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Abstract. An Archival Repository reliably stores digital objects for long
periods of time (decades or centuries). The archival nature of the sys-
tem requires new techniques for storing, indexing, and replicating digital
objects. In this paper we discuss the specialized indexing needs of a
write-once archive. We also present a reliability algorithm for e�ectively
replicating sets of related objects. We describe a data import utility for
archival repositories. Finally, we discuss and evaluate a prototype repos-
itory we have built, the Stanford Archival Vault (SAV).

1 Introduction

Information stored and managed by today's digital libraries can be lost within
years or decades if special care is not taken. The causes include media and system
failures, format obsolescence and bankruptcy of publishers. At Stanford we have
implemented a prototype archival repository, the Stanford Archival Vault (SAV,
pronounced \save"), for the long term preservation of digital objects. These ob-
jects may include documents, their metadata, and the programs for interpreting
formats. Our repository does not entirely solve the preservation problem, but
we believe it provides an extremely reliable storage infrastructure for preserving
digital objects, even as hardware, software, and organizations evolve.

As we implemented and tested our SAV prototype, we identi�ed some un-
expected, important challenges that led us to modify our initial design, and
to develop some new storage and replication techniques. We believe that the
encountered challenges were not unique to our system, but represent some fun-
damental problems that will be faced in the design of any type of digital library
preservation system.

For example, the nature of an archival repository implies that objects should
be preserved and not erased. As a result, a repository should not allow users to
arbitrarily delete or overwrite digital objects. This write-once policy, which is
not present in most conventional data stores, forces us to manage data di�er-
ently. For instance, consider a \set" object that contains pointers to the di�erent
materializations of a given document (e.g., the postscript version, the plain text
version). The usual way of updating this set is to write a new pointer into
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the set object, or to delete a pointer from the object. Because the write-once
policy forbids such changes, managing collections of objects using sets requires
new storage structures. Furthermore, these new structures require speci�cally
tailored indexes that can speed up common accesses to digital library sets.

A second area where we faced unexpected challenges was in the con�guration
of replication \agreements." Any archival repository must backup its digital ob-
jects to remote systems, and hence must enter into some type of agreement with
the remote system regarding what objects to replicate. Agreements need to be

exible so that di�erent arrangements can be described, and it is important that
new documents be automatically and fully incorporated into the proper agree-
ments, without human intervention. For instance, suppose that a new Physics
technical report (TR) is created, consisting of two materializations, a postscript
object, and a plain text object. As soon as the \root" digital object for this TR
(e.g., the one that links to its components) is added to the set of Physics TRs,
all the components should be implicitly added to the proper agreements and
automatically backed up. Achieving this 
exibility and automation required the
concepts of replication sets and annotated links, concepts that will be useful in
any archival repository.

In this paper we discuss the challenges in implementing SAV and the lessons
we learned. (A more detailed discussion of some issues can be found in the
extended version [5].) We describe the mechanisms that were developed and that
could be used in any archival repository. Many of the problems we encountered
have been described before in other domains; see Sect. 6 for related work. Here
we build on previously developed techniques and, where necessary, present new
techniques. Speci�cally, we make the following contributions:

{ We identify the need for an index of the link structure between objects, or
pointer index. We discuss other important indexes and how, if necessary,
these indexes can be built from the pointer index.

{ We present a reliability algorithm that replicates digital objects, and detects
and corrects corruption in these objects.

{ We examine how to use annotated links that restrict traversals over a graph
for the purpose of conveniently specifying replication sets. These sets are
used by the reliability algorithm, and must grow implicitly for automatic
operation of the system.

{ We introduce the InfoMonitor, an implemented software package for migrat-
ing real-world data (e.g., from a web site) into a repository.

{ We present experimental performance results for SAV that illustrate the
e�ciency and costs of the techniques we describe. Our system scales well to
large data sets.

This paper is organized as follows. First, we present a general model for an
archival repository in Sect. 2. Then, in Sect. 3 we describe the object storage
component of the system. Section 4 discusses the reliability layer, and Sect. 5
presents the InfoMonitor. Section 6 discusses related work.



2 Components of an Archival Repository

Figure 1 shows the architecture of a prototypical archival repository. Our im-
plemented SAV follows this basic design. However, here we address the general
principles and features that would form the basis of any archival repository. (For
speci�c details of the SAV architecture, refer to [9]).

