
Local Strati�cation

� Instantiate rules; i.e., substitute all
possible constants for variables, but reject
instantiations that cause some EDB subgoal
to be false.

✦ Ground atom = atom with no variables.

� Build dependency graph at the level of ground
atoms by instantiating the rules.

� Whether program + EDB is locally strati�ed
depends not only on program, but on EDB.

� Program + EDB is locally strati�ed i� no
negative cycles in dependency graph.

Example

Win program with boards f1; 2; 3g and moves 1 !
2, 2! 3, and 1! 3.

1 2 3

� The following three instantiations are the only
ones that cannot be ruled out immediately by
a false move subgoal:

r1: win(1) :- move(1,2) & NOT win(2)

r2: win(1) :- move(1,3) & NOT win(3)

r3: win(2) :- move(2,3) & NOT win(3)

The Dependency Graph

win(1)

win(2)

win(3)

move(1,3)move(1,2) move(2,3)

��

�

� The three move ground atoms and win(3)
are in stratum 0; win(2) is in stratum 1, and
win(1) is in stratum 2.

1



Computing the Locally Strati�edModel

Compute locally strati�ed (\perfect") model
bottom-up, deciding on the truth or falsehood of
atoms by computing the LFP of each stratum in
turn.

Example

Stratum 0: We �nd win(3) is false.

Stratum 1: That lets us use r3 to infer win(2) is
true.

Stratum2: We then use r2 to infer win(1) is true.

Stable Models

Intuitively, model M is \stable" if when you apply
the rules to M you get exactly M back.

Example

\Win" rule:

win(X) :- move(X,Y) & NOT win(Y)

with EDB 1! 2, 2! 3, 1! 3.

1 2 3

� M = EDB + fwin(1); win(2)g is stable.

� The three useful instantiations are

r1: win(1) :- move(1,2) & NOT win(2)

r2: win(1) :- move(1,3) & NOT win(3)

r3: win(2) :- move(2,3) & NOT win(3)

� M makes only the bodies of r2 and r3 true,
letting us infer exactly M .

� Note you get the EDB facts \for free" in this
process.

Gelfond-Lifschitz Transform

Formal notion of applying rules to a model M .

1. Instantiate rules in all possible ways.

2. Delete instantiated rules with a (nonnegated)
EDB subgoal that is not in M or with a false
arithmetic subgoal.

✦ Remember, EDB is part of M .

2



3. Delete instantiated rules with a subgoal
NOT p(x), where p(x) is in M .

✦ In (3) and (4), p can be either EDB or
IDB.

4. Delete any subgoal NOT p(x) if p(x) is not in
M .

5. Delete any EDB subgoal in M and any true
arithmetic subgoal.

� What's left? Rules with zero or more
nonnegated, relational subgoals with IDB
predicates.

✦ Note that a rule with empty body is an
assertion that the head is true.

� GL(M ) = EDB + result of inferring IDB with
the remaining rules.

Bottom Line on GL Transform

You can use negative EDB or IDB facts in M (i.e.,
atoms missing from M ) to help infer facts, and
you use positive EDB facts, but you don't use the
positive IDB facts in M unless you derive them
from other facts.

Formal De�nition of Stable Models

� If GL(M ) = M , then M is stable.

� The \stable semantics" for a program + EDB
is the unique stable model with that EDB, if
there is one.

✦ Sometimes it is interesting to look at the
set of stable models, as well.

Example

M = fmove(1; 2), move(1; 3), move(2; 3), win(1),
win(2)g (formal version of previous example).

� After step (2):

r1: win(1) :- move(1,2) & NOT win(2)

r2: win(1) :- move(1,3) & NOT win(3)

r3: win(2) :- move(2,3) & NOT win(3)

� After step (3):

r2: win(1) :- move(1,3) & NOT win(3)

r3: win(2) :- move(2,3) & NOT win(3)

� After step (4):

3



r2: win(1) :- move(1,3)

r3: win(2) :- move(2,3)

� After step (5):

r2: win(1) :-

r3: win(2) :-

� Thus, GL(M ) = fwin(1); win(2)g + EDB =
M .

� M is a stable model.

Example

Consider the \program":

p(X) :- p(X)

� ; is the only stable model.

� Why? The only instantiated rules are of the
form p(a) :- p(a).

✦ The GL transform doesn't a�ect these, no
matter what M is.

✦ Thus, there is no way to infer any p(a).

Example

For any Datalog program without negation, the
unique LFP is the only stable model.

� Why? To test whether M is stable, we
compute GL(M ).

✦ Since there is no negation in bodies, the
surviving instantiated rules are exactly
the ones with true EDB subgoals.

✦ Thus, GL infers exactly the LFP for the
EDB portion of M , regardless of what M
is.

✦ If we start with the LFP, we infer it,
so that model is stable; if we start with
another model, we still infer the LFP, so
that model is not stable.

Propositional Stable Models

It is often useful to �nd propositional examples.

� No EDB in propositional logic.

� Thus, only steps (3) and (4), plus the �nal
inference, are relevant for the GL transform.

4



Example

p :- q; q :- NOT r; r :- s; s :- NOT p

� M = fp; qg.

� After step (3):

p :- q; q :- NOT r; r :- s

� After step (4):

p :- q; q :- ; r :- s

� Inference: GL(M ) = fp; qg = M .

Multiple Stable Models Possible

Notice that fr; sg is also a stable model of the
above rules.

5


