Conjunctive Queries
= safe, Datalog rules:
H: -G & - &G,
e Most common form of query; equivalent to
select-project-join queries.

e  Useful for optimization of active elements,
e.g., checking distributed constraints,
maintaining materialized views.)

e  Useful for information integration.

Applying a CQ to a Database

If @is aCQ, and D 1s a database of EDB facts,
then Q(D) is the set of heads of @ that we get

when we:

e  Substitute constants for variables in the body
of () in all possible ways.

e  Require all subgoals to become true.
Example
p(X)Y) 1= ¢(X,72) & ¢(Z)Y)

o EDB={q(1,2), ¢(2,3), ¢(3,4)}.

e  Only substitutions that make subgoals both
true:
1. X—=1Y —=3,7—2.
2. X—=2,V—=4,7—3.

e  Yield heads p(1,3) and p(2,4).

Containment
Q1 C Q2 iff for every database D, Q1(D) C Q2(D).

e  Containment problem is NP-complete, but
not a “hard” problem in practical situations
(short queries, few pairs of subgoals with same
predicate).

e  Function symbols do not make problems more

difficult.

¢  Adding negated subgoals and/or arithmetic
subgoals, e.g., X < Y, makes things more
complex, but important special cases.

Example



A: pX,Y) :-r(X,W) &b(W,Z2) & r(Z,Y)
B: p(X,Y) :- r(X,W) & b(W,W) & r(W,Y)

e (laim: BC A.

e In proof, suppose p(x,y) is in B(D). Then
there is some w such that r(z, w), b(w, w), and
r(w,y) are in D.

e In A, make the substitution X — =z, Y — y,
W —w, 7 —w.

e  Thus, the head of A becomes p(z,y), and all
subgoals of A are in D.

e  Thus, p(#,y) is also in A(D), proving B C A.

Testing Containment of CQ’s
1. Containment mappings.
2. Canonical databases.

e  Similar for basic CQ case, but (2) is useful for
more general cases like negated subgoals.

Containment Mappings

Mapping from variables of CQ )2 to variables of
CQ @1 such that

1. Head of )2 becomes head of ).

2. FEach subgoal of ()2 becomes some subgoal of

Q1

O It 1s not necessary that every subgoal of
()1 1s the target of some subgoal of Q5.

Example

A, B as above:

A: pX,Y) :-r(X,W) &b(W,Z2) & r(Z,Y)
B: p(X,Y) :- r(X,W) & b(W,W) & r(W,Y)

e  (Containment mapping from A to B: X — X,
Y=Y W-W,7Z—-W.

e No containment mapping from B to A.
Subgoal 6(W, W) in B can only go to (W, 7)
in A. That would require both W — W and
W — Z.

Example

Ci: p(X) :-a(X,Y) & a(Y,Z2) & a(Z,W)
Cy: p(X) :- a(X,Y) & a(Y,X)



e  Containment mapping from C to Cy. X —
X, Y=Y Z7—-X,W-=Y.

e  No containment mapping from C5 to Cf.
Proof:

a) X — X required for head.

b) Thus, first subgoal of C'y must map to
first subgoal of C7; Y must map to Y.

¢) Similarly, 2nd subgoal of C'y must map to
2nd subgoal of C, so X must map to Z.

d) But we already found X maps to X.

Containment Mapping Theorem

@1 C Q) iff there exists a containment mapping
from )2 to Q1.

Proof (If)

Let p: Q2 — (1 be a containment mapping. Let D
be any DB.

e  Every tuple ¢t in Q1(D) is produced by some
substitution o on the variables of ()1 that
makes (J1’s subgoals all become facts in D.

e (Claim: o o p is a substitution for variables of
()2 that produces t.

1. oo u(F;) = o(some G;). Therefore, it is
in D.

2. ocou(Hs)=0(H)=1t.

e  Thus, every ¢ in @Q1(D) is also in Q2(D); i.e.,
@1 C Q.

Proof (Only If)
Key idea: frozen CQ.

1. Create a unique constant for each variable of

the CQ Q.