The architecture in Fig. 1 shows six distinct components of the system. The
�rst component is the object store. This component stores and indexes digital
objects so that they can be e�ciently retrieved by other modules. In addition,
the object store manages the assignment of object handles, indexing, and caching
of digital objects. The object store can be built on top of an existing storage
system, such as a �le system or DBMS.

A digital object in our system consists of a list of �elds (name/value pairs),
and is assigned an object handle. Object handles are used by the system to
e�ciently locate objects, but are seldom seen by users. Users see human-readable
names that are mapped by the system to one or more handles. The name/value
pairs are de�ned by the creator of the object, who generates as many �elds as
necessary. These �elds store content data, metadata, or any other useful values,
including another object's handle. Such a reference �eld represents a \link"
between two objects that can be used to build complex data structures such as
trees, sets, version graphs [32, 17], etc. Other data structures that may be useful
are described in [9].

Object Store

Reliability Layer

Upper Layers
(e.g. Security)

Trusted
Remote Sites

Applications and
Data Import/Export User Interface

(e.g. InfoMonitor)

Fig. 1. Architecture of the Archival Repository.

The long term archiving function of the repository is provided by the relia-

bility layer in Fig. 1, which manages object replication and corruption detection.
This layer relies on di�erent repository sites, usually geographically dispersed,
to store copies of the objects. The reliability components at the various sites
collaborate in detecting missing or corrupted information, and restoring it. We
assume that remote reliability components are trusted. Communications among



trusted reliability components can be encrypted and authenticated using stan-
dard techniques. The reliability layer can be con�gured in various ways (e.g.,
number of sites involved, number of copies needed for each object) to achieve
di�erent levels of reliability and system cost; the determination of appropriate
con�guration parameters is investigated in [10].

Upper layers on top of the reliability layer provide additional functionality,
such as user security, intellectual property management, and query processing.
The upper layers provide a programming interface (API) and appropriate in-
formation models so that various \applications" can access the repository. One
application is an import/export utility that provides batch migration of objects
into and out of the repository, from digital libraries that do not provide the high
reliability of the archive.

In this paper we focus on the lower system layers (object store and reliability),
which are the ones that have been implemented in our initial SAV prototype.
However, we do cover one important application: the InfoMonitor (Sect. 5), which
migrates information from a standard �le system or web site into the repository.
In the extended version of this paper [5] we also discuss a user interface for
the system administrator that allows him to view the digital objects in the
repository, create new objects, group semantically related items together, and
construct agreements to replicate objects.

2.1 Archival Repository Properties

An archival repository must enforce certain properties in order to protect digital
objects against loss over time. The write-once policy speci�es that users should
not have the capability to delete or modify objects once they are archived. A user
can \take an object out of circulation" by changing its access rights, or represent
a modi�cation as a new object version, but this is di�erent from physically
erasing or changing the object. Allowing users to erase or change objects is
dangerous in an archival system, and can introduce ambiguous situations where
it is not clear if a object was deleted by a user (and should not be restored)
or lost due to some error (and should be restored). Moreover, if objects can be
modi�ed, it may not be clear which instance of the object should be restored.
Under the write-once policy, the reliability layer simply restores any missing
or modi�ed objects, leading to much better long term reliability. Write-once is
a policy in SAV, not a requirement of the underlying media as in some other
write-once schemes [12] (see Sect. 6 for related work on write-once storage).

The second property is universal handles. This property guarantees that an
object retains its handle regardless of which repositories it is replicated to, and
that the handle is unique within the repository network. Thus, a handle un-
ambiguously identi�es a single object. Without this property, the system would
have to explicitly record what objects are copies of which, greatly increasing
the chances of errors. Moreover, with universal handles, object references can
be unambiguously resolved, allowing the structure of a graph of objects to be
retained even as the objects are replicated to di�erent sites. The universal han-
dles property also has important e�ciency bene�ts; for example, two sites can



quickly determine whether they have the same objects simply by comparing lists
of handles.

3 Object Store

The write-once policy forces us to represent related objects in a way that is
unlike traditional data stores. To illustrate, Fig. 2 shows how a \set" can be
represented. This set may represent a collection of technical reports, the set of
materializations of one report, the set of replication agreements at one site (see
Sect. 4), and so on. The set is initially created by generating a \set anchor"
A1 object. An object like O2 is added to the set by creating a \set member"
(represented by M2 in the �gure) which is an intermediate object pointing to
both A1 and O2. A member O2 could be \deleted" (not shown in the �gure) by
adding a \remove set member object" that links to A1 and M2. All changes are
recorded by adding objects rather than by modifying objects.

