
CS345
Data Mining

Link Analysis Algorithms

Page Rank

Anand Rajaraman, Jeffrey D. Ullman

Link Analysis Algorithms

� Page Rank

� Hubs and Authorities

� Topic-Specific Page Rank

� Spam Detection Algorithms

� Other interesting topics we won’t cover

� Detecting duplicates and mirrors

� Mining for communities

� Classification

� Spectral clustering

Ranking web pages

� Web pages are not equally “important”

� www.joe-schmoe.com v www.stanford.edu

� Inlinks as votes
� www.stanford.edu has 23,400 inlinks

� www.joe-schmoe.com has 1 inlink

� Are all inlinks equal?

� Recursive question!

Simple recursive formulation

� Each link’s vote is proportional to the
importance of its source page

� If page P with importance x has n
outlinks, each link gets x/n votes

� Page P’s own importance is the sum of
the votes on its inlinks

Simple “flow” model

The web in 1839

Yahoo

M’softAmazon

y

a m

y/2

y/2

a/2

a/2

m

y = y /2 + a /2

a = y /2 + m

m = a /2

Solving the flow equations

� 3 equations, 3 unknowns, no constants

� No unique solution

� All solutions equivalent modulo scale factor

� Additional constraint forces uniqueness

� y+a+m = 1

� y = 2/5, a = 2/5, m = 1/5

� Gaussian elimination method works for
small examples, but we need a better
method for large graphs

Matrix formulation

� Matrix M has one row and one column for each
web page

� Suppose page j has n outlinks

� If j ! i, then Mij=1/n

� Else Mij=0

� M is a column stochastic matrix

� Columns sum to 1

� Suppose r is a vector with one entry per web
page

� ri is the importance score of page i

� Call it the rank vector

� |r| = 1

Example

Suppose page j links to 3 pages, including i

i

j

M r r

=

i

1/3

Eigenvector formulation

� The flow equations can be written

r = Mr

� So the rank vector is an eigenvector of
the stochastic web matrix

� In fact, its first or principal eigenvector, with
corresponding eigenvalue 1

Example

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y = y /2 + a /2

a = y /2 + m

m = a /2

r = Mr

y 1/2 1/2 0 y

a = 1/2 0 1 a

m 0 1/2 0 m

Power Iteration method

� Simple iterative scheme (aka relaxation)

� Suppose there are N web pages

� Initialize: r0 = [1/N,….,1/N]T

� Iterate: rk+1 = Mrk

� Stop when |rk+1 - rk|1 < ε

� |x|1 = ∑1≤i≤N|xi| is the L1 norm

� Can use any other vector norm e.g.,
Euclidean

Power Iteration Example

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

1/3

1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

Random Walk Interpretation

� Imagine a random web surfer

� At any time t, surfer is on some page P

� At time t+1, the surfer follows an outlink
from P uniformly at random

� Ends up on some page Q linked from P

� Process repeats indefinitely

� Let p(t) be a vector whose ith

component is the probability that the
surfer is at page i at time t

� p(t) is a probability distribution on pages

The stationary distribution

� Where is the surfer at time t+1?

� Follows a link uniformly at random

� p(t+1) = Mp(t)

� Suppose the random walk reaches a
state such that p(t+1) = Mp(t) = p(t)

� Then p(t) is called a stationary distribution
for the random walk

� Our rank vector r satisfies r = Mr

� So it is a stationary distribution for the
random surfer

Existence and Uniqueness

A central result from the theory of random

walks (aka Markov processes):

For graphs that satisfy certain
conditions, the stationary distribution is
unique and eventually will be reached no
matter what the initial probability
distribution at time t = 0.

Spider traps

� A group of pages is a spider trap if there
are no links from within the group to
outside the group

� Random surfer gets trapped

� Spider traps violate the conditions
needed for the random walk theorem

Microsoft becomes a spider trap

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 0

m 0 1/2 1

y a m

y

a =

m

1

1

1

1

1/2

3/2

3/4

1/2

7/4

5/8

3/8

2

0

0

3

. . .

Random teleports

� The Google solution for spider traps

� At each time step, the random surfer
has two options:

� With probability β, follow a link at random

� With probability 1-β, jump to some page
uniformly at random

� Common values for β are in the range 0.8 to
0.9

� Surfer will teleport out of spider trap
within a few time steps

Random teleports (β = 0.8)

Yahoo

M’softAmazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y 1/2

a 1/2

m 0

y

1/2

1/2

0

y

0.8*

1/3

1/3

1/3

y

+ 0.2*

1/2 1/2 0

1/2 0 0

0 1/2 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

Random teleports (β = 0.8)

Yahoo

M’softAmazon

1/2 1/2 0

1/2 0 0

0 1/2 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

y

a =

m

1

1

1

1.00

0.60

1.40

0.84

0.60

1.56

0.776

0.536

1.688

7/11

5/11

21/11

. . .