2. Frozen @) 1s a database consisting of all the
subgoals of ), with the chosen constants
substituted for variables.

Example

pX) - a(X,Y) & a(Y,Z2) & a(Z,W)

Let @ be the constant for X, etc. The relation
for predicate a consists of the three tuples (x,y),
(y,2), and (z,w).




Proof (Only If) Continued
Let Q1 C Q2. Let database D be the frozen ().
e Q1(D) contains ¢, the “frozen” head of @)1

O Sounds gruesome, but the reason is that
we can use the substitution in which
each variable of ()1 is replaced by its
corresponding constant.

e  Since @1 C @2, @2(D) must also contain ¢.

e Let o be the substitution of constants from
D for the variables of ()5 that makes each
subgoal of ()3 a tuple of D and yields ¢ as the
head.

e Let 7 be the substitution that maps constants
of D to their unique, corresponding variable of

Q1

Qz: E - F1 & Fm(X,Y)
o ¥ Al

¢ ab

\XT

Qi H:-Gi & & Gi(AB)&-

e Too is a containment mapping from @2 to Q1
because:

a) The head of @3 is mapped by ¢ to ¢, and
t is the frozen head of @1, so 7 o ¢ maps
the head of @5 to the “unfrozen” ¢, that
is, the head of Q.

b) Each subgoal F; of 2 is mapped by o to
some tuple of D), which is a frozen version
of some subgoal G; of (1. Then 7 o o
maps F; to the unfrozen tuple, that is, to

G; itself.

Dual View of Containment Mappings

A containment mapping, defined as a mapping on
variables, induces a mapping on subgoals.

e Therefore, we can alternatively define a
containment mapping as a function on
subgoals, thus inducing a mapping on
variables.

e  The containment mapping condition becomes:
the subgoal mapping does not cause a variable
to be mapped to two different variables or
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constants, nor cause a constant to be mapped
to a variable or a constant other than itself.

Example

Again consider

A: pX,Y) :-r(X,W) &b(W,Z2) & r(Z,Y)
B: p(X,Y) :- r(X,W) & b(W,W) & r(W,Y)

e  Previously, we found the containment
mapping X - X, Y =Y W W, 72 —-W
from A to B.

e  We could as well describe this mapping as
r(X, W) — (X, W), (W, Z) — b(W, W),
and r(Z,Y) — r(W,Y).

Method of Canonical Databases

Instead of looking for a containment mapping from
)2 to @)1 in order to test Q1 C o, we can apply
the following test:

1. Create a canonical database D that is the
frozen body of ).

2. Compute Q2(D).

3. If Q2(D) contains the frozen head of @y, then
@1 C Q5; else not.

e  The proof that this method works is
essentially the same as the argument for
containment mappings:

0 The only way the frozen head of (),
can be in Q2(D) is for there to be a
containment mapping Q2 — Q1.

Example

Ci: p(X) :-a(X,Y) & a(Y,Z2) & a(Z,W)
Cy: p(X) :- a(X,Y) & a(Y,X)

Here is the test for Cy C C:
e  Choose constants X — 0, Y — 1.

e Canonical DB from C is

D ={a(0,1), a(1,0)}

I Cl(D) = {p(O),p(l)}~



e  Since the frozen head of Cs is p(0), which is in
C1(D), we conclude C2 C €.

[0 Note that the instantiation of Cy that
shows p(0) isin C1(D) is X — 0,V — 1,
Z —0,and W — 1.

O If we replace 0 and 1 by the variables
X and Y they stand for, we have the
containment mapping from C; to Cs.

Saraiya’s Containment Test

e  Containment of CQ’s is NP-complete in
general.

e Sariaya’s algorithm is a polynomial-time test
of )1 C (@, for the common case that no
predicate appears more than twice among the

subgoals of (1.

0 They can appear any number of times in

Q2.

e  The algorithm is a reduction to 25AT and
yields a linear-time algorithm.

e  Qur algorithm is more direct, but quadratic.

The Algorithm

Pick a subgoal of ()2, and consider the
consequences of mapping it to the two possible

subgoals of (1.

e Follow all consequences of this choice:
subgoals that must map to subgoals, and
variables that must map to variables.

O If we know p(Xy,. .., X,) must map to
p(Y1,...,Yy), then infer that each X;
must map to Y;.