M1 M2 M3

A1

O1 O2 O3

Fig. 2. Structure of set fO1;O2;O3g

A problem with write-once structures is that they are di�cult to traverse.
For instance, in order to �nd all of the members of A1, it is necessary to identify
the objects that point to A1 (these objects would be the set member objects,
e.g.,M1;M2:::, that also point to O1; O2:::). One solution is to scan all repository
objects, looking for objects that point to A1. Clearly this traversal is very ex-
pensive, so we need auxiliary indexes to help us locate objects of interest; these
indexes are described in Sect. 3.1. Indexes need to be modi�ed, so they cannot be
stored as digital objects, and do not enjoy the high reliability of digital objects.
Section 3.2 discusses special mechanisms to ensure the correctness of indexes.

3.1 Indexing Digital Objects

A �rst critical index is the handle index that maps handles to the site-speci�c
identi�er (e.g., �le name) that locates the object. This index is best implemented
as a dictionary (e.g., hash table or balanced binary search tree) with universal
handles as keys. This index, like the others we describe, is incrementally main-
tained. That is, as new objects are created, the index is noti�ed so the appro-
priate handle-identi�er pair is added. The handle index makes universal handles



feasible. Without site-speci�c information in a handle, and without a handle in-
dex, one would be forced to �nd an object O1 by scanning all repository objects
looking for one with �eld HANDLE = O1.

Another important index is the pointer index that gives the handles of all
objects that link to a given object Oi. For example, for A1 in Fig. 2, the pointer
index can quickly give us the handles for M1, M2 and M3, from which we can
�nd the members of set A1. Note than in a traditional system a pointer index
may be unnecessary if all references are \doubly linked." However, in an archival
repository, A1 cannot point toM1 (which was created after A1). Hence, a pointer
index is essential. Again, a pointer index is best implemented as a dictionary.
For convenience, the pointer index can be extended to list the outgoing links for
each object. This makes it possible to traverse the repository's graph structure
without retrieving the objects themselves.

To make a pointer index feasible, stored �elds (Sect. 2) that contain references
must be tagged as such. This allows the system to scan repository objects, extract
references and build the index. The creator of an object must tag handle �elds,
either by indicating they are of \handle type" or by using �eld names that the
system recognizes as containing handles (e.g., PREVIOUS in our earlier example).

Using the pointer index, a user can e�ciently traverse structures such as the
set structure in Fig. 2. If necessary for convenience, a specialized \set index"
view of the pointer index can be built, which provides operations such as \get
set members." Such a specialized structure index could be materialized, or could
issue queries to the pointer index to satisfy requests. Similarly, the handle in-
dex can be folded into the pointer index, especially if the site-speci�c identi�er
(�lename) can be computed from the handle itself. For example, if the �lename
is the hexadecimal representation of the handle, then the list of handles indexed
in the pointer index is equivalent to the handle index. Using the pointer in-
dex to emulate other indexes does not introduce signi�cant e�ciency overhead,
but eliminating the pointer index is very expensive for reasons discussed above.
Thus, the only index which must be materialized is the pointer index, and other
indexes can be materialized to trade space for speed. The implications of this
issue in the context of scalability are discussed in Sect. 3.3.

3.2 Maintaining Index Consistency

Indexes are important for the operation of the repository, yet they are inherently
not as reliable as digital objects. First, it does not make sense to replicate in-
dexes across sites to achieve reliability. (Indexes contain site speci�c information
that is not useful at the remote sites, and since indexes change often, updating
the remote copies would be too expensive). Second, since indexes are updated
in place, they are much more prone to software errors than write-once digital
objects.

There are two steps to ensure that index errors do not corrupt the underlying
digital objects. The �rst step is to make indexes disposable. This means that no
information that is critical for the long-term survival of the repository should be
placed in an index. In other words, it should be possible to at any time throw



away all indexes and reconstruct correct indexes from the underlying digital
objects. As a corollary, all index information must be considered a hint only. For
example, if a pointer index tells us that object O1 points to O2, we must verify
this (by looking at the actual objects) before performing a critical operation
based on this information. An incorrect hint can be inconvenient, especially if
the hint is not easily veri�ed, so it is important to keep the indexes as consistent
as possible.