Matrix formulation

� Suppose there are N pages

� Consider a page j, with set of outlinks O(j)

� We have Mij = 1/|O(j)| when j!i and Mij = 0
otherwise

� The random teleport is equivalent to

� adding a teleport link from j to every other
page with probability (1-β)/N

� reducing the probability of following each
outlink from 1/|O(j)| to β/|O(j)|

� Equivalent: tax each page a fraction (1-β)
of its score and redistribute evenly

Page Rank

� Construct the N£N matrix A as follows

� Aij = βMij + (1-β)/N

� Verify that A is a stochastic matrix

� The page rank vector r is the principal
eigenvector of this matrix

� satisfying r = Ar

� Equivalently, r is the stationary
distribution of the random walk with
teleports

Dead ends

� Pages with no outlinks are “dead ends”
for the random surfer

� Nowhere to go on next step

Microsoft becomes a dead end

Yahoo

M’softAmazon

y

a =

m

1

1

1

1

0.6

0.6

0.787

0.547

0.387

0.648

0.430

0.333

0

0

0

. . .

1/2 1/2 0

1/2 0 0

0 1/2 0

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 1/15

0.8 + 0.2

Non-

stochastic!

Dealing with dead-ends

� Teleport

� Follow random teleport links with probability
1.0 from dead-ends

� Adjust matrix accordingly

� Prune and propagate

� Preprocess the graph to eliminate dead-ends

� Might require multiple passes

� Compute page rank on reduced graph

� Approximate values for deadends by
propagating values from reduced graph

Computing page rank

� Key step is matrix-vector multiplication

� rnew = Arold

� Easy if we have enough main memory to
hold A, rold, rnew

� Say N = 1 billion pages

� We need 4 bytes for each entry (say)

� 2 billion entries for vectors, approx 8GB

� Matrix A has N2 entries

� 1018 is a large number!

Rearranging the equation

r = Ar, where

Aij = βMij + (1-β)/N

ri= ∑1≤j≤N Aij rj
ri= ∑1≤j≤N [βMij + (1-β)/N] rj
= β ∑1≤j≤N Mij rj+ (1-β)/N ∑1≤j≤N rj
= β ∑1≤j≤N Mij rj+ (1-β)/N, since |r| = 1

r = βMr + [(1-β)/N]N
where [x]N is an N-vector with all entries x

Sparse matrix formulation

� We can rearrange the page rank equation:

� r = βMr + [(1-β)/N]N
� [(1-β)/N]N is an N-vector with all entries (1-β)/N

� M is a sparse matrix!

� 10 links per node, approx 10N entries

� So in each iteration, we need to:

� Compute rnew = βMrold

� Add a constant value (1-β)/N to each entry in rnew

Sparse matrix encoding

� Encode sparse matrix using only
nonzero entries

� Space proportional roughly to number of
links

� say 10N, or 4*10*1 billion = 40GB

� still won’t fit in memory, but will fit on disk

13, 2322

17, 64, 113, 117, 24551

1, 5, 730

source

node
degree destination nodes

Basic Algorithm

� Assume we have enough RAM to fit rnew, plus
some working memory
� Store rold and matrix M on disk

Basic Algorithm:

� Initialize: rold = [1/N]N
� Iterate:

� Update: Perform a sequential scan of M and rold to
update rnew

� Write out rnew to disk as rold for next iteration

� Every few iterations, compute |rnew-rold| and stop if it
is below threshold

� Need to read in both vectors into memory

Update step

13, 2322

17, 64, 113, 11741

1, 5, 630

src degree destination

0
1

2

3
4

5

6

0
1

2

3
4

5

6

rnew rold

Initialize all entries of rnew to (1-β)/N
For each page p (out-degree n):

Read into memory: p, n, dest1,…,destn, r
old(p)

for j = 1..n:

rnew(destj) += β*rold(p)/n

Analysis

� In each iteration, we have to:

� Read rold and M

� Write rnew back to disk

� IO Cost = 2|r| + |M|

� What if we had enough memory to fit
both rnew and rold?

� What if we could not even fit rnew in
memory?

� 10 billion pages

Block-based update algorithm

3, 422

0, 521

0, 1, 3, 540

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew rold

Analysis of Block Update

� Similar to nested-loop join in databases

� Break rnew into k blocks that fit in memory

� Scan M and rold once for each block

� k scans of M and rold

� k(|M| + |r|) + |r| = k|M| + (k+1)|r|

� Can we do better?

� Hint: M is much bigger than r (approx
10-20x), so we must avoid reading it k
times per iteration

Block-Stripe Update algorithm

122

031

0, 140

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew

rold

422

531

540

322

340

Block-Stripe Analysis

� Break M into stripes

� Each stripe contains only destination nodes
in the corresponding block of rnew

� Some additional overhead per stripe

� But usually worth it

� Cost per iteration

� |M|(1+ε) + (k+1)|r|

Next

� Topic-Specific Page Rank

� Hubs and Authorities

� Spam Detection