O If p(X1,...,X,) is a subgoal of @2, and
we know X; maps to some variable 7,
and exactly one of the p-subgoals of
()1 has 7 in the ¢th component, then
conclude p(X7y,..., X,;) maps to this
subgoal.

One of two things must happen:

1. We derive a contradiction: a subgoal or
variable that must map to two different
things.

O If so, try the other choice if there 1s one;
fail if there 1s no other choice.



2. We close the set of inferences we must make.

0 Then we can forever forget about the
question of how to map the determined
subgoals and variables.

0 We have found one mapping that works
and that can’t interfere with the mapping
of any other subgoals or variables; so we
make another arbitrary choice if there are
any unmapped subgoals.

Example

Let us test Cy C Cy, where:

Cy: p(B) :- a(A,B) & a(B,A) & b(4,C) & b(C,B)
Co: p(X) - a(X,Y) &b(Y,2) & b(Z,W) & a(W,X)

e Note this simple example omits some options:
(1 could have a predicate appearing only once
in the body, and C5 could have 3 or more
occurrences of some predicates.

e  Here is a description of inferences that might
be made:

(1

(2) Then X — A, Y — B

(3) Now, b(Y, Z) — b(B,7)

(4) Since there is no b(B,?), fail

(5) Thus, we must map a(X,Y) — a(B, A)
(6) Then X — Band Y — A,

(7) Y, Z)—=b(AC), Z = C,

(8) b(Z, W) — b(C,B), W — B

(9) Now, a(WW, X) must map to a(B, B)
(10) Since a(B, B) does not exist, fail

e  Note, however, that if the last subgoal of C}
were b(C, A), we would have W — A at
line (8) and a(W, X) — a(A, B) at line (9).

0 That completes the containment mapping
successfully, with X — B, Y — A, 7 —
C,and W — A.

Generalization to Unions of CQ’s

PUP,U-- - UPLCQLUEQU - U, iff for all
P; there exists some @); such that P; C Q.

Proof (If)

Obvious.



Proof (Only If)
Assume the containment holds.

e Let D be the canonical (frozen) database from

cQ P

e  Since the containment holds, and P;(D) surely
includes the frozen head of F;, there must be
some @); such that Q;(D) includes the frozen
head of P;.

L] Thus, Pz’ g Q]'.

Union Theorem Just Misses Being False

Consider generalized CQ’s allowing arithmetic-
comparison subgoals.
PripX) :-e(X) £10<=X & X<=20

@Q1: p(X) :-e(X) &10<=X&X<=15
Q2: p(X) :-e(X) &16<=X&X<=20

e P CQ1UQ but P CQrand Py C Qs are
both false.

CQ Contained in Recursive Datalog

Test relies on method of canonical DB’s;
containment mapping approach doesn’t work (it’s
meaningless).

e Make DB D from frozen body of CQ.

e  Apply program to D. If frozen head of CQ
appears in result, then yes (contained), else

no.
Example
o CQ Qq1s:

@1: path(X,Y) :- arc(X,Z2) &
arc(Z,W) & arc(W,Y)

e (), is the value of path in the following
recursive Datalog program:

r1: path(X,Y) :- arc(X,Y)
ro: path(X,Y) :- path(X,Z) & path(Z,Y)

e Intuitively, @1 = paths of length 3; Q)3 =
paths of length 1 or more.

e  Freeze (Y1, say with 0, 1, 2, 3 as constants for
X, Z, W, Y, respectively.

D ={arc(0,1), arc(1,2), are(2,3)}



e  TFrozen head is path(0,3).

e  Easy to infer that path(0,3) is in Q2(D) —
use r1 three times to infer path(0, 1),
path(1,2), path(2,3), then use ra to infer
path(0,2), path(0, 3).

Harder Cases

e Datalog program C CQ: doubly exponential
complexity. Reference: Chaudhuri, S. and
M. Y. Vardi [1992]. “On the equivalence of
datalog programs,” Proc. Eleventh ACM
Symposium on Principles of Database
Systems, pp. b5—66.

e Datalog program C Datalog program:
undecidable.