There are two ways to ensure the consistency of indexes:

{ Rebuild from scratch: Periodically discard an index, and completely rebuild
it from the objects in the archive. The rebuild procedure is also useful when
objects are added in bulk through a data import utility (see Fig. 1).

{ Check and repair : The information in the index is veri�ed incrementally and,
if necessary, corrected.

Note that index rebuilding easily discovers objects that are completely miss-
ing from the index, while a check and repair task can only verify existing entries
in the index. On the other hand, check and repair allows the index to be available
continuously, while the index created by the rebuild task is not available until
the rebuild is complete. (Of course, the old, possibly corrupted index could still
be used to serve requests while the new index is being built.)

In our implemented SAV system, indexes are kept in main memory and
rebuilt from scratch at system startup. They are also rebuilt at the prompting
of a user, or at prede�ned intervals. A check and repair mechanism could be
added in the future.

3.3 Performance Measurements

To evaluate the overhead of building indexes, we conducted experiments on our
SAV prototype, running on a Gateway E-4200 (450 MHz Pentium III, 256 MB
RAM, 128 MB swap, Red Hat Linux 6.0). The SAV is implemented in both in
Java 2 and C++; the measurements presented here are from the C++ version.
Digital objects containing real documents from the Stanford Database Group's
web site were stored in the archive. Five object sets of di�erent sizes were tested
in order to assess scalability. The smallest set contained over 54,000 objects and
2 GB of total data, while the largest contained over 270,000 objects and 10 GB
of total data. In each set, the average object size was 39 KB. For comparison,
the largest data set (10 GB) represents the archived contents of approximately
25 average-sized web sites [7].

The results are shown in Fig. 3. The three lines in the �gure represent the
three tasks required to rebuild the handle, pointer and set indexes. These tasks
are: read objects from disk (solid line), compute the CRCs to detect corruption
(dotted line) and index the objects (dashed line). The times scale linearly with
the size of the archived data set. The complete index building operation requires
an average of 13 milliseconds per archive object (342 seconds per gigabyte), and
this time is dominated by the disk read (77%) and CRC computation (21%).



Fig. 3. Performance of the object store.

The high overhead of the disk read and CRC computation is mitigated by the
fact that indexes are rarely rebuilt, and most SAV operations avoid these costs
by using the indexes after they are already built. Moreover, any scheme that
validates indexes by examining the actual objects on disk would incur these
costs; our system is not unusual in this respect.

Of course, it is very good that the cost to build indexes scales linearly, but
such cost may still be signi�cant for large archives. One solution is to rebuild each
type of index at a di�erent time. Another solution is to partition a repository
into smaller sets that are reindexed at separate times. This would spread out
the rebuilding over time. If this scheme is used, there must be some mechanism
to deal with object references that cross partitions, perhaps by querying the
indexes for both partitions simultaneously.

It is reasonable to ask how many objects can be indexed before the indexes
no longer �t in main memory. We measured the per-object size of indexes as
57 bytes for the handle index, 76 bytes for the pointer index, and 9 bytes for a
materialized set index. We assume that, to save space, only the pointer index
is materialized (as discussed in Sect. 3.1). If we dedicated 128 MB of RAM to
indexes, the SAV could index over 1.7 million objects, or 65 GB of archived
data1. For larger archives, more RAM could be purchased, or the index could
be stored on disk and e�ciently accessed using known techniques [14].

4 Reliability Layer

As described in Sect. 1, the replication layer backs up objects remotely, detects
lost or corrupted objects, and restores them to their pristine state when neces-
sary. The challenge is to develop 
exible mechanisms for recording what sites
participate in replication agreements, and what objects are backed up where. In
addition, we need e�cient mechanisms for checking and restoring information.

1 A large repository may also use compression to save disk space.



In this section we describe the techniques and algorithms that were developed
as the SAV prototype was implemented, but that we believe are well suited for
any archival repository.

