewed as fuzzy rule base simpli�cation.
{ In kernel PCA [40], given a test point ~x, the kth
nonlinear principal component, �k, is computed by �k =Pl

i=1 �
k
iK(~x; ~xi) where l is the number of data points in a

given data set (details of calculating �ki 2 R can be found
in [40]). Therefore, the computational complexity of com-
puting �k scales with l. For the class of kernels discussed in
this paper, it is not diÆcult to derive that �k can be equiv-
alently viewed as the output of an additive fuzzy system
using �rst order moment defuzzi�cation without thresh-
olding unit. Here ~xi and �ki parameterize the IF-part and
THEN-part of the ith fuzzy rule (i = 1; � � � ; l), respectively.
As a result, fuzzy rule base reduction techniques may be
applied to increase the speed of nonlinear principal compo-
nents calculation.
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VII. Conclusions and Future Work

In this paper, we exhibit the connection between fuzzy
classi�ers and kernel machines, and propose a support vec-
tor learning approach to construct fuzzy classi�ers so that
a fuzzy classi�er can have good generalization ability in a
high dimensional feature space. As future work, we intend
to explore in the following directions: 1) The requirement
that all membership functions associated with an input
variable are generated from the same reference function
maybe somewhat restrictive. However, it can be shown
that this constraint can be relaxed; 2) The positivity re-
quirement on reference functions can also be relaxed. In
that case, the kernel in general will not be a Mercer ker-
nel. But the fuzzy classi�ers can still be related to the
generalized support vector machines [31]; 3) Although our
work focuses on the classi�cation problem, it is not diÆcult
to extend the results to function approximations. Fuzzy
function approximation (using positive de�nite reference
functions) is equivalent to support vector regression [55]
using the kernel de�ned by reference functions; 4) Apply
fuzzy rule base reduction techniques to reduce computa-
tional complexities of the SVM and kernel PCA.
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