An example will illustrate the basic replication steps we follow. In this exam-
ple, three sites (e.g., Stanford, Berkeley and MIT) are running SAV instances.
The replication process begins when a replication agreement is created at Stan-
ford. The replication agreement object identi�es the sites that participate (Stan-
ford, MIT, Berkeley) and the objects that are to be replicated. For now, let us
assume that this agreement object simply contains pointers to the objects to
replicate, a set of technical reports. These technical reports initially exist only
at Stanford, so Stanford conducts the �rst site check. The Stanford site contacts
the MIT site and discovers that MIT does not yet know about the agreement,
so all of the technical reports and the agreement object are replicated to MIT.2

Similarly, all objects are copied to Berkeley.
Each of the three sites then begins a cycle of repeated site checks, connecting

to the other two sites and comparing snapshots. As long as there are no errors,
the snapshots will agree. However, consider the situation where a technical report
is lost at Stanford due to a disk failure. The next site to perform a site check
will notice that the report is missing, so a new copy of the report object will be
copied back to the Stanford site.

4.1 Constructing Snapshots of the Replication Set

In the above example, we suggested that an agreement object point to the \cov-
ered" technical report objects. This is clearly not a good idea since we could
never add more objects to the agreement. (The agreement object cannot be
modi�ed.) An alternative is to treat the agreement object as a set anchor, so
that any object connected via a \set member" object is covered. For example,
in Fig. 4, R2 would cover O2 and O3. (In this �gure, please ignore for now the
di�erent types of pointers.) This is still not 
exible enough, since new objects
would have to be explicitly linked to R2.

Our solution is to recursively de�ne the covered objects in terms of the link
structure of the repository. To illustrate, suppose we wish to cover all versions
of a technical report under agreement R1 in Fig. 4. The di�erent versions of the
report, V1, V2 ... Vn, are related using a version chain, in which version Vi points
to the previous version Vi�1. Initially, the �rst version V1 is added to R1 (through
M1). When V2 is created, it need not be explicitly added to R1. Our replication
algorithm will implicitly include V2 in R1 because there is a path to it from R1

(viaM1 and V1). As more versions are created, they are also implicitly included.
Thus, the replication set of R1 includes all objects recursively reachable from R1

(\backwards" links count).

2 As described earlier, the reliability layers at each site trust each other, so they
willingly take each others' agreements and objects. Clearly, before the agreement
object was created, Stanford checked with the other sites to see if there was enough
storage capacity, or to arrange for payment for the service.
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Fig. 4. Example replication sets.

There is a problem with this simple description of a replication set. To il-
lustrate, consider agreements R1 and R2 in Fig. 4. Their replication sets are
connected by O2, so if we blindly include everything that is linked to R1 in its
replication set, we would include all of R2's set! Even if agreements do not over-
lap, other objects may act as bridges and connect them. For instance, in Fig. 4,
object T1 is such a bridge object. (Object T1 may be linking objects written by
the same author, for example.)

Our solution is to annotate repository links to indicate when they should
be traversed in building replication sets. Some links, like the ones out of T1 in
Fig. 4, should never be traversed. Links such as these have nothing to do with
replication, and are shown as dotted lines in the �gure. Other links like the
ones between M2 and O2, and between M3 and O2, should only be traversed in
the direction of their \arrow" to avoid merging replication sets. Such links are
shown as dashed lines in the �gure. When computing the replication set for R1

we would reach O2 but would stop there. Similarly, when computing the R2 set
we would also reach O2, but would again stop there.

In summary, we use the concept of a graph with annotated links. In such a
graph, every link is annotated in one of three ways:

1. two-way recursive: The link should always be traversed during a replication
set traversal.

2. one-way recursive: The links should only be traversed in the direction of the
link during a replication set traversal.

3. non-recursive: The link should never be traversed when de�ning a replication
set.

The annotated type of a link is speci�ed when the link (and thus the object
containing the link) is created. The example shown in Fig. 4 can serve as a
template for determining how links should be marked. If it is desirable to change
the annotation on a link after it is created, then the replication set traversal
algorithm must be extended to allow the annotations on links to be modi�ed
by an administrator. Since modi�cations cannot be written to objects, these
modi�cations can be represented as version chains, and the traversal algorithm



would be designed only to consider the most current version of a link when
deciding whether to traverse it. This is an example of the generally applicable
strategy of representing modi�cations as version chains rather than modifying
digital objects themselves.

4.2 Detecting Object Corruption

Each site periodically constructs a snapshot of the replication set of each known
agreement. A snapshot includes the handles of all non-corrupted objects that
are part of the agreement. Snapshots are then compared with the corresponding
ones at remote sites.

The snapshot construction algorithm is described in detail in [5]. In sum-
mary, the algorithm is seeded with the handle of the replication agreement, and
traverses the object graph to �nd other objects in the agreement. The traversal
ignores the direction of the object links but is constrained by the link annota-
tions. Any uncorrupted object found during this traversal is considered part of
the snapshot.

Once snapshots are created at both sites, the remote site sends the snapshot
to the local site, and the local site performs a comparison. Any handles missing
locally represent objects that must be retrieved from the remote site, and any
handles missing remotely represent objects that must be sent to the remote site.

4.3 Performance Measurements

In order to evaluate the performance of the reliability layer, we conducted ex-
periments on our SAV prototype. We performed the reliability algorithm on the
data sets described in Sect. 3.3, using two di�erent SAV instances running on
identical machines connected by 10 Mbit Ethernet. The measurements are shown
in Fig. 5. In the �gure, the solid line represents the time to construct a snapshot

Fig. 5. Performance of the reliability layer.



at a particular repository site. This process must be repeated at both the local
and remote sites for each site check; however, the snapshot construction at dif-
ferent sites can run concurrently. The snapshot construction time scales linearly
with repository size, and represents an incremental duration of 40 microseconds
per object (1.2 seconds per gigabyte).

The snapshot comparison time (dotted line in Fig. 5) increases as nlog(n)
(due to our use of a red-black balanced binary tree). This non-linearity is incon-
sequential since our implementation also examines each object on disk for cor-
ruption during the site check, and the I/O cost dominates the time to compare
the snapshots by three orders of magnitude. If the examination for corruption
is done lazily between (instead of during) site checks, then the comparison time
would consume a larger fraction of the site check time (about 1=3 in our experi-
ments). If the non-linear growth of the comparison time hinders performance and
scalability, we could substitute a scheme whose time grew linearly, for example
by inserting handles into a hash table instead of a binary tree.

The amount of time to send a snapshot from one site to another was 10
microseconds per object (267 milliseconds/gigabyte), as shown by the dashed
line in Fig. 5. Various optimizations are possible for use with slow networks or
very large repositories, as described in [5, 8].

5 The InfoMonitor

After developing SAV, we discovered a \sad fact" about archival repositories:
Many users do not want to deposit their digital objects in an archival repository,
or in any form of digital library for that matter! They are perfectly happy with
their objects residing on conventional �le systems or web servers, where they
can use their favorite editors and tools to work on them. After all, it is not
their job to ensure that their objects are available to future generations years
from now. However, preservation is the job of a librarian, who needs tools to
\capture" important objects in a way that does not require active participation
by users (but of course requires user consent). The InfoMonitor we describe in
this section represents one such tool; the goal is to provide an automated way
to migrate data into the archive.

The InfoMonitor serves as a \bridge" between a repository such as SAV and
an existing environment where digital objects reside. Our example environment
is a web site (but the InfoMonitor can be used in other scenarios too). Users
continue to create, edit and access web pages using standard tools (e.g., text
editors). The InfoMonitor carefully tracks the �les representing the web pages,
and decides what objects should be archived. In addition, it monitors changes
to the �les, translating those changes into repository updates.

One of the hardest challenges faced by the InfoMonitor is in deciding how to
interpret the changes to the web site. For example, suppose that a web page is
modi�ed. Modi�cations are not allowed on the repository, so the action must be
automatically translated into the creation of a new version of the corresponding
digital object. If the web page is deleted, a \�nal" version is added in the repos-



itory, indicating that the web page was removed. Changes to the web site �le
structure must be carefully analyzed to determine how they impact the archived
objects. For instance, if a web page is \moved" from one location to another,
this action can be interpreted as a deletion followed by an insertion, or it can be
interpreted as new version of the web page (where one of its properties, its �le
name, was changed).

The InfoMonitor o�ers an administrative user interface, analogous to the one
described in [5]. Through this interface, an administrator can de�ne portions of
the web site to archive (by setting \�lters"), and can examine archived objects
and how they map to web site �les. The interface also o�ers a historical view,
where archived objects can be viewed as of a given time. Finally, the adminis-
trator can also restore web site �les based on the repository objects. Thus, the
InfoMonitor o�ers a fairly automated way to archive a web site. Web users do
not need to perform explicit saves to the repository, yet their pages are safely
archived.

Figure 6 illustrates how the InfoMonitor represents the web pages as digital
objects. The left hand side structure mimics the target �le structure, while the
right side represents the selection �lters and other data. If the top level InfoMon-
itor Directory is added to a replication agreement, then this entire structure will
be replicated at other repository sites.

Set: /

InfoMonitorDirectory

Filter
1

File
1

Set: /subdir/

File FileFile
2

Filter
3

Filter
2

Fig. 6. The InfoMonitor creates this data structure in the SAV.

Initially, the structure of Fig. 6 is created by a bulk load utility that scans
the web site. (This same utility was used to acquire the data sets used for the
experiments of Sect. 3 and Sect. 4.) The InfoMonitor can perform two types of
periodic checks to track the web site: a quick and a slow one. The quick scan
compares the timestamps of �les with those of the archived objects, to detect
new or modi�ed �les. Timestamps can be unreliable, so the slow scan actually
compares the contents of �les to the archived content. In either case, as changes
are observed, the appropriate objects are added to the archival repository.

The InfoMonitor has been implemented as part of our SAV prototype. It
is currently being used to archive 26,000 �les (2 GB) of our group's web site.
Additional details and performance numbers are available in [6].



6 Related Work

The digital library community has begun to focus on the problem of designing
and implementing long term archives [15, 11, 13, 30]. Several projects have fo-
cused on building archives, including the Computing Research Repository [19],
the Archival Intermemory Project [3] and the Victorian Electronic Records Strat-
egy [31]. These projects have focused on di�erent archive architectures than the
SAV design we discuss here, and information discovery, not preservation, has
been the focus of many of the e�orts. The San Diego Supercomputer Center [28]
has examined indexing digital archives from the standpoint of metadata; such an
infrastructure would be useful as a document discovery mechanism in the \upper
layers" mentioned in Sect. 2. The Internet Archive [1] is building a collection of
archived web pages, but so far has not addressed the problem of preservation.

The archiving problem is related to the problem of increasing the reliability
of �le systems. The traditional solution is data backup [4, 21, 23]. Several com-
mercial products use hierarchical replication systems to automatically backup
and reliably store data (e.g., [22]). The backup problem focuses on shorter dura-
tions than the archiving problem. Moreover, users of backup systems are usually
interested in restoring the most current version of data, while archives are re-
sponsible for storing all versions. Another approach is to redesign the �le system
itself to incorporate more reliability features. One idea is to use Redundant Ar-
rays of Inexpensive Disks (RAID) [26], so that disk failures can be overcome.
Others have suggested using logs to improve many aspects of the �le system,
including the reliability [29, 12]. Such systems could serve as the data storage
component of our Object Store layer (Sect. 2).

Another related area is the problem of maintaining consistency between nodes
in replicated databases. Much work has been done in designing algorithms for
propagating data from one replicate to another [2, 27]. These systems focus on
systems that allow updates and deletions of objects. Archival Repositories, which
do not allow digital objects to be modi�ed or erased, require di�erent approaches.
Similarly, �lesystems using replication (such as Harp [24], Zebra [20], and others)
focus on providing high availability and fault tolerance for frequently accessed
�lesystems. Our focus is on long term reliability for data that may be archived
for decades between accesses.

Finally, many of the issues we discuss here are also present in hypermedia
systems [18, 16]. Although the problems are similar, hypermedia systems focus on
presentation of objects as much as on the storage of objects, and also must cope
with inconsistencies due to modi�cations and deletions. As a result, the general
solutions tend to be similar (e.g., annotating links to restrict graph traversals)
although the details and the implementation di�er from what we present here.

7 Conclusions

In this paper we have discussed issues that arise when implementing a reliable
archival storage system. Although we have discussed these issues from the per-
spective of our SAV design, they are relevant to the construction of any reliable



archive. We have discussed solutions for de�ning and indexing digital objects and
references between them in a write-once repository. We have discussed e�cient
algorithms for replicating objects to multiple sites using di�erent replication net-
works, and for building and comparing snapshots of repository contents so that
corruption can be detected. These algorithms allow the set of replicated objects
to grow implicitly, rather than through the intervention of a human. We have
also described the InfoMonitor, a tool for automatically importing and tracking
information outside the repository. The SAV prototype demonstrates that a reli-
able archive can be built, that it can operate e�ciently, and that it can interact
e�ectively with the outside world.
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